一种八面体MNSUB3/SUBOSUB4/SUB纳米颗粒的制备方法.pdf

上传人:b*** 文档编号:38420 上传时间:2018-01-17 格式:PDF 页数:9 大小:2.27MB
返回 下载 相关 举报
摘要
申请专利号:

CN201410249740.9

申请日:

2014.06.06

公开号:

CN104045113A

公开日:

2014.09.17

当前法律状态:

撤回

有效性:

无权

法律详情:

发明专利申请公布后的视为撤回IPC(主分类):C01G 45/02申请公布日:20140917|||实质审查的生效IPC(主分类):C01G 45/02申请日:20140606|||公开

IPC分类号:

C01G45/02; B82Y30/00(2011.01)I

主分类号:

C01G45/02

申请人:

长沙飞博化工科技有限公司

发明人:

王海燕; 金冠华; 张辉; 刘平; 胡秉华; 胡鸣海; 陈娜; 万浩

地址:

410205 湖南省长沙市长沙高新开发区麓云路159号佳境小区7栋2203房

优先权:

专利代理机构:

长沙市融智专利事务所 43114

代理人:

袁靖

PDF下载: PDF下载
内容摘要

本发明公开了一种八面体Mn3O4纳米颗粒的制备方法。由N-N-二甲基甲酰胺(DMF)和水组成的混合溶剂,以高锰酸钾为原料,通过一步水热法即获得具有八面体形貌的Mn3O4催化剂。通过DMF和水的比例,水热反应温度和反应时间可以实现目标产物的控制合成。本发明提出的制备方法具有工艺简单,成本低,周期短等优点,适合工业化生产。制备的八面体Mn3O4纳米材料形貌规则,且颗粒分布均匀,具有优秀的氧还原催化性能。

权利要求书

1.  一种八面体Mn3O4纳米颗粒的制备方法,其特征在于,包括以下步骤:
(1)将高锰酸钾加入到含有N-N-二甲基甲酰胺和水的混合溶液中,搅拌均匀;
(2)待搅拌均匀后,将其转移到高压反应釜中进行反应,反应完毕后自然冷却至室温,取出;
(3)过滤、洗涤、干燥,最后研磨得到产品。

2.
  根据权利要求1所述的八面体Mn3O4纳米颗粒的制备方法,其特征在于,所述的N-N-二甲基甲酰胺与H2O的体积比为0.1—1。

3.
  根据权利要求1所述的八面体Mn3O4纳米颗粒的制备方法,其特征在于,步骤(1)中所述的水为去离子水和蒸馏水中的一种。

4.
  根据权利要求1所述的八面体Mn3O4纳米颗粒的制备方法,其特征在于,所述的高压反应釜中的反应温度为100—250℃。

5.
  根据权利要求1所述的八面体Mn3O4纳米颗粒的制备方法,其特征在于,所述的高压反应釜中的反应时间为6-15小时。

6.
  根据权利要求4或5所述的八面体Mn3O4纳米颗粒的制备方法,其特征在于,高压反应釜中的反应温度为120—140℃,高压反应釜中的反应时间为6-12小时。

