用于无线电接收机系统的差动前馈放大器功率控制电路.pdf

上传人:t**** 文档编号:397974 上传时间:2018-02-14 格式:PDF 页数:20 大小:846.67KB
返回 下载 相关 举报
摘要
申请专利号:

CN95196024.5

申请日:

1995.11.03

公开号:

CN1162375A

公开日:

1997.10.15

当前法律状态:

终止

有效性:

无权

法律详情:

专利权有效期届满IPC(主分类):H04B 1/06申请日:19951103授权公告日:20021218|||专利权的转移IPC(主分类):H04B 1/06变更事项:专利权人变更前权利人:摩托罗拉公司变更后权利人:摩托罗拉移动公司变更事项:地址变更前权利人:美国伊利诺斯变更后权利人:美国伊利诺斯登记生效日:20101230|||授权||||||公开

IPC分类号:

H04B1/06; H04B1/26

主分类号:

H04B1/06; H04B1/26

申请人:

摩托罗拉公司;

发明人:

瓦特·格兰德菲尔德; 万斯·H·彼得森

地址:

美国伊利诺斯

优先权:

1994.11.04 US 08/334,092

专利代理机构:

中国国际贸易促进委员会专利商标事务所

代理人:

杜日新

PDF下载: PDF下载
内容摘要

一种选择呼叫接收机(100),包括具有可控的输出功率值的射频放大器(202)。射频电平检测器(500)响应在射频放大器(202)接收的输入信号电平产生检测的输出信号。检测器输出信号被滤波器(401,402)调节,产生代表在射频放大器(202)接收的输入信号电平的有效值的控制信号。然后把控制信号连接于放大器输出功率调节电路(403),用于以无条件稳定前馈方式调节射频放大器(202)的功率增益,使得当由射频电平检测器检测的输入信号电平达到或超过预定信号过载电平时,输出功率值维持恒定。

