等速万向节 本发明涉及用于连接例如汽车动力传送部分的主动轴与从动轴的等速万向节。
等速万向节迄今为止用于汽车的动力传送部分,以便把主动轴的转动力或扭矩通过从动轴而传送给相应的轴。
涉及等速万向节的现有技术为人所知,例如像图55所示那样。在该图中,有3条导向槽2沿着轴向在外轮1的内表面上形成。径向插入的支轴4,配有装在外轮1里面的三脚件3。球形面滚轮6可旋转且可滑动地经由若干滚针轴承5,顺轴向装在每根支轴4的外周面上。球形面滚轮6可以与位于导向槽2两侧的滚轮导向面7配合。
然而,在上述涉及等速万向节的现有技术情况下,当三脚件3相对于外轮1的轴以预定角度而倾斜的状态下施以高负荷时,被球形面滚轮6压在滚轮导向面7上的力即作用于滚轮导向面7上的表面压力,就增大了,这是因为每个球形面滚轮6均与导向槽2的滚轮导向面7线性接触地缘故。因此,在球形面滚轮6与滚轮导向面7之间的接触面上就发生油膜破裂,并发生润滑故障。另外,还发生下述麻烦,即:润滑故障使球形面滚轮6的表面形成小孔,即产生所谓砂孔。在其他情况下,会在球形面滚轮6的表面形成一些缺陷,即发生所谓粘着磨损。
另一方面,在上述涉及等速万向节现有技术的情况下,当三脚件3相对于外轮1的轴以预定角度而倾斜时,就出现了图56所示的关系,即每个球形面滚轮6歪斜着与圆柱面导向槽2的滚轮导向面7彼此相交。在这种情况下,就不可能使球形面滚轮6作正常的滚动。
也就是说,球形面滚轮6趋向于顺着图55中箭头A或箭头B所指方向而滚动,尽管导向槽2是圆柱面的且基本上与外轮1的轴平行地延伸。因此,球形面滚轮6是活动的,但同时又受到导向槽2的限制。所以,由球形面滚轮6与导向槽2的滚轮导向面7之间引起的打滑,就诱生一个顺轴向的推力。该诱生推力随着三脚件3相对于外轮1的倾斜角度加大而成比例地增大。这就令人担心难以把主动轴的转动力流畅地传送给从动轴。要注意,由球形面滚轮6沿着滚轮导向面引发的往复运动,会产生摩擦阻力。在这种情况下,诱生推力就牵涉到因摩擦阻力而产生的负荷。
为了解决上述问题,已知有一种例如《日本专利公开文本》第3-168416号所公开的等速万向节。在此种等速万向节中,在外轮内部顺着轴向形成3条滚珠槽。3对滚珠分别借助于支座而装在相应的滚珠槽中。在外轮内部,含有一个三脚件。该三脚件配有3个顺径向延伸而位于邻接的各对滚珠之间的支轴。每个支轴部有球形面。带有球形凹陷以便与该球形面配合的一个滚珠导向器,配备于该球形面与滚珠之间。
然而,在《日本专利公开文本》第3-168416号所公开的等速万向节的情况下,当配置在外轮闭合端的第一根轴与配置在三脚件上的第二根轴之间的运行角度加大时,令人提心顺着旋转方向会产生振动,且会因有间隙而产生所谓敲打声。上述敲打声指的是一种顺旋转方向的松动而产生的声音。另外,还令人担心可能会出现以下麻烦,即:滚珠在组装之际往往会与支座脱离,难以将滚珠保持在滚珠导向器中,因而需要组装技术高,组装时间也需延长,且工作效率就降低了。
《日本专利公开文本》第6-74243号公开了一种三平面的等速万向节。在该种情况下,一个内接合构件插在一个外接合构件内,在内接合构件上配有一些耳轴。每个耳轴配有若干球形件。这些球形件的构造,使得它们可沿着在外接合构件中构成一个纵向室的一些侧壁上滚动。球形件借助于装在耳轴上的一根定位弹簧而被保持在耳轴上。
然而,在《日本专利公开文本》第6-74243号所公开的三平面等速万向节的情况下,当外接合构件与内接合构件之间的运行角度加大时,同样也令人担心顺着旋转方向会产生振动,且会产生因有间隙而出现的所谓敲打声。另外,也难以在组装之际使球形件保持在耳轴上。还令人担心的是组装工作的效率因此而降低。
另一种涉及现有技术的等速万向节也为人所知,其构造例如图57所示那样。在该种情况下,一对彼此相对且为圆弧形横截剖面的圆形导向面2a、2b,顺着轴向在一个外接合构件1a的内壁表面上形成。位于那对导向面2a、2b之间的一个内接合构件3a,被装在外接合构件1a的内部空膛里。另外,借助于一个定位器8(见《日本专利公开文本》第7-74649号),配备了若干可沿着导向面2a、2b滚动的球形件9。
然而,在涉及现有技术的等速万向节的情况下,当那对导向面2a、2b之间的间隔距离S小于预定值时,就有一个大的负荷作用于沿着该对导向面2a、2b滚动的球形件9上。另一方面,当那对导向面2a、2b之间的间隔距离S大于预定值时,由于球形件9与那对导向面2a、2b之间的间隙,就会产生松动。如上所述,涉及现有技术的等速万向节,含有麻烦,即依对那对彼此以相对方式在外接合构件1内壁表面上形成的导向面2a、2b的机加工精度而定的尺寸误差,都会损伤耐用性及振动性能。
另外,让球形件9在其上面滚动的外接合构件1的那对导向面2a、2b,必须硬得不会遭受导向面2a、2b与球形件9之间产生的接触压力所造成的增塑。由于这个原因,必须对这对导向面2a、2b进行热处理,而这样做会带来使生产成本昂贵的麻烦。
本发明总的目的,是提供一种可减小诱生推力的等速万向节,以便使驱动力可以更为平稳地从一根传动轴传送到另一根传动轴。
本发明的主要目的,是提供一种即使一根传动轴与另一根传动轴之间的运行角度加大时,也可以避免由于有间隙而顺着旋转方向产生振动并产生敲打声这样的等速万向节。
本发明的另一个目的,是提供一种可以稳定润滑性能并避免发生砂孔及粘着磨损的等速万向节。
本发明还有一个目的,是提供一种在组装之际可靠地保持球形件使其没有任何脱位,因而可以缩短组装时间并提高工作效率的等速万向节。
本发明还有一个目的,是提供一种在一对彼此反向滚动的表面之间的间隔距离不受任何尺寸误差影响的等速万向节。
本发明还有一个目的,是提供一种省去热处理步骤因而可以降低生产成本的等速万向节,而此种热处理步骤对于外构件的滚动表面本来可能是需要进行的。
本发明的上述目的及其他目的、特性与优点,当结合着一些以示例方式显示本发明的一个推荐实施例的附图而做以下说明时,就比较明显了。
图1显示沿着符合本发明第一实施例的一个等速万向节的轴向截取绘成的纵向剖视图;
图2显示沿着图1中线段II-II截取绘成的剖视图;
图3显示一个耳轴及一个与该耳轴配合的滑动件的透视图;
图4A至4C显示图3所示滑动件的修改实施例纵向剖视图;
图5显示图3所示滑动件的一个修改实施例透视图;
图6显示沿图2中线段VI-VI截取绘成的剖视图;
图7A与7B显示第二根轴的倾斜角度与诱生推力之间的关系;
图8A与8B分别显示在耳轴的外表面上形成的一些润滑槽的形状;
图9的横截剖视图,显示形成于一条导向槽的滑动面上的一些润滑槽,部分作了省略;
图10的横截剖视图,显示图2所示等速万向节应用于一个两脚型万向节上的情况;
图11的横截剖视图,显示符合本发明第二实施例的一个等速万向节;
图12的部分放大视图,显示图11所示等速万向节;
图13显示沿图12所示线段XIII-XIII截取绘成的剖视图;
图14的部分分解透视图,显示图12所示等速万向节;
图15显示沿图12所示线段XV-XV截取绘成的剖视图;
图16的部分放大剖视图,显示符合本发明第三实施例的一个等速万向节;
图17显示沿图16所示线段XVII-XVII截取绘成的剖视图;
图18的部分放大剖视图,显示符合本发明第四实施例的一个等速万向节;
图19的部分放大剖视图,显示符合本发明第五实施例的一个等速万向节;
图20A至20C,分别显示图11所示等速万向节中的支座相应于耳轴作随动位移的运行状态;
图21A与21B,分别显示根据一个等速万向节的比较例子而得出的运行情况;
图22的横截剖视图,显示图11所示等速万向节用于两脚型万向节的情况;
图23显示沿着符合本发明第六实施例的一个等速万向节的轴向截取绘成的纵向剖视图;
图24显示沿着图23所示线段XXIV-XXVI截取绘成的剖视图;
图25的部分放大剖视图,显示图24所示等速万向节;
图26的部分放大分解透视图,显示图24所示等速万向节;
图27显示沿图25所示线段XXVII-XXVII截取绘成的剖视图;
图28显示沿图25所示线段XXVIII-XXVIII截取绘成的剖视图;
图29的剖视图,显示符合本发明第七实施例的一个等速万向节;
图30的剖视图,显示符合本发明第八实施例的一个等速万向节;
图31A至31C,显示紧固滑动件以构成图23所示等速万向节的方法;
图32A至32C,分别显示图23所示等速万向节中的支座相应于耳轴作随动位移的运行状态;
图33A与33B,分别显示根据一个等速万向节的比较例子而得出的运行情况;
图34的横截剖视图,显示图24所示等速万向节用于两脚型万向节的情况;