7.
  根据权利要求1所述的八面体Mn3O4纳米颗粒的制备方法,其特征在于,步骤(3)所述的过滤为减压抽滤。

8.
  根据权利要求1所述的八面体Mn3O4纳米颗粒的制备方法,其特征在于,步骤(3)所述的干燥为真空干燥。

9.
  根据权利要求8所述的八面体Mn3O4纳米颗粒的制备方法,其特征在于,真空干燥温度60—100℃,时间10—24小时。

10.
  根据权利要求9所述的八面体Mn3O4纳米颗粒的制备方法,其特征在于,真空干燥温度60℃,时间24小时。

说明书

一种八面体Mn3O4纳米颗粒的制备方法
技术领域
本发明属于化学电源用纳米材料的合成技术领域,具体涉及一种八面体Mn3O4纳米颗粒的制备方法。 
背景技术
特定形貌的能源纳米材料具有引人注目的物理与化学性能,一直是研究的热点。特殊形貌的纳米材料具有独特的纳米结构,被广泛应用于基础研究和工业应用,例如锂离子电池,气体传感器,催化工业和能量存储。到目前为止,有关合成特殊形貌的纳米材料的方法屡见报道,常见的合成方法包括金属前驱体的热分解,溶胶凝胶法,水热法等。 
在过渡金属中,锰氧化物一直是研究的重点,其应用广泛,包括锂离子电池、电催化,分子吸附以及磁性材料等。尽管有关合成高质量单分散的锰氧化物纳米晶体的报道有很多,但是很多方法的合成条件苛刻,或者使用了大量有毒原料,或产率较低。另一方面,有关合成八面体Mn3O4纳米颗粒的相关报道却比较少。Zhang Lichun等(Chem.Mater.2009,21,5066-5071)以高锰酸钾为原料,以十二烷胺-乙醇溶剂,硫酸钠为添加剂,在180℃的水热条件下反应48小时才得到Mn3O4八面体,该方法不仅工艺复杂,而且反应时间特别长,非常不利于工业化生产;Zhang Pengqu等(Nano Res.2010,3,235-243)采用软模板法合成了呈四角形变形的八面体Mn3O4,该方法采用两步路线合成八面体Mn3O4,第一步为共沉淀合成前驱体Mn(OH)2,第二步为烧结过程以得到八面体Mn3O4,由于共沉淀时间很长(24h),工艺条件的控制比较苛刻。 
另一方面,由于具有低廉的价格和较高的电催化活性,锰氧化物替代贵金属做氧还原催化剂一直是研究的热点。近几年来关于锰氧化物的研究多集中在掺杂或负载炭材料以提高提导电性,而合成特殊形貌的锰氧化物可能具有特别的暴露晶面,可能会大大促进氧气在氧化物表面的吸附,目前关于合成特定裸露晶面的八面体Mn3O4作为铝空气电池空气电极催化剂的报道不多。本发明设计了一种较温和的制备技术合成了八面体形貌的Mn3O4纳米颗粒,应用于铝空气电池正极,该材料显示出了优良的氧还原电催化活性。 
发明内容
本发明提出了一种工艺简单的,成本低廉的,适宜于规模化生产的Mn3O4八面体的制备方法。 
一种八面体Mn3O4纳米颗粒的制备方法,包括以下步骤: 
(1)将高锰酸钾加入到含有N-N-二甲基甲酰胺和水的混合溶液中,搅拌均匀; 
(2)待搅拌均匀后,将其转移到高压反应釜中进行反应,反应完毕后自然冷却至室温,取出; 
(3)过滤、洗涤、干燥,最后研磨得到产品。 
所述的N-N-二甲基甲酰胺与H2O的体积比为0.1—1。 
步骤(1)中所述的水为去离子水和蒸馏水中的一种。 
所述的高压反应釜中的反应温度为100—250℃。 
所述的高压反应釜中的反应时间为6-15小时。 
优选高压反应釜中的反应温度为120—140℃, 
优选高压反应釜中的反应时间为6-12小时。 
步骤(3)所述的过滤为减压抽滤。 
步骤(3)所述的干燥为真空干燥。 
真空干燥温度60—100℃,时间10—24小时,优选真空干燥温度60℃,时间24小时。 
发明的优点和积极效果 
本发明具有如下显著特点: 
1)本发明原料简单,环境污染少,具有工艺简单,成本低廉等优点,适合工业化生产; 
2)本发明制备的八面体Mn3O4形貌规则,且颗粒尺寸为纳米级。 
3)本发明制备的八面体Mn3O4纳米粒子具有优秀的氧还原催化性能。 