权利要求书

1: 一种包括具有可控的输出功率值的射频放大器的选择呼叫接收机, 所述选择呼叫接收机包括: 响应在射频放大器接收的输入信号电平产生检测器输出信号的射频电 平检测器工作于: 和射频电平检测器耦连的至少一个滤波器,用来调节具有包括复合的 周期和非周期分量的频谱成分的检测器输出信号,从而产生代表射频放大 器接收的输入信号电平的有效值的滤波器输出信号;以及 放大器输出功率值调节电路,用于响应所述滤波器输出信号,以无条 件稳定前馈方式调节射频放大器的功率增益,使得当由射频电平检测器检 测的接收的输入信号电平基本上达到或超过预定信号过载电平时,所述输 出功率值基本保持恒定。
2: 如权利要求1所述的选择呼叫接收机,其中的射频电平检测器包 括: 具有两个半个差动部分的单端输入的差动输出放大器,所述射频电平 检测器工作于: 当在射频放大器接收的输入信号电平低于预定信号过载电平时在第一 状态下操作,使得两个半个差动部分沿第一非对称方向偏置,从而不对输 出功率值进行调节,使得输出功率值基本上跟随接收的输入信号电平;以 及 当在射频放大器接收的输入信号电平基本上达到或超过预定信号过载 电平时在第二状态下操作,使得两个半个差动部分沿第二非对称方向偏 置,产生差动输出信号,用于进行射频放大器的功率增益的调节,从而维 持基本恒定的射频放大器输出功率值。
3: 如权利要求1所述的选择呼叫接收机,其中放大器输出功率值调节 电路还响应接收的在信道上的信号的相对强度指示,放大器输出功率值调 节电路进行操作,用来调节射频放大器的功率增益,使得当接收的在信道 上的信号基本上达到或超过预定信号过载电平时使输出功率值基本保持恒 定。
4: 如权利要求1所述的选择呼叫接收机,其中所述的至少一个滤波器 包括低通滤器。
5: 如权利要求1所述的的选择呼叫接收机,其中所述的射频放大器, 射频电平控制器,至少一个滤波器和放大器输出功率值调节电路被制造在 集成电路中。
6: 如权利要求5所述的选择呼叫接收机,其中所述集成电路当由基本 上为1伏的直流电源电压供电时便能充分地工作。
7: 一种选择呼叫接收机,包括: 具有射频放大器的接收部分,所述射频放大器的输出功率值是可控 的,所述接收部分进行操作用来提供接收信号,所述接收机包括: 射频电平检测器,用来响应在射频放大器接收的输入信号电平产生检 测器输出信号; 和射频电平检测器相连的至少一个滤波器,所述至少一个滤波器进行 操作用来调整具有包括复合的周期和非周期分量的频谱成分的检测器输出 信号,使得产生代表在射频放大器接收的输入信号电平的有效值的滤波器 输出信号;以及 放大器输出功率值调节电路,它响应所述滤波器输出信号进行操作从 而以无条件稳定前馈方式调节射频放大器的功率增益,使得当由射频电平 检测器检测的在射频放大器接收的输入信号电平基本达到或超过预定信号 过载电平时,所述输出功率值基本上保持恒定; 解调器,用于恢复接收的信号并提供信息信号; 译码器,用来使含在信息信号内的恢复的地址和与选择呼叫接收机相 应的预定地址相关联,并响应所述接收的和预定的地址之间的相关性,产 生代表所述选择呼叫接收机的选择的检测信号;以及 支持电路,用来响应代表选择呼叫接收机的选择的检测信号,处理从 信息信号恢复的信息,以便显示。
8: 如权利要求7所述的选择呼叫接收机,其中的射频电平检测器包 括: 具有两个半个差动部分的单端输入的差动输出放大器,所述附频电平 检测器工作于: 当在射频放大器接收的输入信号电平低于预定信号过载电平时在第一 状态下操作,使得两个半个差动部分沿第一非对称方向偏置,从而不对输 出功率值进行调节,使得输出功率值基本上跟随接收的输入信号电平;以 及 当在射频放大器接收的输入信号电平达到或超过预定信号过载电平时 在第二状态下操作,使得两个半个差动部分沿第二非对称方向偏置,产生 差动输出信号,用于进行射频放大器的功率增益的调节,从而维持恒定的 射频放大器输出功率值。
9: 如权利要求7所术这的选择呼叫接收机,其中所述至少一个滤波器 包括低通滤波器。
10: 如权利要求7所述的选择呼叫接收机,其中所述射频放大器,射频 电平检测器,至少一个滤波器,以及放大器输出功率调节电路被制造在一 个集成电路内。
11: 如权利要求10所述的选择呼叫接收机,其中所述的集成电路当由 1伏的直流电压供电时能够完全工作。
12: 一种具有可控制的输出功率值的射频放大器,包括: 射频电平检测器,用于响应在射频放大器接收的输入信号电平产生检 测器输出信号; 和射频电平检测器相连的至少一个滤波器,所述至少一个滤波器进行 操作用来调整具有包括复合的周期和非周期分量的频谱成分的检测器输出 信号,使得产生代表在射频放大器接收的输入信号电平的有效值的滤波器 输出信号;以及 放大器输出功率值调节电路,它响应所述滤波器输出信号进行操作, 从而以无条件稳定前馈方式调节射频放大器的功率增益,使得当由射频电 平检测器检测的接收输入信号电平达到或超过预定的信号过载电平时,所 述输出功率值保持恒定。
13: 如权利要求12所述的射频放大器,其中射频电平检测器包括: 具有两个半个差动部分的单端输入的差动输出放大器,所述射频电平 检测器: 当在射频放大器接收的输入信号电平低于预定信号过载电平时在第一 状态下操作,使得两个半个差动部分沿第一非对称方向偏置,从而不对输 出功率值进行调节,使得输出功率值跟随接收的输入信号电平;以及 当在射频放大器接收的输入信号电平达到或超过预定信号过载电平时 在第二状态下操作,使得两个半个差动部分沿第二非对称方向偏置,产生 差动输出信号,用于进行射频放大器的功率增益的调节,从而维持恒定的 射频放大器输出功率值。
14: 如权利要求12所述的射频放大器,其中放大器输出功率值调节电 路还响应接收的在信道上的信号的相对强度指示,放大器输出功率值调节 电路进行操作,用来调节射频放大器的功率增益,使得当接收的在信道上 的信号达到或超过预定信号过载电平时,使输出功率值维持恒定。
15: 如权利要求12所述的射射放大器,其中所述的至少一个滤波器包 括低通滤波器。
16: 如权利要求12所述的射频放大器,其中所述的射频放大器,射频 电平检测器,至少一个滤波器,以及放大器输出功率值调节电路被制造在 一个集成电路内。
17: 如权利要求16所述的射频放大器,其中所述集成电路当由1伏的 直流电源电压供电时能够充分地工作。
18: 如权利要求16所述的射频放大器,其中所述的集成电路用作所述 选择呼叫接收机的接收部分。