图35显示沿着符合本发明第九实施例的一个等速万向节的轴向截取绘成的纵向剖视图;
图36显示沿图35所示线段XXXVI-XXXVI截取绘成的剖视图;
图37的部分放大示图,显示图36所示等速万向节;
图38的部分放大分解透视图,显示图36所示等速万向节;
图39显示沿着图37所示线段XXXIX-XXXIX截取绘成的剖视图;
图40显示沿着图37所示线段XL-XL截取绘成的剖视图;
图41A至41C的纵向剖视图,显示用以构成图35所示等速万向节的滑动件的一些修改实施例;
图42A与42B,分别显示形成于耳轴上用以构成图35所示等速万向节的一些润滑槽;
图43的剖视图,显示符合本发明第十实施例的一个等速万向节;
图44的剖视图,显示符合本发明第十一实施例的一个等速万向节;
图45的纵向剖视图,显示图36所示等速万向节用于两脚型万向节的情况;
图46的纵向剖视图,显示符合本发明第十二实施例的一个等速万向节;
图47显示沿着图46所示线段XLVII-XLVII截取绘成的剖视图;
图48显示图47的部分放大视图;
图49显示图48的部分分解透视图;
图50的透视图,显示用以构成图46所示等速万向节的一个片簧的修改实施例;
图51的剖视图,显示图48所示等速万向节的一个修改实施例;
图52的剖视图,显示符合本发明第十三实施例的一个等速万向节;
图53的透视图,显示用以构成图52所示等速万向节的一个片簧;
图54的横截剖视图,显示符合本发明第十四实施例的一个等速万向节;
图55的部分剖视侧图,显示涉及现有技术的一个等速万向节;
图56的放大透视图,显示用于图55所示等速万向节的一个球形面滚轮,相对于一条滚轮导向槽倾斜为一个预定角度的状态;
图57的部分剖视图,显示涉及现有技术的一个等速万向节。
在图1与图2中,标号10表示符合本发明第一实施例的等速万向节。等速万向节10基本上包括:一个敞开着与一未显示的第一根轴的一端联为一体相接合的筒形外杯形件(外构件)12、一个紧固在第二根轴14的一端并被包容在外杯形件12的一个孔内的内构件16。
如图2所示,沿着轴向延伸且围着轴的中心彼此隔开120度的3条导向槽18a至18c,形成于外杯形件12的内周面上。每条导向槽18a至18c,均包括有弯曲横截剖面的弯曲部分20,以及彼此反向地在弯曲部分20的两侧上形成,用以如后面所述滑动其上面的滑动件22a、22b的滑动面(平面部分)24。滑动面24形成得具有沿外杯形件12的轴向而延伸的平坦形状。
一个环状星形件25在外面固定在第二根轴14上。3个分别朝着导向槽18a(18b、18c)扩张的且围着轴的中央彼此隔开120度的耳轴26a(26b、26c),联为一体地形成于星形件25的外周面上。对着滑动面24的每个耳轴26a(26b、26c)的外表面,均形成为球形面。
形状彼此相同的一对滑动件(滑行件)22a、22b,介于耳轴26a(26b、26c)与滑动面24之间。那对滑动件22a、22b分别形成得与耳轴26a(26b、26c)及滑动面24线一线接触。如图3所示,与耳轴26a(26b、26c)面一面接触的滑动件22a、22b的一个侧面,由一个凹部28构成,该凹部的内壁表面形状为球形面形,与耳轴26a(26b、26c)的球形面对应。与滑动面24面一面接触的那个侧面,则是与滑动面24对应的平面30。
在此实施例中,与耳轴26a(26b、26c)接触的滑动件22a、22b的凹部28,其形状不限于只是具有圆弧形横截剖面的球形面(见图4A)。可使凹部28a具有基本上为V形的横截面,以便于与耳轴26a(26b、26c)线-线接触(见图4B)。替换一下,也可形成一个穿透如上所述具有基本上为V形横截面的凹部28的中央的孔32。设置此孔32的好处在于,避免应力集中,且润滑油便于进入且施于耳轴26a(26b、26c)的滑动面及滑动件22a、22b上。
最好用金属或树脂所制材料,就可使滑动件22a、22b形成为图3所示盘状或图5所示矩形形状。
符合本发明第一实施例的等速万向节10,构造基本上如上所述。下面,说明其运行、功能及效果。
当未显示的第一根轴旋转时,其转动力经由外杯形件12而传送给内构件16,而第二根轴14则借助于形成为球状的耳轴26a至26c被顺着预定方向旋转。
也就是说,外杯形件12的转动力被传送给滑动件22a、22b使得它们沿着导向槽18a(18b、18c)位移,该力还被传送给耳轴26a(26b、26c)使得它们与滑动件22a、22b面-面接触。因此,与耳轴26a(26b、26c)配合的第二根轴14,就被转动。
在此过程中,当第二根轴14以预定角度相对于带有第一根轴的外杯形件12而倾斜时,具有球状的耳轴26a(26b、26c),就顺着箭头C(见图2)与箭头D(见图6)所指方向,沿着形成于滑动件22a、22b的一个侧面上的球形面形凹部28,以预定角度滑动位移。在耳轴26a(26b、26c)滑动位移的同时,滑动件22a、22b也经由形成于另一侧面上的平面30而滑动位移。在此实施例中,滑动件22a、22b配置得可顺与滑动面24有关的所有方向,包括箭头E(见图1)所指与滑动面24的轴线平行的方向及箭头F(见图2)所指与该轴线垂直的方向,可滑动地位移。相应地,第一根轴的转动,不会受到第二根轴14相对于外杯形件12的倾斜角度影响,而被传送给第二根轴14。
如上所述,在第一实施例中,那对在与耳轴26a(26b、26c)及滑动面24面-面接触的同时可滑动地位移的滑动件22a、22b,介于耳轴26a(26b、26c)与滑动面24之间。因此,在第一实施例中,比起以线性接触滑动部分为基础的现有技术来,滑动部分处的表面压力就降低了。所以,就可不致引起滑动部分的任何油膜破裂而使润滑性能稳定。其结果,就可避免例如因润滑故障所产生的砂孔及粘着磨损。
诱生推力与第二根轴14相对于第一根轴的倾斜角度之间的关系,显示于图7A与7B中。上述“诱生推力”这一术语,指的是因滑动件22a、22b沿着导向槽18a至18c滑动位移所生摩擦阻力而产生的负荷。
如图7B所示,在涉及现有技术的等速万向节情况下(直线G),诱生推力与第二根轴14的倾斜角度增大相一致而迅速加大。与之对照,如图7A所示,在符合第一实施例的等速万向节情况下(直线H),即使在倾斜角度增大时,诱生推力也保持为大致上恒稳的。因此,在符合第一实施例的等速万向节中,因摩擦阻力而生的诱生推力,即使在第二根轴14相对于外杯形件12的倾斜角度增大时,也不会迅速加大。所以,就可使诱生推力稳定。
在第一实施例中,例如,有若干经向与纬向排列的润滑槽34形成得相交(见图8A),或有一些成弯曲形向外延伸的润滑槽36,在与滑动件22a、22b接触的耳轴26a(26b、26c)的外表面上顺4个方向形成(见图8B)。因此,就可在耳轴26a(26b、26c)与滑动件22a、22b之间的滑动部分,进一步提高润滑性能。在此实施例中,润滑槽34、36的位置,不限于只是在耳轴26a(26b、26c)的外表面上。润滑槽34、36可以分别在耳轴26a(26b、26c)的球形面上,在与导向槽18a(18b、18c)的滑动面24面-面接触的滑动件22a、22b的凹部28以及在平面30上形成。另外,也可在耳轴26a(26b、26c)的外表面上形成油槽例如波纹(未显示),来进一步提高润滑性能。而且,如图9所示,至少有一条基本上与外杯形件12的轴线平行延伸的润滑槽38,可在导向槽18a(18b、18c)的滑动面24上形成。润滑槽38的剖面形状,可以是V形的、圆弧形的,或矩形的。润滑槽38可以作为若干独立单位而配设。
另外,可以对耳轴26a(26b、26c)的表面与滑动件22a、22b中单独哪一种或两种部件均进行涂层处理,以减小摩擦系数。
在第一实施例中,比起现有技术来,仅提供那对滑动件22a、22b就足够了。因此,该第一实施例的优点在于,零部件数量减少,且生产成本可以降低。
对于第一实施例,已参照配有3个耳轴26a(26b、26c)的三脚型等速万向节10,作了说明。但是,本发明并非仅限于此。不用多说,本发明能应用于如图10所示的两脚型等速万向节10a。
下面,说明图11所示符合本发明第二实施例的等速万向节100。
等速万向节100包括一个敞开的且与未显示的第一根轴的一端联为一体而连接的圆筒形外杯形件(外构件)112,以及紧固在第二根轴114的一端上并被容纳于外杯形件112的一个孔中的内构件116。顺着轴向延伸且围着轴线中央彼此分别隔开120度的三条导向槽118a至118c,形成于外杯形件112的内周面上。如图12所示,导向槽118a至118c,由沿着外杯形件112外周边而弯曲的顶部120,以及彼此相反地在顶部120的两侧形成并在每个导向槽118a至118c中以c点为中心的侧弯曲部122a、122b而形成。顶部120的横截面,并不限于只是弯曲形。该顶部120可以有平坦的构形。