积极效果:本发明采用水热法合成了具有八面体形貌的Mn3O4纳米材料,由于其特殊的微观结构,该材料可能在众多领域发挥其特殊的性能,如作为锂离子电池的负极材料,或者合成锰酸锂的前驱体,或电催化材料。本发明将为八面体Mn3O4纳米材料的深入研究及今后的产业化应用提供方法支持。 
附图说明
图1为实施例1所得八面体Mn3O4的X射线衍射图谱; 
图2为实施例1所得八面体Mn3O4的扫描电镜图; 
图3为实施例3所得Mn3O4的X射线衍射图谱; 
图4为实施例3所得Mn3O4的扫描电镜图; 
图5为实施例1所得八面体Mn3O4制备空气电极在0~-0.6V,扫描速率为2mV/s下的极化曲线。 
具体实施方式
以下结合实施例旨在进一步说明本发明,而非限制本发明。 
实施例1 
称取0.4g高锰酸钾备用,准确量取20ml N-N-二甲基甲酰胺(DMF)和50ml去离子水,将二者混合均匀后再加入高锰酸钾。待搅拌均匀后,将其转移到容积为100ml以聚四氟乙烯为内衬的高压反应釜中,设置反应温度为140℃,反应时间为12小时,待反应完毕后,自然冷却至室温,减压抽滤,洗涤,60℃真空干燥24小时,最后研磨得到产品。将所得产物进行XRD表征,其XRD图谱见图1,表明采用本实施例子制备的产品为纯相Mn3O4。对产品的扫描电镜观察(图2)表明,所得产品为形貌规则的正八面体,粒径为400-500nm。 
将制备得的目标材料、活性炭、乙炔黑和粘结剂PTFE按一定质量的比例(3:3:1:3)充分混合均匀,以无水乙醇为溶剂,超声分散30分钟后,转移至90℃水浴中以出去乙醇后得到橡皮泥状混合物,再辗压成0.2mm后的催化膜,防水膜采用同样的方法制备,其中乙炔黑的质量分数为40%,PTFE乳液的质量分数为60%,以泡沫镍为集流体,按照防水膜,集流体,催化膜的顺序热压成空气电极,最后在马弗炉中320℃热处理30分钟得到成品,然后在室温下进行测试。采用上海辰华仪器公司生产的电化学工作站对材料进行线性伏安测试和半电池恒流放电,其中线性伏安测试的电压范围为0.3~-0.6V,扫描速度为2mV·s-1,Pt电极为对电极,Hg/HgO为参比电极,所得的极化曲线如图5。 
实施例2 
称取0.4g高锰酸钾备用,准确量取35ml N-N-二甲基甲酰胺(DMF)和35ml去离子水,将二者混合均匀后再加入高锰酸钾。待搅拌均匀后,将其转移到容积为100ml以聚四氟乙烯为内衬的高压反应釜中,设置反应温度为140℃,反应时间为12小时,待反应完毕后,自然冷却至室温,减压抽滤,洗涤,60℃真空干燥24小时,最后研磨得到产品。将所得产品进行XRD表征,结果表明采用本实施例制备的产品为纯相Mn3O4。对产品的扫描电镜观察表明,所得产品为形貌规则的正八面体,粒径为400-500nm。 
实施例3 
称取0.4g高锰酸钾备用,准确量取20ml N-N-二甲基甲酰胺(DMF)和50ml去离子水,将二者混合均匀后再加入高锰酸钾。待搅拌均匀后,将其转移到容积为100ml以聚四氟乙烯为内衬的高压反应釜中,设置反应温度为120℃,反应时间为12小时,待反应完毕后,自然冷却至室温,减压抽滤,洗涤,60℃真空干燥24小时,最后研磨得到产品。将所得产品进行XRD表征,其XRD图谱见图3,结果表明采用本实施例制备的产品为主相为Mn3O4,副相为MnOOH。对产品的扫描电镜观察(图4)表明,所得产品为主要为形貌规则的正八面体,同时还伴有少量的棒状形貌。 
实施例4 
称取0.4克高锰酸钾备用,准确量取20ml N-N-二甲基甲酰胺(DMF)和50ml去离子水,将二者混合均匀后再加入高锰酸钾。待搅拌均匀后,将其转移到容积为100ml以聚四氟乙烯为内衬的高压反应釜中,设置反应温度为140℃,反应时间为6小时,待反应完毕后,自然冷却至室温,减压抽滤,洗涤,60℃真空干燥24小时,最后研磨得到产品。将所得产品进行XRD表征,结果表明采用本实施例制备的产品为主相为Mn3O4,副相为MnOOH。对产品的扫描电镜观察表明,所得产品为主要为形貌规则的正八面体,同时还伴有少量的棒状形貌。 

