产生归零制信号的方法和装置 利用高数据速率工作的光传输系统群需要有被称为RZ(归零制)脉冲的短脉冲序列。在此,光脉冲可以表示逻辑1,而缺省脉冲则对应于二进制信号的逻辑0。
专利DE 44 41 180 C1曾公开过通过由正弦形电压控制的两个调制器所组成的链式电路来产生上述的脉冲,且所述的两个调制器利用不同的频率进行工作。其缺点在于需要分频器来产生第二驱动信号,而且必须用较高的功率来控制两个调制器。
专利US 4,505,587已经公开过产生这种短脉冲的原理,其中借助许多调制器来生成超短脉冲,驱动信号的频率总是被加倍。
1993年8月5日的电子通讯(Elektronic Letters),第29卷第16号,第1449~1451页曾公开过借助多个等频率的移相电压来生成短的光脉冲。但是,如果需要尖峰脉冲具有恒定的形状,则所述的移相必须保持非常精确。
本发明的任务为提供一种产生尽可能恒定的光脉冲的方法和装置。
该任务由权利要求1所述的方法来实现。优选的装置由独立权利要求5和6给出。
本发明的优选扩展方案由各从属权利要求给出。
在本发明中,所述地第二驱动信号只需要极低的驱动电压,因此只需要很小的功率。除了其振幅不同之外,可以为两个调制器使用相同的驱动信号。此外,所述两个驱动信号之间的相位关系也不是非常严格。
下面借助附图来详细阐述本发明。其中:
图1示出了执行本发明方法的装置的电路原理图,
图2示出了用于解释第一调制器的功能的图示,
图3示出了用于解释第二调制器的功能的图示,
图4示出了用于解释整个装置的图示,图5为该装置的一种改进方案,而且
图6示出了具有两个集成在芯片中的调制器的优选装置,
图7示出了具有循环电极结构的马赫-钱德尔调制器,以及
图8示出了具有循环电极结构的另一种马赫-钱德尔调制器。
图1示出了一种激光模块LM的串联电路,所述的激光模块还包含一个输入有二进制DS的数据调制器DM。在所述的激光模块LM上串联了两个调制器M1和M2。对本发明不重要的诸如放大器或滤波器等元件没有示出来。激光模块S1的输出信号大多为一种二进制调制过(开/关)的光信号。但是,如果所述的装置只被用来产生光脉冲序列,则可以取消所述的数据调制器,并以输入信号S1的形式向第一调制器输入一个连续的光信号。其它的图示是以存在该光信号为出发点。
向所述的第一调制器M1输入一个具有正弦形或类似正弦形的第一驱动信号TS1。原则上也可以采用其它的曲线形状,但运对所述装置的带宽提出了更高的要求。如图2所示,所述第一调制器的工作点由第一偏电压VB1(在图中被标准化,且是传输函数的最大值)来确定,使得第一调制器的传输函数至少近似地达到最大值。这对应于标准化的传输函数值TR为1。如此地选择第一驱动信号的振幅,使得当驱动电压为尖峰值时总是达到最小的传输函数值,此处为0。这对应于标准化的驱动电压V/Vπ为±1的情况(并进行循环地重复)。第一调制的结果,亦即调制器M1的输出信号、也就是第二输出信号S2具有所述驱动信号TS1的双倍频率,它在图4所示的时间图中是用划线表示的。如图3所示,利用相同频率的第二驱动信号TR2来控制第二调制器M2,但在调制器相同的情况下,该第二驱动信号至少近似地为所述第一驱动信号的振幅的1/4。在此,所述工作点VB2离电压值V/Vπ=1的距离为标准化驱动电压V/Vπ=1/4,此时传输函数具有最小值0;在图3中,V/Vπ=3/4。
为了作更好地理解,图4示出了当给第二调制器输入恒定的输入信号时,该第二调制器所提供的另一函数S1×TS2。然而,由于该第二调制器获得所述的第二信号S2作为输入信号,所以得到的结果为产生的信号S3。该图所给出的数值对应于加入了附加放大器的实施例。这些调制器显然可以以任意的顺序进行连接。