如图11所示,一个星形件130从外面装在第二根轴114上。分别朝着导向槽118a至118c延伸且彼此围着第二根轴114的轴线中央成120度隔开的三个耳轴126a至126c,呈柱形而扩张。
如图13与14所示,构形包括两对彼此垂直相交的平行平面,以便其中限定一个基本上为长方体形的敞开空间(一个孔132)的支座134,配置在耳轴126a至126c的外周边上。耳轴126a至126c配置得可插穿入形成于支座134中央部分具有四边形横截面的那个孔132中。支座134可作为若干对应于耳轴126a至126c的独立单位而配置,若干支座134中的每一个,均有基本相同的形状。
孔132包括一对以线-线接触耳轴126a至126c外周面的状态而滑动的抵接面136a、136b,以及一对与抵接面136a、136b垂直的壁面138a、138b。那对抵接面136a、136b及那对壁面138a、138b,彼此相对着形成。
支座134有一对外壁部140a、140b。与低接面136a、136b平行的槽142a、142b,形成于一个外壁部140a上。与抵接面136a、136b平行的槽142c、142d,形成于另一外壁部140b上。每条槽142a至142d,均具有V形横截剖面。然而,这些槽的表面微微弯曲,以便减小对下面要说明的球形件(见图12)的表面压力。槽142a至142d的剖面形状,不仅限于V形。槽142a至142d,也可是椭圆形的,或具有由若干不同曲率半径的曲线构成的复合曲线。
为了把槽142a与142b之间及槽142c与142d之间分开的止块144a、144b,形成于外壁部140a、140b的约中央部位。球形件(滚动件)146a、146b,可滚动地介于槽142a、142b与一个侧弯曲部122a之间。球形件146c、146d则可滚动地介与槽142c、142d与另一个侧弯曲部122b之间。
如图12所示,球形件146a至146d,被支承于形成于支座134上的槽142a至142d的弯曲槽面的两个点上。球形件146a至146d配置得可沿支座134的槽142a至142d的纵向而滚动,且它们的位移范围受到止块144a、144b的限制。
基本上为]形横截剖面、用有弹性的材料例如金属片制成的一个框架(弹簧件)148,配置于耳轴126a至126c与顶部120之间。框架148的腿150a、150b,被插入耳轴126a至126c的外周面与支座134的壁面138a、138b之间形成的空隙中,框架148的这两条腿150a、150b为贴靠着耳轴126a至126c的外周面与支座134的壁面138a、138b的波形,从而,此两腿均被迫顺着几个方向彼此分开。
由一种例如有弹性的金属片之类材料制成的定位器152,配置于框架148与顶部120之间。定位器152的侧部154a、154b被弯得插在支座134的外壁面140a、140b与侧弯曲部122a、122b之间(见图12与13)。若干圆孔156a、156b穿过侧部154a。孔156c、156d则穿过侧部154b。
孔156a至156d的直径,设计得微微小于球形件146a至146d的直径。因此,球形件146a至146d就可滚动地与孔156a至156d配合。在此实施例中,如图13清楚显示的那样,孔156a与156b之间的间隔距离被选定得当一个球形件146b贴靠着止块144a时,另一个球形件146a并不与槽142a脱离。孔156c与156d之间的间隔距离,也按上述相同方式确定。
球形件146a至146d由于定位器152的弹性而被压向槽142a至142d。相应地,当组装等速万向节100时,球形件146a至146d总是保持为与槽142a至142d配合的状态,球形件146a至146d并非与槽142a至142d脱离。因此,等速万向节100作为一个整体就会容易组装。
符合本发明第二实施例的等速万向节100,构造基本如上所述。下面,说明其运行状况。
当未显示的第一根轴旋转时,其转动力经由球形件146a、146b(或146c、146d)与支座134,依旋转方向而定就从外杯形件112的任何一个侧弯曲部122a、122b,传送给耳轴126a至126c。这样,星形件130也被转动,有一端装在星形件130上的第二根轴114也随之被转动(见图11)。
在此实施例中,当第二根轴114相对于带有未显示的第一根轴的外杯形件112的轴线而以一预定角度倾斜时,耳轴126a至126c就与第二根轴114的倾斜移动相一致地倾斜。
例如像图12所示那样,当耳轴126a至126c围着一个C点的中央而倾斜时,与耳轴126a至126c的外周面成线-线接触的支座134也就倾斜,而球形件146a至146d则在侧弯曲部122a、122b上滚动,耳轴126a至126c则是平稳地倾斜。支座134配置得在此过程中,总是相对于耳轴126a至126c以相同的角度作随动移动(见图12的两点点划线)。
也就是说,如图20A至20C所示,通过孔132而插入耳轴126a至126c中的支座134,在可滚动地配置于支座134与导向槽118a至118c的侧弯曲部122a、122b之间的球形件146a至146d的滚动作用下,在随着耳轴126a至126c位移的同时,顺着箭头I所指方向或顺着箭头J所指方向,同为一体地位移。如图20B与20C所示,当力通过球形件146a至146d、支座134及耳轴126a至126c而被传送时,该力的作用矢量S1、S2总是位于同一条线上,即使耳轴126a至126c及支座134一起相对于外杯形件112而倾斜也是如此。另外,各个球形件146a至146d的中心与耳轴126a至126c的轴线中心之间的间隔距离(间隙),也被定得总是恒定的。
如上所述,在第二实施例中,顺着从球形件146a至146d到耳轴126a至126c的方向(或顺着从耳轴126d至126c到球形件146a至146d的方向)而起作用的力,其作用矢量S1、S2总是位于同一条线上,各个球形件146a至146d的中心与耳轴126a至126c的轴线中心之间的间隔距离(间隙),也被定得总是恒定的。因此,就会得到这样的效果,不会因无负荷一侧产生的间隙而导致松动,且力被平稳地传送。
与此对照,在图21A与21B所示涉及比较例子的等速万向节141的情况下,当力通过球形件143(球形件143置于负荷一侧,而置于无负荷一侧的球形件以标号145标示)、支座147及耳轴149而被传送时,该力的作用矢量S1、S2在图21A所示状态下存在于线T1上;而在图21B所示状态下,该力的作用矢量存在于线T2上。
因此,当耳轴149从图21A所示状态位移为图21B所示状态时,力的作用矢量S1、S2就分别在不同的线T1、T2上。另外,在图21B所示状态下,就分别在无负荷一侧的球形件145与导向槽155之间及与形成于支座147上的槽151、153之间产生间隙。结果,如图21B所示,就形成了R1+R1′<R2+R2′的关系。麻烦于是就产生了,即由于球形件145与槽151、153之间的间隙导致在无负荷一侧出现松动。图21B显示了随之而来的状态:耳轴149从图21A所示状态向下位移一个预定量。
因此,涉及图21A与图21B所示比较例子的等速万向节141,包含着这样的问题:当力被从球形件143(145)传送给耳轴149(或从耳轴149传送给球形件143、145)时,因间隙而发生松动。
参照图12,以分开方式被置于相对于中间所夹耳轴126a至126c的右侧与左侧的一个球形件146b(146a)与另一个球形件146d(146c),被防止同时地且水平地顺着图12中往下的方向滚动位移,因为侧弯曲部122a、122b朝内是圆弧形的。
如图15中的两点点划线所示,当耳轴126a至126c以一预定角度朝着框架148的一只脚150a倾斜时,耳轴126a至126c的一部分外周面,压挤框架148的一只脚150b以抵抗框架148所施的推斥力,使该脚抵达支座134的壁面138b;而耳轴的另一部分外周面则借助于框架148所施的推斥力,离开壁面138a。
耳轴126a至126c可滑动地与支座134的抵接面136a、136b线-线接触(见图12)。另外,耳轴126a至126c可滑动地与框架148的脚150a、150b配合(见图15)。因此,耳轴126a至126c可顺着轴向(图15中箭头F所指方向)相对于支座134而位移。