一种八面体MNSUB3/SUBOSUB4/SUB纳米颗粒的制备方法.pdf_第1页
第1页 / 共9页
一种八面体MNSUB3/SUBOSUB4/SUB纳米颗粒的制备方法.pdf_第2页
第2页 / 共9页
一种八面体MNSUB3/SUBOSUB4/SUB纳米颗粒的制备方法.pdf_第3页
第3页 / 共9页
点击查看更多>>
资源描述

《一种八面体MNSUB3/SUBOSUB4/SUB纳米颗粒的制备方法.pdf》由会员分享,可在线阅读,更多相关《一种八面体MNSUB3/SUBOSUB4/SUB纳米颗粒的制备方法.pdf(9页珍藏版)》请在专利查询网上搜索。

1、10申请公布号CN104045113A43申请公布日20140917CN104045113A21申请号201410249740922申请日20140606C01G45/02200601B82Y30/0020110171申请人长沙飞博化工科技有限公司地址410205湖南省长沙市长沙高新开发区麓云路159号佳境小区7栋2203房72发明人王海燕金冠华张辉刘平胡秉华胡鸣海陈娜万浩74专利代理机构长沙市融智专利事务所43114代理人袁靖54发明名称一种八面体MN3O4纳米颗粒的制备方法57摘要本发明公开了一种八面体MN3O4纳米颗粒的制备方法。由NN二甲基甲酰胺DMF和水组成的混合溶剂,以高锰酸钾为原。

2、料,通过一步水热法即获得具有八面体形貌的MN3O4催化剂。通过DMF和水的比例,水热反应温度和反应时间可以实现目标产物的控制合成。本发明提出的制备方法具有工艺简单,成本低,周期短等优点,适合工业化生产。制备的八面体MN3O4纳米材料形貌规则,且颗粒分布均匀,具有优秀的氧还原催化性能。51INTCL权利要求书1页说明书3页附图4页19中华人民共和国国家知识产权局12发明专利申请权利要求书1页说明书3页附图4页10申请公布号CN104045113ACN104045113A1/1页21一种八面体MN3O4纳米颗粒的制备方法,其特征在于,包括以下步骤1将高锰酸钾加入到含有NN二甲基甲酰胺和水的混合溶液。

3、中,搅拌均匀;2待搅拌均匀后,将其转移到高压反应釜中进行反应,反应完毕后自然冷却至室温,取出;3过滤、洗涤、干燥,最后研磨得到产品。2根据权利要求1所述的八面体MN3O4纳米颗粒的制备方法,其特征在于,所述的NN二甲基甲酰胺与H2O的体积比为011。3根据权利要求1所述的八面体MN3O4纳米颗粒的制备方法,其特征在于,步骤1中所述的水为去离子水和蒸馏水中的一种。4根据权利要求1所述的八面体MN3O4纳米颗粒的制备方法,其特征在于,所述的高压反应釜中的反应温度为100250。5根据权利要求1所述的八面体MN3O4纳米颗粒的制备方法,其特征在于,所述的高压反应釜中的反应时间为615小时。6根据权利。

4、要求4或5所述的八面体MN3O4纳米颗粒的制备方法,其特征在于,高压反应釜中的反应温度为120140,高压反应釜中的反应时间为612小时。7根据权利要求1所述的八面体MN3O4纳米颗粒的制备方法,其特征在于,步骤3所述的过滤为减压抽滤。8根据权利要求1所述的八面体MN3O4纳米颗粒的制备方法,其特征在于,步骤3所述的干燥为真空干燥。9根据权利要求8所述的八面体MN3O4纳米颗粒的制备方法,其特征在于,真空干燥温度60100,时间1024小时。10根据权利要求9所述的八面体MN3O4纳米颗粒的制备方法,其特征在于,真空干燥温度60,时间24小时。权利要求书CN104045113A1/3页3一种八。