说明书


用于无线电接收机系统的差动 前馈放大器功率控制电路

    本发明一般涉及放大器功率控制电路,更具体地说,涉及和选择呼叫接收机中的射频放大器结合使用的放大器功率控制电路。

    常规的选择呼叫接收机使用射频放大器接收射频信号,所述射频放大器一般在一个窄的操作频带上被调整到其最佳性能。为了维持某个目标例如电池寿命和其它利益,制造者利用功率和成本约束,这导致了性能的牺牲。

    作为在小功率接收机设计中必需牺牲性能的例子,设计得确定的优化射频放大器的目标是低的功率消耗和在相当窄的频带上好的灵敏度,这时可以选择牺牲动态范围或牺牲相互调制失真特性。这一选择可能导致放大器在高输入信号电平时具有差的失真特性。假定最通常的小功率射频放大器是共发射极对称型或共发共基结构的放大器,其中每个具有有限的动态范围,则选择改善几分贝的灵敏度比选择改善失真特性将是明智地。这种选择是合理的,因为上述的电路结构很适合在干扰信号电平低于有用信号电平的环境中放大有用信号。然而,在除去有用信号之外还对放大器加有不希望的窄带或宽带干扰的环境中,有用信号将不能被充分地放大,因而使接收机的灵敏度变差。

    上述的灵敏度变差是由于放大器响应属于其操作带宽的无用信号。更具体地说,属于有限动态范围的放大器的操作带宽的任何信号都会使放大器产生放大的响应。这样放大的响应基本上和每个输入信号成正比,但这只限于放大器具有足够的功率以线性方式响应所述信号的条件下。当放大器根据有用信号而变得过载时,就会使放大的输出信号失真。基本上,当放大器放大任何干扰信号时,用于放大有用信号的总能量的一部分便被放大器“消耗”了。在理想的放大器中,这问题不会发生,但是当具有上述的约束时,设计者将面对这样的选择:是设计具有高增益、低噪声以及较差的高电平失真性能的放大器,还是设计具有低增益、中等程度的噪声以及较好的高电平失真性能的放大器。

    因而,需要一种装置,它和射频接收机以及放大器相结合而形成一种接收系统,所述接收系统在大的干扰信号变化条件下具有相当恒定的接收灵敏度。而且,这种装置必须以节能方式操作,同时又保持在施加的信号条件下合适的放大信号增益。由于控制了信号增益,所以射频接收机和放大器的失真特性得以改善。

    简明地说,按照本发明,提供一种选择呼叫接收机,它包括其输出功率值是可控的射频放大器。一个射频电平检测器响应在射频放大器收到的输入信号电平产生检测器输出信号。检测器输出信号被滤波器调节,从而产生代表在射频放大器处收到的输入信号电平的有效值的控制信号。然后,控制信号被耦连于放大器输出功率电平调节电路,所述调节电路可以进行操作用来以无条件的稳定的前馈方式调整射频放大器的功率增益,使得当被射频电平检测器检测的输入信号电平达到或超过预定的信号过载电平时,输出功率值保持恒定。

    图1是适用于本发明的选择呼叫接收机的方块图;

    图2是按照本发明的最佳实施例实现Zero-IF接收机的图1所示的选择呼叫接收机的部分方块图;

    图3是按照本发明的第二实施例实现双转换接收机的图1所示的选择呼叫接收机的部分方块图;

    图4是按照本发明最佳实施例的具有可控的输出功率的射频放大器的方块图;

    图5是按照本发明最佳实施例供射频放大器利用的射频电平检测器的简化电路图。

    参见图1,由电池101供电的选择呼叫接收机通过天线102接收信号。接收部分103把接收信号耦连于解调器104,它使用常规技术恢复收到的任何信息。被恢复的信息信号耦连于控制器105,对其中所含的信息进行译码。在最佳实施例中,控制器105包括以硬件和软件实现的具有信号处理器(例如译码器)的微处理器。