如图13所示,当耳轴126a至126c围着其轴线中央(图13中的O点)而转动时,耳轴126a至126c的外周面就在支座134的抵接面136a、136b及框架148的脚150a、150b上滑动。相应地,没有不合理的力作用于耳轴126a至126c,且耳轴126a至126c平稳地转动。
如上所述,耳轴126a至126c会相对于外杯形件112而倾斜。因此,即使当第一根轴与第二根轴114之间的运行角度加大时,各个构成部件之间的间隙也不会增大。所以,就可避免顺着旋转方向发生振动及因有间隙而出现敲打声。
当耳轴126a至126c倾斜时,如果耳轴126a至126c沿着导向槽118a至118c位移,球形件146a至146d就沿着支座134的槽142a至142d的两面及导向槽118a至118c的侧弯曲部122a、122b而滑动,同时又被定位器152的孔156a至156d保持着。相应地,施于耳轴126a至126c上的诱生推力,仅包括球形件146a至146d的滚动阻力。因此,耳轴126a至126c就能以较小的阻力作倾斜运动与位移。
在此过程中,如图13所示,球形件146b、146d贴靠着止块144a、144b,且位移范围因而受到限制。每个球形件146a至146d均与定位器152的孔156a至156d相配合,它们每一个的相对位置均是确定的。在此种安置情况下,即使当球形件146a至146d朝着槽142a至142d的某一侧(例如顺着箭头E所指方向)而位移时,被耳轴126a至126c施加于支座134的抵接面136a、136b上的那个力,也总是位于球形件146a与146b之间及球形件146c与146d之间。因此,支座134就被球形件146a至146d以良好的平衡方式支承着。
在此过程中,球形件146a、146c从支座134的端部微微外突。然而,球形件146a、146c被防止与槽142a、142c脱离,因为球形件146a、146c被定位器152保持着。因此,即使当支座134的长度相对较短时,支座134相对于外杯形件112,也会有一长的位移范围。
下面,说明图16与17所示符合本发明第三实施例的等速万向节160。在以下各个实施例中,与第二实施例中所述相同的构成部件均以相同的标号标示,它们的详细说明就省略了,仅说明不同的功能与效果。
等速万向节160带有耳轴162a至162c,每个耳轴中有一个孔164穿过与耳轴162a至162c的轴线方向成垂直地伸展。一个销构件166插入孔164中。该销构件166的两个端部,从孔164突出而用作凸起167a、167b。以销构件166的中心点F为中心的两个球形面168a、168b,在凸起167a、167b上形成。销构件166的球形面168a、168b可滑动地贴靠着的平面部170a、170b,形成于构成支座134的孔132的那两个壁部上。球形面168a、168b的曲率半径,可选择具有预定值的销构件166的直径,来确定为一预定值。
如图16中两点点划线所示,当耳轴162a至162c相对于外杯形件112以一预定角度而倾斜时,销构件166的球形面168a、168b就沿着平面部170a、170b滑动。相应地,耳轴162a至162c也顺着箭头K或箭头L所指方向,围着点F的中心而相对转动。如图17中两点点划线所示,销构件166的球形面168a、168b沿着平面部170a、170b而滑动,耳轴162a至162c则与此滑动相一致地顺着箭头M或箭头N所指方向围着点F的中心而转动。以此方式,耳轴162a至162c就相对于外杯形件112而能够倾斜,确保了其自由度。
下面,说明图18所示符合本发明第四实施例的等速万向节180。
槽183a、183b形成于等速万向节180支座182的一个外壁部140a上,而槽183c、183d则形成于该支座的另一个外壁部140b上。外壁部140a、140b的各个端部与中部,形成为止块184a至184f。因此,槽183a与183b,以及槽183c与183d,分别被止块184b、184c彼此隔开。一个球形件146a至146d,可滚动地配置于每条槽183a至183d中。
如图18清楚显示的那样,当力顺外杯形件112的周围方向(顺图18中箭头P或Q所指方向)施于耳轴126a至126c时,被耳轴126a至126c作用于支座182的抵接面136a、136b上的这个力,总是位于球形件146a与146b及球形件146c与146d之间。因此,支座182就被球形件146a至146d以良好平衡的方式支承着。结果,参照图18,支座182被支承得使其一根未显示的轴线总是基本上与侧弯曲部122a、122b平行,且支座182被防止顺着箭头P或箭头Q的方向倾斜,而此种倾斜,本来基于例如球形件146a至146d周围的间隙或基于支座182的变形,是会发生的。
下面,说明图19所示符合本发明第五实施例的等速万向节300。
槽203a、203b分别形成于等速万向节300支座202的外壁部140a与140b上。若干球形件206a至206f分别与槽203a、203b配合。止块204a至204d形成于构成槽203a、203b的那种壁部的两端。相应地,球形件206a至206f的位移受到止块204a至204d限制,因而球形件206a至206f不与槽203a、203b脱离。为一条槽203a(203b)配置的球形件206a至206c(206d至206f),其数目不限于只是3个。球形件可以配置为以两个或更多个为一独立单位的若干个。
参照图19再做说明。例如,情况是槽203a、203b中所配置球形件206a至206f的数目定为6个(在一侧平行地配置3个)。在等速万向节300中,当力顺外杯形件112的周围方向施于耳轴126a至126c时,耳轴126a至126c压在支座202的抵接面136a、136b上的M点上。
在此过程中,当球形件206a至206f朝着槽203a、203b的端部例如顺箭头E所指方向而位移时,球形件206a、206d贴靠在一个止块204a、204c上,于是,球形件206c、206f的中心位于相对于M点为其他止块204b、204d一侧。
因此,即使当耳轴126a至126c的压力作用于支座202时,支座202也借助于6个球形件206a至206f而被以良好平衡的方式支承着。结果,参照图19,支座202的未显示的轴线与侧弯曲部122a、122b,就被保持得总是基本上彼此平行。
例如,涉及到图19所示安排,即使是总共用4个球形件206a、206b、206c、206d,这些球形件每两个安置在一侧,来支承支座202,且从支座202内部向支座202施以负荷时,被置于支座202一侧的球形件206b(206a)的反作用力施于支座202的角矩(未显示),也会被置于支座202另一侧的球形件206d(206c)上的反作用力(未显示)所抵消。相应地,支座202就不会倾斜。
在上述第二至第五实施例中,已对三脚型的等速万向节100、160、180、200且其中每种万向节均配置3个耳轴126a至126c的情况,作了说明。然而,本发明不仅限于此。不消多说,本发明也适用于例如图22所示的配有两个耳轴126a、126b两脚型等速万向节100a。
下面,说明图23所示符合本发明第六实施例的等速万向节。
等速万向节300包括一个敞开的且与未显示的第一根轴的一端联为一体连接着的外杯形件(外构件)312,以及一个紧固在第二根轴314的一端上且被容纳在外杯形件312一个孔中的内构件316。
顺轴向延伸且分别围着轴线中央彼此隔开120度的三条导向槽318a至318c,形成于外杯形件312的内周面上。如图24所示,导向槽318a至318c,由沿着外杯形件312的外周而弯曲的顶部320,以及彼此相反地在顶部320的两侧形成且在每条导向槽318a至318c中以O点为中心(见图25)的侧弯曲部322a、322b构成。
如图24所示,星形件330联为一体地形成于第二根轴314上。分别朝着导向槽318a至318c延伸且围着第二根轴14的轴线中央彼此隔开120度的三个耳轴326a至326c,在星形件300的外周面上突出地形成。在每个耳轴326a至326c的外周上,形成一个柱形的环状台阶部分327。每个耳轴326a至326c的轴线均被定向,同时,相对于构成该等速万向节300的外杯形件312的轴线而彼此径向地偏离120度。
如图25与26所示,被夹构件329紧固的环状滑动件(滑行件)331,从外面装在耳轴326a至326c的外周上。直径与耳轴326a至326c直径对应的通孔333,在滑动件331的中部形成。一对平面部335a、335b及一对球形面部337a、337b,彼此反向地在滑动件331的外周上形成。