5、面体MN3O4纳米颗粒的制备方法技术领域0001本发明属于化学电源用纳米材料的合成技术领域,具体涉及一种八面体MN3O4纳米颗粒的制备方法。背景技术0002特定形貌的能源纳米材料具有引人注目的物理与化学性能,一直是研究的热点。特殊形貌的纳米材料具有独特的纳米结构,被广泛应用于基础研究和工业应用,例如锂离子电池,气体传感器,催化工业和能量存储。到目前为止,有关合成特殊形貌的纳米材料的方法屡见报道,常见的合成方法包括金属前驱体的热分解,溶胶凝胶法,水热法等。0003在过渡金属中,锰氧化物一直是研究的重点,其应用广泛,包括锂离子电池、电催化,分子吸附以及磁性材料等。尽管有关合成高质量单分散的锰氧化物。

6、纳米晶体的报道有很多,但是很多方法的合成条件苛刻,或者使用了大量有毒原料,或产率较低。另一方面,有关合成八面体MN3O4纳米颗粒的相关报道却比较少。ZHANGLICHUN等CHEMMATER2009,21,50665071以高锰酸钾为原料,以十二烷胺乙醇溶剂,硫酸钠为添加剂,在180的水热条件下反应48小时才得到MN3O4八面体,该方法不仅工艺复杂,而且反应时间特别长,非常不利于工业化生产;ZHANGPENGQU等NANORES2010,3,235243采用软模板法合成了呈四角形变形的八面体MN3O4,该方法采用两步路线合成八面体MN3O4,第一步为共沉淀合成前驱体MNOH2,第二步为烧结过程。

7、以得到八面体MN3O4,由于共沉淀时间很长24H,工艺条件的控制比较苛刻。0004另一方面,由于具有低廉的价格和较高的电催化活性,锰氧化物替代贵金属做氧还原催化剂一直是研究的热点。近几年来关于锰氧化物的研究多集中在掺杂或负载炭材料以提高提导电性,而合成特殊形貌的锰氧化物可能具有特别的暴露晶面,可能会大大促进氧气在氧化物表面的吸附,目前关于合成特定裸露晶面的八面体MN3O4作为铝空气电池空气电极催化剂的报道不多。本发明设计了一种较温和的制备技术合成了八面体形貌的MN3O4纳米颗粒,应用于铝空气电池正极,该材料显示出了优良的氧还原电催化活性。发明内容0005本发明提出了一种工艺简单的,成本低廉的,。

8、适宜于规模化生产的MN3O4八面体的制备方法。0006一种八面体MN3O4纳米颗粒的制备方法,包括以下步骤00071将高锰酸钾加入到含有NN二甲基甲酰胺和水的混合溶液中,搅拌均匀;00082待搅拌均匀后,将其转移到高压反应釜中进行反应,反应完毕后自然冷却至室温,取出;00093过滤、洗涤、干燥,最后研磨得到产品。0010所述的NN二甲基甲酰胺与H2O的体积比为011。0011步骤1中所述的水为去离子水和蒸馏水中的一种。说明书CN104045113A2/3页40012所述的高压反应釜中的反应温度为100250。0013所述的高压反应釜中的反应时间为615小时。0014优选高压反应釜中的反应温度为。

9、120140,0015优选高压反应釜中的反应时间为612小时。0016步骤3所述的过滤为减压抽滤。0017步骤3所述的干燥为真空干燥。0018真空干燥温度60100,时间1024小时,优选真空干燥温度60,时间24小时。0019发明的优点和积极效果0020本发明具有如下显著特点00211本发明原料简单,环境污染少,具有工艺简单,成本低廉等优点,适合工业化生产;00222本发明制备的八面体MN3O4形貌规则,且颗粒尺寸为纳米级。00233本发明制备的八面体MN3O4纳米粒子具有优秀的氧还原催化性能。0024积极效果本发明采用水热法合成了具有八面体形貌的MN3O4纳米材料,由于其特殊的微观结构,该。

10、材料可能在众多领域发挥其特殊的性能,如作为锂离子电池的负极材料,或者合成锰酸锂的前驱体,或电催化材料。本发明将为八面体MN3O4纳米材料的深入研究及今后的产业化应用提供方法支持。附图说明0025图1为实施例1所得八面体MN3O4的X射线衍射图谱;0026图2为实施例1所得八面体MN3O4的扫描电镜图;0027图3为实施例3所得MN3O4的X射线衍射图谱;0028图4为实施例3所得MN3O4的扫描电镜图;0029图5为实施例1所得八面体MN3O4制备空气电极在006V,扫描速率为2MV/S下的极化曲线。具体实施方式0030以下结合实施例旨在进一步说明本发明,而非限制本发明。0031实施例1003。