    恢复的信息被译码器检查,译码器构成信号处理器,用于用预定的地址和恢复的地址相关。非易失存储器107一般具有多个寄存器,用于存储预定地址和表征选择呼叫接收机的操作的多个配置字。在确定选择呼叫接收机的选择时,使含在信息信号内的恢复的地址和相应于选择呼叫接收机的预定地址之间相互关连。当地址基本上相关时,则发出表示选择呼叫接收机的选择的检测信号,并且控制器105把译码的消息信息耦连于消息存储器106。支持电路108按照恢复的信息、和用户控制装置109有关的配置及检测信号进行操作,处理消息信息中的至少一部分,用于例如通过显示器110进行显示,可以通过听觉或触觉报警装置111通知用户消息已经收到。通过启动合适的控制装置109,用户可以看到现在显示器110上的信息。

    支持电路108最好包括常规的信号多路复用集成电路,以及可以向支持电路108、接收部分103、解调器104或选择呼叫接收机其它元件提供调节电压的电压调节器。另外,支持电路可以被集成地耦连于控制器(例如微控制器,包括A/D、D/A转换器,可编程的I/O端口,控制总线等等)。此外,支持电路可以包括环境检测电路,例如用于检测光和温度条件,音频功率放大器电路,控制接口电路,时钟频率合成器、以及显示照明电路。这些元件以常规方式构成,用于按用户要求为接收机提供信息显示。

    现在参见图2,图2的部分方块图说明按照本发明第一实施例的图1所示的选择呼叫接收机中的Zero-IF接收部分。

    接收的信号从天线102被耦连于RF放大器202。RF放大器202具有可控的输出功率,所述输出功率至少部分地由和接收信号相关的检测幅值确定。当检测的幅值超过预定幅值时,前馈电平限制器201就把控制信号耦连于RF放大器202,借以调节RF放大器202的可控的输出功率,并防止由高输入信号电平引起失真。预定幅值应当这样选择,使得有用信号在这样一个信噪比或载波噪声比(噪声指的是任何不想要的或无用的信号)下被放大,从而使得产生的信号质量对实现常规的无线电信号电路的无差错译码是可以接受的。用这种方式其中可能含有调制的载波信号的接收信号将被清楚地放大,并保持良好的状态以便随后进行译码。

    在初次放大之后,接收信号被使用常规的频率转换器203下变换为基带信号。所得的基带信号接着利用常规的Zero-IF解调器204解调,例如利用微分与交叉相乘拓扑结构或类似电路。所述转换通过接收的信号和由可控的频率合成器205或常规的晶体控制振荡器(未示出)提供的本地振荡信号进行混合来实现。在最佳实施例中,可控频率合成器205例如包括可编程的锁相环合成器206,以及下述部分中的至少一个:常规的除以N的预定标器、双模除法器或N等分电路,使得本地振荡信号频率可以按粗的或细的增量按步增加。可控频率合成器205还可以被用于合成与构成选择呼叫接收机的其它部分(例如译码器)相关的时钟数字逻辑电路所需要的任何数量的频率。

    可控频率合成器205响应控制模块(例如由Motorola,Inc.制造的MC68HC05C4)105,进行一系列决定和随后要详细说明的控制作用。控制模块105通过在可控频率合成器205中写入一个控制字(例如一个除数)来调节本地振荡器信号频率,从而把锁相环206编程为目标频率。所述控制字由频率参考元件207和所需的输出频率之间的关系导出。所述关系可以是预先确定的,并把其参数存储在非易失存储器107中。然后,非易失存储器107可以被控制器105访问,从而对可编程的锁相环合成器206的输出频率编程。