如图31A所示,滑动件331可配置得被紧固其上端的夹构件329及紧固其下端的环状台阶部分327固定住,以便与耳轴326(326a、326c)共为一体地位移。也可如图31B所示那样,滑动件331由分别设在其上端与下端的一对夹构件329a、329b固定住,以便与耳轴326(326a、326c)共为一体地位移。再另外,如图31c所示,夹构件329可配置于上端,且滑动件331可以沿着耳轴326a(326a、326c)的轴线在下端一侧滑动。
如图25与26所示,形状包括两对彼此相交的平行平面,以便其中限定一个基本上为长方体形的敞开空间(孔332)的支座334,从外面装在滑动件331的外周上。孔322与外杯形件312的轴线方向平行,且该孔有一对抵接面336a、336b,以供滑动件331的一对平面部335a、335b分别以面-面接触的状态在上面滑动;该孔还有一对壁部338a、338b,以供滑动件331的一对球形面部337a、337b分别与它们点-点接触。
支座334有一对外壁部340a、340b。与抵接面336a、336b平行的槽342a、342b,形成于一个外壁部340a上。与抵接面336a、336b平行的槽342c、342d,则形成于另一个外壁部340b上。每条槽342a至342d,均有V形横截剖面。然而,它们的槽面微微弯曲,以便减小如下所述对于球形件的表面压力(见图25)。槽342a至342d的剖面形状,不仅限于只是V形。槽342a至342d可以是椭圆形的,或可有一由若干曲率半径不同的曲线构成的复合曲线。
使槽342a与342b及槽342c与342d分开的止块344a、344b,形成于外壁部340a、340b的约中部上。球形件(滚动件)346a、346b介于槽342a与一个侧弯曲部302a之间。球形件(滚动件)346c、346d则可滚动地介于槽342c、342d与另一个侧弯曲部322b之间。
球形件346a至346d被支承在形成于支座334上的槽342a至342d的侧壁部的两个点上。球形件346a至346d可以沿着支座334的槽342a至342d的纵向滚动,且位移范围受到止块344a、344b的限制。
如图26所示,由例如有弹性的金属片材料制成的定位器(保持件)352,配置于支座334与顶部320之间。定位器352的侧部354a、354b被弯得插在支座334的外壁部340a、340b与侧弯曲部322a、322b之间(见图24与25)。
两个孔356a、356b穿通定位器352的一个侧部354a。另两个孔356c、356d则穿通另一侧部354b。球形件346a至346d装在相应的孔356a至356d上。在此实施例中,孔356a与356b之间的间隔距离,选定得使一个球形件346b贴靠着止块344a时,另一个球形件346a不与槽342b脱离。孔356c与356d之间的间隔距离,也按上述相同方式确定。
球形件346a至346d借助于定位器352的弹性而被压向槽342a至342d。相应地,在组装等速万向节300时,球形件346a至346d总是被以与槽342a至342d配合的状态而被保持着,从而,球形件346a至346d就不会与槽342a至342d脱离。因此,等速万向节300作为整体可容易地组装。
符合本发明第六实施例的等速万向节300,构造基本如上所述。下面,说明其运行情况。
当未显示的第一根轴旋转时,其转动力经由球形件346a、346b或346c、346d及支座334,依转动方向而定从外杯形件312的任何一个侧弯曲部322a、322b,被传送给耳轴326a至326c。因此,星形件330就转动,一个端部装在星形件330上的第二根轴314也随之转动(见图23)。
在此实施例中,当第二根轴314相对于带有未显示的第一根轴的外杯形件312以一预定角度而倾斜时,耳轴326a至326c就与第二根轴314的倾斜移动相一致地倾斜。
例如,像图25中两点点划线所示,当耳轴326a至326c围着一个点O的中心以一预定角度而倾斜时,与从外面装在耳轴326a至326c上的滑动件331的平面部335a、335b面-面接触的支座34,就以一预定角度而倾斜。
在此过程中,支座334及耳轴326a至326c借助于平面部335a、335b,顺着轴向(箭头F所指方向)作相对的滑动位移。同时,球形件346a至346d也在侧弯曲部322a、322b上滚动。因此,耳轴326a至326c及支座334就顺着箭头C所指方向,以一预定角度共为一体地倾斜。支座334在此过程中被配置得相对于耳轴326a至326c,总是一相同的角度做随动运动(见图25中的两点点划线)。
也就是说,如图32A至32C所示,经由滑动件331而被插入耳轴326a至326c中的支座334,在配置得可在支座334与导向槽318a至318c的侧弯曲部322a、322b之间滚动的球形件346a至346d的滚动作用下,在随着耳轴326a至326c位移的同时,也顺着箭头I所指方向或顺着箭头J所指方向,联为一体地位移。如图32B与32C所示,当力经由球形件346a至346d,支座334、滑动件331及耳轴326a至326c而被传送时,该力的作用矢量S1、S2总是位于同一条线上,即使耳轴326a至326c、滑动件331及支座334相对于外杯形件312而共为一体地倾斜时,也是如此。另外,球形件346a至346d的各个中心与耳轴326a至326c的轴线中心之间的间隔距离(间隙),也定得总是恒定的。
如上所述,在该第六实施例中,顺着从球形件346a至346d到耳轴326a至326c的方向(或顺着从耳轴326a至326c到球形件346a至346d的方向)而作用的力,其作用矢量S1、S2总是在同一条线上,且球形件346a至346d的各个中心与耳轴326a至326c的轴线中心之间的间隔距离(间隙),也定得总是恒定的。因此,就得到这样的效果:因有间隙而产生的松动不会发生在无负荷一侧,且力会被平稳地传送。
与此对照,在涉及图33A与33B所示比较例子的等速万向节341的情况下,当力被经由球形件343(置于负荷一侧上的球形件343,而置于无负荷一侧的球形件则以标号345标示)、支座347及耳轴349而传送时,该力的作用矢量S1、S2在图33A所示状态下存在于一根线T1上,而在图33B所示状态下该力的作用矢量S1、S2则存在于一根线T2上。
因此,当耳轴349从图33A所示状态位移到图33B所示状态时,该力的作用矢量S1、S2就分别处于不同的线T1、T2上。另外,在图33B所示状态下,在无负荷一侧上的球形件345与导向槽355之间及与形成于支座347上的槽351、353之间就分别产生间隙。结果,就出现R1+R1′<R2+R2′的关系。这就引起了这样的麻烦:由于球形件345与槽351、353之间的间隙而在无负荷一侧出现松动。随之而来就出现了图33B所示状态,即耳轴349从图33A所示状态以一预定量而向下位移。
因此,涉及图33A与33B所示比较例子的等速万向节341,包含了这样的问题:当力被从球形件343(345)传送给耳轴349(或从耳轴349传送给球形件343、345)时,因有间隙而产生松动。
参照图25,相对于其间所夹耳轴326a至326c而被安置在右侧与左侧的一个球形件346b(346a)与另一个球形件346d(346c),被防止同时且水平地顺着图25中往下的方向滚动位移,因为侧弯曲部322a、322b朝内是圆弧形的。
参照图27,当耳轴326a至326c顺着外杯形件312的轴线方向以一预定角度倾斜时,从外面装在耳轴326a至326c上的滑动件331的球形面部337a、337b,所处状态为点-点接触支座334的孔332的壁面338a、338b。相应地,耳轴326a至326c相对于支座334顺着箭头R所指方向而倾斜,且耳轴326a至326c相对于支座334则顺着箭头F所指方向滑动。
如图28所示,当耳轴326a至326c围着其轴线中心(图28中的O点)转动时,耳轴326a至326c及支座334,用具有环形横截剖面的耳轴326a至326c外周面的滑动面及支座334的通孔上的内壁面,顺着箭头D所指方向而相对滑动位移。因此,没有不合理的力施于耳轴326a至326c上,且耳轴326a至326c被平稳地转动。
如上所述,耳轴326a至326c配置得相对于外杯形件312可以倾斜。因此,即使当第一根轴与第二根轴314之间的运行角度增大时,各个构成部件之间的间隙也不会加大。所以,就可避免顺着转动方向产生振动并避免因有间隙而发出敲打声。
