用纳米级非氧化物粉末制造可烧结生坯的方法 本发明属于陶瓷及粉末冶金复合材料范畴,关于用纳米级(nanoscale)非氧化物粉末制造可烧结生坯的方法,生坯烧结后可用作例如陶瓷组分或硬质材料复合物。
近年来在纳米级粉末的制造方面进行了大量工作。
这种纳米级粉末的基本颗粒(primary particle)粒度上限为500nm,优选为100nm,其特点是具有相当大的表面积对体积的比值。
因此,这种基本颗粒显示出极大的表面力,能对气态及液态分子产生明显的吸附作用,颗粒之间的相互作用也十分强烈。
对气体及液体的吸附作用不仅导致某些气体或液体如氧、氨、氯化氢或碳氢化合物的可逆物理吸附,而且还通过化学吸附导致表面的化学变化如氧化(例如形成氧化物、氧氮化物及碳氧化物),氨解及氯的包合。
对于纳米级非氧化物陶瓷及硬质材料粉末而言,氧进入结构中是十分有害的,它会改变物质的性质。这很容易超过10质量%,从而几乎使非氧化物完全转化为准氧化物粉末。
使用纳米级粉末的另一个问题是颗粒之间地互相作用,这主要是通过静电及范德华力所致。这种互相作用使纳米级粉末聚结而凝成团块,在作进一步加工处理之前必须加表面活性的有机物,同时用机械作用尽可能将团块破碎。
在PCT公报WO 93/21127中提出制备表面改性的纳米级陶瓷粉末,其中将未改性的粉末在最少一种带至少一个官能团的低分子量有机化合物存在下分散接着除去分散剂。
在分散过程中,低分子量有机化合物中的官能团与粉末颗粒的表面反应或互相作用。特别有利的是,用于表面改性的化合物中的官能团与陶瓷颗粒的表面基团之间能产生酸/碱反应。
对氧化物粉末及/或有机溶剂可用水作为分散剂。
作为低分子量有机化合物可优选选用分子量不超过500特别是不超过350的物质。这种化合物的例子有羧酸、胺、β-二羰基化合物、醇化物或有机烷氧基硅烷。
这类改性的陶瓷粉末可直接用来制备挤出物。为进行后边的成型操作必须掺入添加剂。
上述这些发明的缺点是,从制备可烧结的生坯考虑,非氧化物粉末的改性是不能满足要求的。
本发明的任务是提供一种用纳米级非氧化物粉末制备可烧结生坯的方法,其中将粉末表面保护起来,使之不受任何气体及液体的影响。
这些任务通过权利要求书中提出的方法可以解决。
按照本发明的方法,为用纳米级非氧化物粉末制备可烧结的生坯,按本发明将粒度上限为500nm的纳米级非氧化物粉末、或粒度上限为500nm的纳米级非氧化物粉末和平均粒度大于500nm的非氧化物粉末分散在含至少一种高分子量分散助剂的有机溶剂中,所述分散助剂由一个或若干个极性官能团和一个或若干个长链脂族基团组成,分散液接着加工成可烧结的生坯。
有利的是使用粒度上限为100nm的纳米级非氧化物粉末。
同样有利的是作为高分子量分散助剂使用一种饱和或不饱和二羧酸的酰亚胺,其中含一个或若干个烷基或烯基,链长超过35C原子。
更有利的是使用被烷基或烯基取代的琥珀酰亚胺作为高分子量分散助剂。
此外也有利的是以固体物含量为基数计算,高分子量分散助剂的用量为0.5至20质量%。
更有利的是以固体物含量为基数计算,高分子量分散助剂的用量为1至8质量%。
同样有利的是,以粉末总量为基数计算,粉末粒度上限为500nm的纳米级非氧化物粉末的用量为2至95质量%。
更为有利的是,以粉末总量为基数计算,粒度上限为500nm的纳米级非氧化物粉末用量为20至50质量%。
按照本发明的方法,用纳米级非氧化物粉末制造可烧结的生坯,可单独使用纳米级非氧化物粉末或与平均粒度超过500nm的普通非氧化物粉末混合使用,两种粉末的化学组成可以相同也可以有差别,下面列举这种粉末组合的使用例子:纳米级TiN/TiN,纳米级TiN/TiC,纳米级TiN/WC,纳米级TiC/TiC,纳米级TiC/TiN,纳米级TiC/WC,纳米级Si3N4/Si3N4,纳米级Si3N4/SiC,纳米级SiC/SiC,纳米级SiC/Si3N4,纳米级WC/WC,纳米级WC/TiC以及周期表中其他IV至VI副族元素及III至V主族元素构成的硬质材料化合物。