    作为另一个例子,考虑二次(无用的)射频信号被天线102接收并和有用信号一道加到RF放大器202上的情况。在这种情况下,可能引起高电平或互调失真(IMD)。高电平失真和互调失真的术语虽然不同,但都可被可相互轮换地使用,用来说明和非线性失真有关的放大器所涉及的下述问题。因为由器件产生的IMD的电平和与器件有关的非线性有很大关系,并且一般来说减少增益可使器件操作线性化,所以可通过检测输入电平(在RF放大器202的输入端)和输出电平(在RF放大器的输出端),以及如果可能的话,检测接收信号的中间频率(IF)相对电平指示来控制IMD。响应检测这些电平之一,RF放大器的增益被调整,从而在放大有用信号时实现并保持RF放大器的线性操作。在有源器件例如放大器的情况下,减少不想要的信号的输入电平一般会使在有用的接收信号中的失真相应地减少。

    本发明尤其适用于减少失真同时又以前馈调节方式操作。响应与在RF放大器202的输入端存在的接收信号相关的检测的幅值,调整RF放大器202的输出功率,以无条件的稳定方式实现前馈调整。这种操作大大减少了和现有技术的增益控制系统例如用正或负反馈进行操作的系统相关的复杂性,这是因为,在本发明中不用补偿可达到稳定。

    可以采用许多方法减少接收部分103中出现的不想要的信号电平。用于控制在转换部分例如基带转换器中的失真的另一种方法在名称为“具有控制互调失真的自适应收发机的通信系统”的Edward T.Clark发明的并转让给Motorola,In.c的5,001,766的美国专利中披露了。在此把其中的教导列为参考。这一美国专利在其第一实施例中讨论了一种测量接收信号的质量的一种装置。当质量于一个预定的品质因数时,就进行调节用于实现射频信号,从第一频率向第二频率转换的本地振荡信号的驱动电平。Clark专利还讨论了一种调节射频放大器的增益从而防止信号过载的任选的控制装置。此外,Clark讨论了一种用于控制发送射频信号的装置的传输功率的编码响应的交换机。在第二实施例中,Clark讨论了一种确定接收信号的相对信号强度的RSSI检测器。然后,响应检测的信号质量和相对信号强度,控制器使所述射频放大器的增益和本地振荡器驱动电平相适应。

    本领域的技术人员可以理解,Clark披露的方法和装置通过增加本发明优点可以进一步改善。

    参见图3,所示的方块图说明按照本发明第二实施例在图1所示的选择呼叫接收机中实现的频率合成双转换接收部分。

    接收的信号,从天线102通过匹配电路301耦连于RF放大器302。RF放大器302具有可控的输出功率,所述输出功率至少部分地被与接收的信号有关的检测幅值确定。当幅值超过预定值时,前馈电平限制器201把控制信号耦连于RF放大器302,借以调整RF放大器302的可控的输出功率,并阻止由于高输入信号电平而产生的失真。按照图2中的例子,预定的幅值应是这样选择,使得有用信号在这样一个信噪比或载波噪声比(噪声指的是任何不想要的或无用的信号)下被放大,使得产生的信号质量对实现常规的无线电信号电路的无差错译码是可以接受的。用这种方式,其中可能含有调制的载波信号的接收信号将被清楚地放大,并保持良好的状态以便随后进行译码。

    这种例子的双转换接收部分“RF前端”301,302,303,304,305以现有技术中熟知的方式响应通过天线102接收并耦合的传输信号。从天线102接收的信号呆以任选地使用已知技术被预先处理,从而提供在预定带宽内耦连于第一混合器304的最佳信号、电平。

    接收信号的可选择的预处理通常由匹配电路301,射频放大器302以及预选器滤波电路303进行,这些电路的设计和功能是本领域的熟知的。匹配电路301使天线10的阻抗特性和RF放大器302相匹配。最好设计匹配电路以便提供具有最佳噪声匹配(最小的噪声)和低的介入损耗的RF放大器302,借以使从天线102向RF放大器302输送的接收信号功率为最佳。然后,放大的信号被耦连于预选择器滤波电路303,它以最小的衰减接收有用信号(例如在预定的频带内),并衰减(即排斥)所有无用信号。这样,接收的信号被预处理并被耦连于第一信号混合器304。

    然后第一混合器304混合预处理的接收信号和由可控频率合成器203提供的第一本地振荡注入信号。可控频率合成器具有从频率参考元件207导出的输出频率。所进行的转换产生第一中频信号,然后把其耦连于晶体滤波器305,该滤波器使第一中频信号通过,而使任何不用的信号例如第一混合器图象信号和第一本地振荡器注入信号衰减。