当耳轴326a至326c倾斜时,如果耳轴326a至326c沿着导向槽318a至318c位移,则球形件346a至346d会沿着支座334的槽342a至342d的表面及导向槽318a至318c的侧弯曲部332a、332b而滚动,同时又被定位器352的孔356a至356d保持着。相应地,作用于耳轴326a至326c上的诱生推力,仅包括球形件346a至346d的滚动阻力。因此,耳轴326a至326c就可以较小的阻力作倾斜运动及位移。
在此过程中,如图28所示,球形件346b、346d贴靠着止块344a、344b,且位移范围受到限制。每个球形件346a至346d均与定位器352的孔356a至356d配合,且它们每一个的相对位置均是确定的。在此种安置的情况下,即使当球形件346a至346d朝着槽342a至342d两侧中的一侧(例如顺箭头D所指方向)位移时,当耳轴326a至326c顺等速万向节300的周边方向倾斜时而被耳轴326a至326c施于支座334抵接面336a、336b上的力,也总是位于球形件346a与346b及球形件346c与346d之间。因此,支座334就以良好平衡方式被球形件346a至346d支承着。
在此过程中,球形件346a、346c从支座334的端部微微外突。然而,球形件346a、346c被防止与槽342a、342c脱离,因为球形件346a、346c被定位器352保持着。因此,即使当支座的长度相对较短时,支座34相对于外杯形件312也会有一长的位移范围。
下面,说明图29所示符合本发明第七实施例的等速万向节380。在以下说明中,如第六实施例一样的构成部件均用相同的标号标示,对它们的详细说明也省略了。第六实施例与第七实施实施例中的功能与效果均相似。因此,以下仅说明二者不同的功能与效果,而其详细说明则省略了。
等速万向节380与符合第六实施例的等速万向节300不同之处在于,它未使用定位器,且它有若干被构成导向槽318a至318c的侧弯曲部322a、322b及支座382的槽383a至383d可滚动地保持着的球形构件346a至346d。
也就是说,槽383a,383b,在支座382的一个外壁部340a上形成,槽383c,383d在另一外壁部340b上形成。外壁部340a,340b的两端部和中部形成止块384a至384f。因此,槽383a和383b及槽383c和383d分别由止块384b,383e分隔。为每条槽383a至383d设置一个球形件346a至346d。
如图29所示,当沿外杯形件312的周向(在图29中由箭头P,Q指示的方向)的力作用于耳轴326a至326c时,由耳轴326a至326c作用在支座382的抵接面336a,336b上的力总是位于球件件346a和346b之间及球形件346c和346d之间。因此,支座382以良好平衡的方式由球形件346a至346d支承。因此,如图29所示,支座382被保持得使其未画出的轴线总是基本平行于侧面弯曲部分322a,322b,使座382避免在箭头P或箭头Q的方向上倾斜,否则的话,例如围绕球形件346a至346d的间隙或支座382变形的基础上,就会引起上述倾斜。
下面对照图30描述按照第八实施例的等速万向节400。图30所示的万向节与图29所示万向节相同,未使用定位器,多个球形件由构成导向槽和支座的槽的侧面弯曲部分可滚动地保持。
槽403a,403b分别在等速万向节400的支座402的外壁部340a,340b上形成。三个球形件406a至406f分别与槽403a,403b相接合。止块404a至404d在构成槽403a,403b的壁部的两端部形成。因此,球形件406a至406f的位移由止块404a至404d限制。因而球形件406a至406f不会从槽403a、403b脱开。为一条403a(403b)设置的球形体406a至406c(406d至406f)并不限于三个。球形件可设置为多个如两个或更多。
下面对照图30,其中设置在槽403a,403b中的球形件(406a至406f)的数目设定为6个(3个平行设置在一侧)。在等速万向节400中,当在外杯形件312周向上的力作用在耳轴326a至326c上时,耳轴326a至326c压在支座402的抵接面336a,336b的点M上。
但是,当球形件406a至406f例如在箭头E所示方向上移向槽403a,403b的端部,而且球形件406a,406d抵靠一个止块404a,404c时球形件406c,406f的中心相关于点M位于其它止块404b,404d的侧面。
因此,甚至当耳轴326a至326c的压力作用在支座402上时,支座402也以良好平衡方式受到6个球形件406a至406f的支承。因此,如图30所示,支座402的未画出的轴线和侧面弯曲部分322a,322b被保持得总是基本相互平行。
例如,关于图30中的配置,甚至当支座40总共由4个球形件406a,406b,406d,406e(一侧设置二个)支承且负荷从支座402内部作用于支座时,由设置在支座402一侧的球形件406b(406a)的反作用力施加在支座402上的角度运动也会由设置在支座402另一侧的球形件406d(406e)上的反作用力所抵销。因此,支座402不会倾斜。
在图29和图30所示的实施例中不必使用定位器来保持球形件346a至346d,406a至406f。因此,零件的数目得以减少,并且可以降低生产成本。
在上述各实施例中,是使用三脚式等速万向节300,380,400进行说明的,每个万向节设有三个耳轴326a至326c。但是,本发明并不局限于此。例如,本发明当然也可用于两脚式等速万向节300a,如图34所示,其设有两个耳轴326a,326b。
下面参阅图35描述本发明第九实施例的等速万向节500。
等速万向节500包括一个外杯形件(外构件)512和一个内构件516,外杯形件具有一个开口并整体地连接于未画出的第一轴的一端,内构件固定在第二轴514的一端并容纳在外杯形件512的一个孔中。
在外杯形件512的内周面上形成三条导向槽518a至518c,它们在轴向上延伸并分别围绕轴心相互间隔120°。如图37所示,导向槽518a至518c由制成平面形状的顶面部分520和侧面部分522a,522b构成,该侧面部分522a,522b垂直于顶面部分520并相互面对设置在其两侧。顶面部分520和侧面部分522a,522b的形状并不局限于图37所示的平面形状。它们可以是具有预定曲率半径的曲面形状(未画出)。
在侧面部分522a,522b上分别形成槽523,它们基本平行于导向槽518a至518c的轴线延伸,并形成有V形横截面。在此实施例中,槽523的截面形状不局限于V形。槽523的形状可以具有椭圆形或由具有不同曲率半径的多个弯曲构成的组合曲面。
如图36所示,在第二轴514上整体形成一个星形件530。在星形件530的外周面伸出三个耳轴526a至526c,它们分别伸向导向槽518a至518c并围绕第二轴514的轴心相互间隔120°。每个耳轴526a至526c的轴线相对于外杯形件512的轴线相互经向偏置120°。每个耳轴526a至526c的外表面面对侧面部分522a,522b,呈球形面。
如图37和38所示,一支座534通过一对滑动件525a,525b在外部装于耳轴526a至526c,支座534整体地形成一个包括两对平行平面的结构,这两对平面相互垂直地相交,从而在其中形成一个基本呈长方体形状的敞开的空间(孔532),上述滑动件是分开形成的且具有相同的形状。这对滑动件525a,525b并不局限有相同的形状。它们可以分别具有不同的形状。
支座534设有孔532,该孔具有矩形横截面(见图38)。孔532是由一对相互面对的抵接面536a,536b和一对内壁面583a,338b构成的。在此实施例中,一对滑动件525a,525b的形状可使其分别与耳轴526a至526c的球形面和支座的孔532面面接触。因此,这对滑动件525a,525b总是保持在耳轴526a至526c和支座534之间。
也就是说,滑动件525a,525b的一个侧面由一个凹部527构成,该凹部的壁面形成相应于耳轴526a至526c的球形面的球形结构。与支座534的抵接面536a,536b面面接触的另一侧面形成一个相应于抵接面536a,536c的平面529。这对滑动件525a,525b由金属或树脂材料制成。