纳米级和普通的非氧化物粉末都加到有机溶剂中。这类溶剂还含有高分子量分散助剂。
作为有机溶剂可优选使用脂族或芳族碳氢化合物,如己烷、庚烷、辛烷、苯或甲苯,醇类如乙醇或丙醇或酮。
作为高分子量分散助剂可使用含一个或若干个极性官能团及一个或若干个长链脂族基团的化合物。在这些分散助剂中,碳氢链上再多一个CH2-基也不会导致可检测出的物理性能的变化,实际上也不可能从制成的物质中将它们进行分离。
本发明的制造方法的优越作用在于,通过高分子量分散助剂的电荷情况及空间分布的结合,可将粉末颗粒表面几乎完全遮盖住,其中分子间形成相当牢固的附着,从而使遮盖住的粉末颗粒互相保持空间位置之间的一定距离。
从而防止了颗粒的互相聚结,保持分散液的高度稳定。
这是使用低分子量有机化合物所不能达到的。
本发明的制造方法的特殊优点在于,所使用的高分子量分散助剂同时用作成型助剂,因而可以不必再加如石蜡之类的压制助剂或聚乙二醇或聚乙烯醇之类的粒化助剂来制备可烧结的生坯。
因而可以同时减少烧结物体中的有机助剂含量,这对烧结过程中增大压实性是有利的。
分散过程按熟知的方法进行,其中将粉末与高分子量分散助剂一道加入有机溶剂中例如通过搅拌,或超声波浴处理,或通过研磨机使之充分混合。经过这一过程后,分散液在若干小时内可保持稳定,对进一步加工如粒化不会造成困难。粒化操作可以例如在喷雾干燥器中将分散液喷雾或经真空蒸发溶剂并进行过筛制粒。制成的颗粒由于本发明的制造方法之故而被高分子量分散助剂包裹,故不受空气中氧的氧化作用影响。因此它可以按通常方式例如单轴压制或等静压压制成可烧结的生坯。
下面通过三个实施例进一步说明本发明的细节:实施例1
制备由20质量%基本颗粒粒度为40nm的纳米级TiN与80质量%平均粒度为1500nm的TiN组成的稳定分散液,其中在搅拌下将TiN粉末加入正己烷中,其中已含1质量%烷基琥珀酰亚胺(烷基由60至80碳原子组成)。制成的分散液的固体物含量为41%,以固体物含量为基数计算,分散助剂占3.5%。分散液在超声波浴中进行两次30分钟处理,最后放在真空干燥箱中,蒸去溶剂。剩余的混合物在100μm筛上粒化,将粒料在300MPa压力下压制成弯曲断裂试棒。试棒对于外界影响十分稳定,它的生坯密度为理论密度的52%。它可在无残余地蒸发去高分子量分散助剂后烧结成致密的物体。实施例2
由基本颗粒粒度为40nm的20体积%纳米级TiC及80体积%平均粒度为600nm的WC粉末在搅拌中在正己烷中通过加入含4质量%摩尔质量为850g/Mol的烷基琥珀酰亚胺制成稳定的分散液。分散液的固体物含量为40%。始终通过搅拌作用而运动的分散液然后在Nitro喷雾干燥器中制粒,颗粒的平均直径为40μm。接着将颗粒在250MPa压力单轴压制成弯曲断裂试棒,它的生坯密度为理论密度的53%,可在1600℃烧结成致密的物体。实施例3
将粒度在50到500nm之间的碳氮化硅粉末和8质量份氧化钇作为烧结助剂,固体物含量为基数,加入2质量份烷基琥珀酰亚胺(烷基由60-90C原子组成)在正己烷中制成稳定的分散液。操作过程是在搅拌下将碳氮化硅粉末分成若干份在室温下加到含烷基琥珀酰亚胺的己烷溶液中。接着加入氧化钇。分散液的固体物含量为58%。为了充分混合粉末,将分散液在球磨机中研磨4小时,然后在真空旋转蒸发器中蒸出溶剂。在315μm筛上将得到的干料粒化,并在250MPa压力下压制成棱角稳定的弯曲断裂试棒。它的生坯密度为理论密度的54%。在高于1700℃的温度除去烷基琥珀酰亚胺后可烧结成致密的样品。