    第二混合器306混合第一中频信号和由可控频率完成器205提供的第二本地振荡器注入信号。所得的第二中频信号被特定地滤波和放大(即通过中频放大与滤波电路307)并被耦连于解调器104。在本实施例中的解调器包括调制检测器308,调制检测器308以本领域熟知的方式恢复通过数据滤波器309耦连于译码器的信息(即FSK数字数据,音频音,PSK数字数据,SSB等)。

    在进行频率选择时,控制器106被耦连于包括锁相环206的可控频率合成器205。控制器进行操作以便执行微编码程序,用于产生频率控制信号。频率控制信号用于对可控频率合成器205的输出频率编程,以便反映相对于所需的操作频率(例如本地振荡频率,时钟频率等)基本上为百万分之零的频率误差。

    非易失存储器(例如只读存储器,备份随机访问存储,EEPROM等)107用于存储可执行的控制器指令,存储用于表示编程的输出频率和其相应的控制字(例如分频系数)的表,并存储所需的非易失配置信息,用于完成在控制过程中的决定和控制作用,下文将详细说明。

    参见图4,所示的方块图表示具有按照本发明的最佳实施例的可控的输出功率值的射频放大器。

    当来自天线102的信号强度低于接收机的预定的信号过载电平时,RF电平检测器500的差动输出将不减少RF放大器202的电流消耗。当来自天线的信号强度超过过载电平时,RF电平检测器500的差动输出将变为其另一种不对称状态。在这种状态下,RF放大器202的电流消耗和由此导致的功率增益随着天线信号强度的增加而减少。结果,RF放大器202的输出功率将相对保持恒定。

    低通滤波器401,402进行操作用来基本上除去交流信号分量并通过RF电平检测器500输出的直流信号分量。这种操作阻止两个接近的频率的不同的分量到达放大器电流控制部分403,并阻止对RF放大器202进行幅值调制。

    放大器电流控制电路403使用合适的常规的差动缓冲器/放大器或类似电路实现。放大器电流控制电路403的功能是响应由RF电平检测器500和低通滤波器401,402检测并滤波的直流值,通过根据检测的信号强度调节可为RF放大器202利用的电流值来控制RF放大器202的功率增益。

    在操作方面,差动RF电平检测器500变为非对称状态时的RF电压具有极好的重复性。因为转换门限基本上由用于制造差动电平检测器的晶体管的面积比(area ratio)确定,即使在用于制造元件的集成电路工艺变化时,和预定幅值有关的检测门限也将基本保持恒定不变。而且,因为使用差动信号控制电流和RF放大器202的有效输出功率,所以可以确保在工艺和温度改变时具有良好的重复性。

    参见图5,其中简化的电路图表示供本发明的最佳实施例的射频放大器使用的射频电平检测器。

    差动RF电平检测器500实际上是一种非对称地加偏压的差动放大器。Q2501的面积因数(area factor)被设计得大于Q1502的面积因数,因此,由于在Q1502的基极不存在RF电压,所以端子LPF-1 503的电压比端子LPF-2 504的电压高。当Q1502的基极上的RF电压增加时,Q1502的集电极电流将由于“Δ(delta)电流”现象而增加。通常用百分数表示的Δ电流是在每个放大级中的静态直流工作电流和加有RF的级的工作电流之间的差。工作电流的增加主要是由于当RF被施加时有源器件的整流和滤波效果,例如,双极晶体管具有二极管、电阻以及和器件有关的电容,其功能类似于用于检测作为直流值的RF能量的平均值的电路。因而,通过产生有效的直流值检测有效的RF电压。

    使Q1502的集电极电流等于Q2501的集电极电流所需的RF电压被Q2501和Q1502之间的面积因数差确定。因而,因Q2501比Q1502的面积因数较大,所以在Q1502的基极上需要加较大的RF电压才能达到相等的集电极电流。随着RF电压进一步增加,Q1502的集电极电流将超过Q2501的集电极电流,从而使得LPF-2504比LPF-1502处于较高的电位上。然后所得的差动电压(VLPF-2,VLPF-1)通过把滤波的差动电压耦连到放大器电流控制电路403被用于控制RF放大器的增益。