与耳轴526a至526c接触的这对滑动件525a,525b中的每一个的凹部527的形状不局限于具有圆弧形横截面(见图41A)的球形面。凹部527a也可具有基本呈V形的横截面,以便与耳轴526a至526c形成线线接触(见图41B)。或者,也可以形成一个孔531,该孔穿过上述具有基本呈V形的横截面的凹部527a的中心(见图41C)。设置孔531的优点在于,可避免应力集中,润滑油可易于浇注并作用在耳轴526a至526c及滑动件525a,525b的滑动面上,从而改善润滑性能。
支座534具有平行于抵接面536a,536b的外壁部540a,540b。在一个外壁部540a上形成槽542a,542b,它们平行于等速万向节500的轴向。在另一外壁部540b上形成槽542c,542d。槽542a至542d的截面形状并不局限于V形。槽542a至542d可具有与上述的槽523类似的截面形状。止块544a,544b在外壁部544a,544b的大致中部形成,以便分开槽542a和542b及槽542c和542d。
如图37所示,多个球形件(滚动件)546a至546d可滚动地夹置在槽542a至542d和槽523之间。球形件546a至546d可沿支座534的槽542a至542d的纵向滚动,其位移范围由止块544a,544b限制。
在支架534和顶部部分520之间设有一个定位器(保持件)552,它是由具有弹性的材料如金属板制成的。定位器552的侧面部分554a,554b是弯曲的,以便插入支座534的包壁部540a,540b和侧面部分522a,522b之间(见图36和37)。
穿过定位器552的一个侧面部分554a形成孔556a,556b。穿过另一侧面部分554b形成孔556c,556d。球形件546a至546d分别安装于孔556a至556d。在此实施例中,孔556a和556b之间的间距应选择,使得当一个球形件546b抵靠止块544a时,另一球形件546a不从槽542b脱出。孔556c和556d之间的间距应以上述相同的方式设定。
球形件546a至546d借助定位器552的弹性而压向槽542a至542d。因此,当组装等速万向节500时,球形件546a至546d总是处于与槽542a至542d接合的状态,不会从槽542a至542d脱出。因此,等速万向节500的组装操作从整体上讲是易于进行的。
在与一对滑动件525a,525b形成面面接触的耳轴526a至526c的外表面上,形成多条润滑槽558,它们纵、横相交布置(见图42A),或者形成多条润滑槽560,它们在例如4个方向上向外弯曲延伸(见图42B)。因此,在耳轴526a至526c和滑动件525a,525b之间的滑动部分可进一步改善润滑性能。
在此实施例中,润滑槽558,560的位置并不限制于耳轴526a至526c的外表面。润滑槽558,560可以分别形成在滑动件525a,525b的凹部27和平面29上。
按照本发明第九实施例的等速万向节500,其结构与上面的描述基本相同。下面将描述其工作。
当未画出的第一轴转动时,其转动力取决于转动方向从外杯形件512的任一个侧面部分522a,522b通过球形件546a,546b或546c,546d及滑动件525a(525b)传递至耳轴526a至526c,因此,星形件530被转动,因而,一端安置于星形件530的第二轴514被转动(见图35)。
在此实施例中,当第二轴514相对于具有未画出的第一轴的外杯形件512的轴向倾斜预定角度时,耳轴526a至526c按照第二轴514的倾斜运动而倾斜。
例如,请参阅图37,当耳轴526a至526c围绕中心点0倾斜预定角度时,制成球状的耳轴526a至526c沿着滑动件525a,525b的球形凹部527在箭头C的方向上滑移一个预定的角度,同时,保持耳轴526a至526c与滑动件525a,525b面面接触的状态。同时,借助与一对滑动件525a,525b的平面529面面接触的支座534的抵接面536a,536b的滑动面,耳轴526a至526c沿其轴向(箭头F所示方向)进行滑移。
请参阅图39,当耳轴526a至526c在外杯形件152的轴向上倾斜一预定角度时,耳轴526a至526c的球形面处于与支座534的孔532的内壁面538a,538b点点接触的状态。因此,耳轴526a至526c相对于支座534围绕中心点0在箭头R所示的方向上倾斜预定的角度。
如图40所示,当耳轴526a至526c围绕其轴心(图40中的点0)转动预定角度时,耳轴526a至526c借助其制成圆形横截面的外周面的滑动面、支座534的内壁面538a,538b和滑动件525a,525b的球形凹部527围绕中心绕点0在箭头D所示方向上转动位移一个预定的角度。因此,无不合理的力作用在耳轴526a至526c上,耳轴526a至526c平滑地移动。如上所述,耳轴526a至526c可相对于外杯形件512倾斜。
如上所述,耳轴526a至526c被设置得可相对于外杯形件512倾斜,因而甚至当第一轴和第二轴之间的工作角度增大时,构件之间的间隙也不会增大。因此,可以避在转动方向上的振动间隙及因间隙而产生的击打声音。
当耳轴526a至526c倾斜时,如果耳轴526a至526c沿导向槽518a至518c位移,那么,球形件546a至546d则沿着设在支座534侧面上的槽542a至542d及设在外杯形件512侧面上的槽523的相互面对的两表面滚动,同时由定位器552的孔556a至556d保持位置。因此,作用在耳轴526a至526c上的诱生推力只包括球形件546a至546d的滚动阻力。因此,耳轴526a至526c可以阻力极小地进行倾斜运动和滑动位移。
如图40所示,在上述过程中,多个球形件546b,546d中的任一个抵靠止块544a,544b,其位移范围就受到了限制。每个球形件546a至546d与定位器552的孔556a至556d相接合,这确定了每个球形件的相对位置。
在上述布置中,甚至当球形件546a至546d移向槽542a至542d的侧面之一(例如,在箭头E所示方向上)时,由耳轴526a至526c作用在支座534的抵接面536a,536b上的力也总是位于球形件546a和546b之间及球形件546c和546d之间。因此,支座534受到球形件546a至546d良好平衡方式的支承。
在上述过程中,球形件546a,546c稍许从支座534的端部突出。但是,由于球形件546a,546c由定位器552保持,可防止从槽542a,542c脱出,因此,甚至当支座534的长度较短时,支座534也能具有相对于外杯形件512的长位移范围。
下面描述图43所示本发明第十实施例的等速同节580。在下述的说明和附图中,与第九实施例所述相同的构件使用相同的标号,并不再赘述。第九实施例的功能和作用类似于第十实施例的情形。因此,下面只描述不同的功能和作用,不作详细描述。
等速万向节580与第九实施例的等速万向节500的不同之处在于,不使用定位器552,多个球形件546a至546d由设在导向槽518a至518c上的具有V形横截面的槽523和支座582的槽583a至583d可滚动地保持。
也就是说,在支座582的一个外壁部分540a上形成槽583a,583b,在另一外壁部分540b上形成槽583c,583d。外壁部分540a,540b的两个端部和中部形成止块584a至583f。因此,槽583a和583b及槽583c和583d分别由止块583b,584e隔开。为每个槽583a至583d可滚动地设置一个球形件546a至546d。
如图43所示,当外杯形件512周向上(图43中箭头P,Q所示方向)的力作用于耳轴526a至526c时,由耳轴526a至526c作用在支座582的抵接面536a,536b上的力总是处于球形件546a和546b之间及球形件546c和546d之间。因此,支座582受到球形件546a至546d良好平衡方式的支承。因此,如图43所示,支座582得到保持,使其未画出的轴线总是基本平行于侧面部分522a,522b,因而可防止支座582在箭头P或箭头Q的方向上倾斜,否则的话,在围绕球形件546a至546d的间隙或支座582的变形的基础上就可能引起上述倾斜。
下面对照图44描述本发明第十一实施例的等速万向节600。第十一实施例与图43所示实施例基本相同,未使用定位器552,多个球形件546a至546d可滚动地由设在导向槽518a至518c上的V形横截面的槽523和支座602的槽603a至603b保持。
在等速万向节600的支座602的外壁部分540a,540b上分别形成槽603a,603b。三个球形件(总共为6个球形件)606a至606f分别接合槽603a,603b。在构成槽603a,603b的壁部的两端形成止块604a至604d。因此,球形件606a至606f的位移受到止块604a至604d限制,使球形件606a至606f不会从槽603a,603b脱出。为一侧上的槽603a(603b)而设置的球形件606a至606c(606d至606f)的数目并不限于3个。球形件可设置多个如二个或更多。