11、2称取04G高锰酸钾备用,准确量取20MLNN二甲基甲酰胺DMF和50ML去离子水,将二者混合均匀后再加入高锰酸钾。待搅拌均匀后,将其转移到容积为100ML以聚四氟乙烯为内衬的高压反应釜中,设置反应温度为140,反应时间为12小时,待反应完毕后,自然冷却至室温,减压抽滤,洗涤,60真空干燥24小时,最后研磨得到产品。将所得产物进行XRD表征,其XRD图谱见图1,表明采用本实施例子制备的产品为纯相MN3O4。对产品的扫描电镜观察图2表明,所得产品为形貌规则的正八面体,粒径为400500NM。0033将制备得的目标材料、活性炭、乙炔黑和粘结剂PTFE按一定质量的比例3313充分混合均匀,以无水乙醇。

12、为溶剂,超声分散30分钟后,转移至90水浴中以出去乙醇后得到橡皮泥状混合物,再辗压成02MM后的催化膜,防水膜采用同样的方法制说明书CN104045113A3/3页5备,其中乙炔黑的质量分数为40,PTFE乳液的质量分数为60,以泡沫镍为集流体,按照防水膜,集流体,催化膜的顺序热压成空气电极,最后在马弗炉中320热处理30分钟得到成品,然后在室温下进行测试。采用上海辰华仪器公司生产的电化学工作站对材料进行线性伏安测试和半电池恒流放电,其中线性伏安测试的电压范围为0306V,扫描速度为2MVS1,PT电极为对电极,HG/HGO为参比电极,所得的极化曲线如图5。0034实施例20035称取04G高。

13、锰酸钾备用,准确量取35MLNN二甲基甲酰胺DMF和35ML去离子水,将二者混合均匀后再加入高锰酸钾。待搅拌均匀后,将其转移到容积为100ML以聚四氟乙烯为内衬的高压反应釜中,设置反应温度为140,反应时间为12小时,待反应完毕后,自然冷却至室温,减压抽滤,洗涤,60真空干燥24小时,最后研磨得到产品。将所得产品进行XRD表征,结果表明采用本实施例制备的产品为纯相MN3O4。对产品的扫描电镜观察表明,所得产品为形貌规则的正八面体,粒径为400500NM。0036实施例30037称取04G高锰酸钾备用,准确量取20MLNN二甲基甲酰胺DMF和50ML去离子水,将二者混合均匀后再加入高锰酸钾。待搅。

14、拌均匀后,将其转移到容积为100ML以聚四氟乙烯为内衬的高压反应釜中,设置反应温度为120,反应时间为12小时,待反应完毕后,自然冷却至室温,减压抽滤,洗涤,60真空干燥24小时,最后研磨得到产品。将所得产品进行XRD表征,其XRD图谱见图3,结果表明采用本实施例制备的产品为主相为MN3O4,副相为MNOOH。对产品的扫描电镜观察图4表明,所得产品为主要为形貌规则的正八面体,同时还伴有少量的棒状形貌。0038实施例40039称取04克高锰酸钾备用,准确量取20MLNN二甲基甲酰胺DMF和50ML去离子水,将二者混合均匀后再加入高锰酸钾。待搅拌均匀后,将其转移到容积为100ML以聚四氟乙烯为内衬的高压反应釜中,设置反应温度为140,反应时间为6小时,待反应完毕后,自然冷却至室温,减压抽滤,洗涤,60真空干燥24小时,最后研磨得到产品。将所得产品进行XRD表征,结果表明采用本实施例制备的产品为主相为MN3O4,副相为MNOOH。对产品的扫描电镜观察表明,所得产品为主要为形貌规则的正八面体,同时还伴有少量的棒状形貌。说明书CN104045113A1/4页6图1说明书附图CN104045113A2/4页7图2图3说明书附图CN104045113A3/4页8图4说明书附图CN104045113A4/4页9图5说明书附图CN104045113A。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 化学;冶金 > 无机化学


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1