    关于差动RF电平检测器500的静态直流工作点,用基本上等于1伏的直流电压516向电路供电。电阻R1510,R2511,R3515,R4513,R5514,R6519以及R7512用来对于合适的操作提供稳态直流偏压。正如对称差动放大器的情况一样,左右两边元件基本上彼此相等。在本例中,如上所述,除去晶体管Q1502和Q2501之外,左右两边的元件彼此相等。电容C1作为交流耦合阻抗,用来允许检测在射频放大器202收到的输入信号电平。电容C2作为RF旁路电容,用来使RF电平检测器500的性能基本上和频率无关。电容C3和C4形成交流短路,保证RF电平检测器在RF频率上没有或具有很小的增益。这些电容还用来增加Q1502的输入阻抗,使之和天线102匹配。

    总之,这里说明的本发明最好被在图1所示的选择呼叫接收机中进行实施,其中含有输出功率电平为可控的射频放大器202、302。射频电平检测器500响应在射频放大器202,302接收的输入信号电平产生检测器输出信号。检测器输出信号具有包括复合的周期与非周期分量的频谱成分。然后把该信号耦连于至少一个滤波器401,402,例如对其进行调整的低通滤波器,使得产生代表在射频放大器存在的接收输入信号电平的有效值的滤波器输出信号或控制信号。然后把控制信号耦连于放大器输出功率值调整电路403,以无条件稳定前馈方式调节射频放大器202,302的功率增益,使得当由射频电平检测器500检测的接收输入信号电平达到或超过预定的信号过载电平时,输出功率值基本维持恒定。

    更具体地说,射频电平检测器500包括具有两个半个差动部分的单端输入的差动输出放大器。射频电平检测器当从射频放大器202,302耦连的接收输入信号电平低于预定的信号过载电平时在第一状态操作,使得两个半个差动部分沿第一非对称方向偏置,从而不进行输出功率值的调节,因而允许输出功率值基本上跟随接收输入信号电平;而当接收的输入信号电平达到或超过预定信号过载电平时,在第二状态操作,使得两个差动部分沿第二非对称方向偏置,从而产生差动输出信号,该信号影响射频放大器的功率增益的调节,使得维持基本上恒定的射频放大器输出功率值。而且,放大器输出功率值调节电路403还可以响应接收的信道上的信号的相对强度指示(如图2,3和4中所示的RSSI信号),使得放大器输出功率值调节电路进行操作,从而调节射频放大器202的功率增益,使得当接收的信道上(on-channel)的信号达到或超过预定信号过载值时,输出功率值维持恒定。

    最后,为方便起见,射频放大器202,302,射频是平检测器500,至少一个滤波器401,402,以及放大器输出功率值调节电路403被制造在一个集成电路内。

    本领域的普通技术人员可以理解,根据所披露的发明可以作出不同的改变,应当允许用不同方式达到同一目的。这些改变的例子可能有只把披露的电路部分集成在一片集成电路中,或由于实际设计中对例如射频干扰之类的考虑而把某些元件有目的地分开。此外,所述的接收,解调和译码技术当然都是例子,没有理由排除其它技术,例如非常规的调制与信号处理方法,如扩展频谱,或使用数字选择、检测和译码方法。

用于无线电接收机系统的差动前馈放大器功率控制电路.pdf_第1页
第1页 / 共20页
用于无线电接收机系统的差动前馈放大器功率控制电路.pdf_第2页
第2页 / 共20页
用于无线电接收机系统的差动前馈放大器功率控制电路.pdf_第3页
第3页 / 共20页
点击查看更多>>
资源描述

《用于无线电接收机系统的差动前馈放大器功率控制电路.pdf》由会员分享,可在线阅读,更多相关《用于无线电接收机系统的差动前馈放大器功率控制电路.pdf(20页珍藏版)》请在专利查询网上搜索。

一种选择呼叫接收机(100),包括具有可控的输出功率值的射频放大器(202)。射频电平检测器(500)响应在射频放大器(202)接收的输入信号电平产生检测的输出信号。检测器输出信号被滤波器(401,402)调节,产生代表在射频放大器(202)接收的输入信号电平的有效值的控制信号。然后把控制信号连接于放大器输出功率调节电路(403),用于以无条件稳定前馈方式调节射频放大器(202)的功率增益,使得当。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 电通信技术


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1