现在对照图44描述在槽603a,603b中设置6个球形件606a至606f(平行地在一侧设置三个)的情形。
在等速万向节600中,当外杯形件512周向上的力作用在耳轴526a至526c上时,耳轴526a至526c压在支座602的抵接面536a,536b上的点M上。
但是,当球形件606a至606f例如在箭头E的方向上移向槽603a,603b的端部,且球形件606a,606d抵靠一个止块604a,604c时,球形件606c,606f的中心就相对于点M位于其它止块604b,604d的侧面。
因此,甚至当耳轴626a至626c的压力作用在支座602上时,支座602也借助6个球形件606a至606f得到良好平衡方式的支承。因此,如图44所示,支座602的未画出的轴线和侧面部分522a,522b总是保持相互基本平行。
例如,关于图44所示的布置,当借助总数为4个的球形件606a至606d(一侧设置二个)支承支座602且负荷从支座602的内部作用在支座602上时,由设在支座602一侧上的球形件606b(606a)的反作用力施加在支座602上的角矩(未画出)受到设在支座602另一侧上的球形件606d(606e)的反作用力的抵销。因此,支座602不会倾斜。
在图43和44所示的替代实施例中不必使用定位器552来保持球形件546a至546d,606a至606f。因此,零件数目得以减少并可以进一步降低生产成本。
在上述实施例中,所描述的是三脚式等速万向节500,580,600,每个万向节设有三个耳轴526a至526c。但是,本发明并不局限于此。例如,本发明当然也适用于图45所示两脚式等速万向节500a,其设有两个耳轴526a,526b。
下面对照图46描述本发明第十二实施例的等速万向节700。
等速万向节700包括一个圆筒形外杯形件(外构件)712和一个内构件716,外杯形件具有一个开口且整体地连接于未画出的第一轴的一端,内构件则固定于第二轴714的一端并容纳在外杯形件712的一个孔中。
如图47所示,在外杯形件712的内周面上形成三条导向槽718a至718c,它们在轴向上延伸并分别围绕轴心相互间隔120°。导向槽718a至718c包括一个第一曲面720和一对第二曲面722a,722b,第一曲面720设置在耳轴的轴向上,这将在下文中描述,第二曲面722a,722b在第一曲面720两侧形成,相互面对,处于基本垂直于耳轴轴线的方向上。每个第二曲面722a,722b的横截面呈圆弧形,具有预定的曲率半径。
一环形的星形件724在外部安装于第二轴714。在星形件724的外周面上整体地形成三个耳轴726a(726b,726c),它们分别朝向导向槽728a(718b,718c)扩展且围绕轴心相互隔开120°。每个耳轴726a(726b,726c)形成柱形结构。
如图49所示,用于围住耳轴726a(726b,726c)外周面的四角形支座(滑动件)728是为耳轴726a(726b,726c)设置的。在支座728的中部形成一个孔730,该孔具有矩形横截面并与耳轴726a(726b,726c)的外周面形成线线接触。用作多个球形件的滚动面的一对长槽734a,734b在支座728的相对的两侧面上形成,并分开预定的间距。长槽734a,734b具有V形横截面,基本平行于导向槽718a至718c的轴线延伸。限制球形件732的滚动位移的止块736在长槽734a,734b的一端形成。
定位器(保持件)738设置在支座728上,被弯曲而具有】形横截面。多个球形件732可转动地由支座728的长槽734a,734b和圆孔742保持,每个孔742是穿过定位器738的弯曲部分740形成的,其直径小于球形件732的直径。
与从定位器738的孔743露出的球形件732接合的一对板簧(调节体)744a,744b安装在外杯形件712的相互面对的两个弯曲表面722a,722b上。每个板簧744a,744b制成具有沿导向槽718a至718c的预定长度,其横截面呈圆弧形,具有预定的曲率半径。板簧744a,744b由一对接合槽746a,746b(见图48)固定,上述接合槽是在第二曲面722a,722b的上、下端部形成的。在此实施例中,板簧744a,744b的弯曲内壁面748用作球形件732的滚动面。
橡胶件750a,750b夹置在板簧744a,744b和第二曲面722a,722b之间,每个橡胶件具有新月形横截面。橡胶件750a,750b的弹力加在板簧744a,744b上,使板簧744a,744b和橡胶件750a,750b形成一个整体组件。橡胶件750a,750b是由弹性材料如天然橡胶及合成橡胶制成的。
如图49所示,这对板簧744a,744b可以制成相应于右、左相对的第二曲面722a,722b的分离件。或者,如图50所示,也可以使用一连接部分752连接端部而形成一个整体的板簧754。使用整体形成的板簧754的优点在于可以方便地进行组装。
按照本发明第十二实施例的等速万向节700的结构与上面的描述基本相同,下面将描述其操作、功能和效果。
首先描述等速万向节700的组装步骤。
沿着在外杯形件712的导向槽上形成的右、左第二曲面722a,722b插入橡胶件750a,750b。然后,沿着导向槽718a至718c的轴向安装板簧744a,744b。由定位器738和装有支座728的耳轴726a至726c保持的球形件沿着导向槽718a至718c插入。在上述过程中,甚至当相互面对的第二曲面722a,722b(见图48)之间的间距W未设定为预定值而具有尺寸误差时,在用作球形件732的滚动面的那对板簧744a,744b之间的间距U可借助可沿图48中箭头X的方向挠曲的橡胶件750a,750b和板簧744a,744b的弹力而调节至预定的值。
或者,如图51所示,可以不设置橡胶件750a,750b,从而在板簧744a,744b和第二曲面722a,722b之间形成空间756,使得其间的间距U只用板簧744a,744b的弹力来调节。
下面概述按照本发明第十二实施例的等速万向节700的工作。
当转动未画出的第一轴时,转动力通过外杯形件712传递至内构件716。因此,第二轴714借助耳轴726a至726c以预定的方向转动。
也就是说,外杯形件712的转动力传递至球形件732,其与可沿导向槽718a(718b,718c)位移的板簧744a,744b形成点点接触。转动力再通过与球形件732形成点点接触的支座728传递至耳轴726a(726b,726c),因此使与耳轴726a(726b,726c)接合的第二轴714转动。
如上所述,在第十二实施例中,球形件732并不直接地接触在外杯形件712的内壁面上形成的第二曲面722a,722b。板簧744a,744b的弯曲内壁面用作球形件732的滚动面。因此,甚至当第二曲面722a,722b之间的间距W包括取决于外杯形件712的制造精度的任何尺寸误差时,板簧744a,744b之间的间距U,即,球形件732的滚动面之间的间距U可以借助板簧744a,744b和橡胶件750a,750b的弹力调节至预定的值。
因此,在第十二实施例中可以避免种种不便,例如,外杯形件712的滚动面之间的间距的尺寸误差原来会引起在球形件732上作用大的负荷及出现松动现象。因此,第一轴的转动力可以顺利地传至第二轴714那侧。
另外,在第十二实施例中,板簧744a,744b具有足够的硬度,不会被板簧744a,744b和球形件732之间产生的接触面压力而塑性化。因此,与普通技术相比可以降低生产成本,在普通技术中必须对外杯形件712内壁面上的滚动面进行热处理。
下面描述图52和53所示本发明第十三实施例的等速万向节760。与上述第十二实施例所述相同的构件使用相同的标号并不再赘述。
等速万向节760与按照上述第十二实施例的等速万向节700的不同之处在于,耳轴762制成球形,弹簧件766设有横截面形状曲率半径不同的弯曲部分764,弯曲部分764用作球形件732的滚动面。标号768a,768b代表一对滑动件,每个滑动件内壁面形成相应于耳轴762的球形凹部,其外壁部形成平面形状。
上述的按照本发明第十二和十三实施例的等速万向节700,760是借用具有三个耳轴726a(726b,726c)的三脚式结构来描述的。但是,本发明并不局限于此。本发明当然也适用于图54所示的两脚式等速万向节770。