如果给第一调制器M1相应地补充至少另一调制器,而该另一调制器又按US专利4,505,587补充了输入有具有多倍频率的驱动信号的其它调制器,则可以缩短输出信号S3的脉冲。在图5中只加入了另一调制器M11。
为了避免由所述调制器带来频率变化-啁啾作用,优选地使用了双光束干涉仅,其中一个臂中的相位调制等于另一个臂中相位调制的负值。这譬如可以通过马赫-钱德尔干涉仅来实现,其中电场(按照电极几何形状)和光场(按照光波导体的几何形状)的调制成分具有共同的纵向延伸的对称面。
按照图6在一个芯片内实现至少两个调制器M1和M2是非常有利的,其中电驱动信号TS1串行地导过两个调制器(行波原理)。在此,所述驱动信号和光信号的传播速度是以已知的方式相互进行匹配的。所述驱动信号在第一调制器内只有极小的衰减,所以由此实现的驱动信号可以控制所述的第二调制器。在所述驱动信号的信号通路中,所述两个调制器之间接入了一个匹配元件AG,由它来负责必要的衰减和需要时进行移相(D+PH)。该电信号可以利用一种终端元件在内部或外部结束。在所述的模块中还可以设定在驱动信号和光波之间进行相位匹配。显然,在该芯片中还可以装设其它的元件。
每个调制器针对光输入信号S1和S2而具有两个不同的通路,其传输时间可以利用电压来进行作用。如果所述的传输时间相等(V/Vπ=0,…),并将该两个子波相加,且所述的传输时间以输入信号的180°(π)而互不相同(V/Vπ=±1),那么它们将互补为0。通常如此来实施所述的调制器,使得通过驱动电压可以缩短一个信号通路的传输时间和延长第二信号通路的传输时间。所述的偏电压也可以在内部产生。
如果使得所述的第二调制器-相对而言-没有第一调制器那么灵敏,那么就可以取消匹配元件AG中的衰减。这可以优选地以如下方式来实现,即选择所述马赫-钱德尔干涉仅M2的长度小于所述马赫-钱德尔干涉仅M1的长度;在电极无衰减的理想情况下,M2中的光电干涉长度为M1中的1/4。
为了优化调制效率,可以有利地取消光波和电波的传播速度匹配。在该情形下,必须考虑用其它的方式来负责使光波和电调制相位不散开。为此,局部循环地反转所述控制信号的电场是比较适合的。这在图8中以马赫-钱德尔干涉仅M1为例作出了图示。
该干涉仅被装设在铌酸锂基片SUB上。光轴Z垂直于图平面,也可以称之为Z剖面。它由光波导体WG和电极EL、EM、ER组成,其中所述的光波导体在调制器M1的区域内被划分为两个臂WG1、WG2。从电输入端EE上把高频控制信号馈入到由电极EL、EM、ER构成的共面导线中。在此,EL、ER为接地电极,而EM载有驱动信号TS1。所述的共面导线随后进入匹配元件AG和调制器M2。中间电极利用空间循环长度L并以长度为L/2的线段交替地延伸在光波导体臂WG2和WG1的上方。接地平面、也即所述共面导线的两个接地电极EL、ER之一在该区域内交替地位于另一光波导体臂的上方。所述循环长度为L的电极的电场利用这种方式进行循环。其目的是使所述光波在运行期间能利用所述的光波导体臂WG1、WG2尽可能全部地在同一方向上进行调制。为此,必须适用:
L*|1/Vel-1/Vopt|=1/Fel。
在此,L为所述的空间循环长度,Vel为所述共面光波导体内的电传播速度,Vopt为光传播速度,而Fel为电调制频率。通常,电波和光波运行在同一方向上,使得Vel和Vopt具有相同的符号。但也可以使电波和光波在相反的方向上传播。在该情形下,为L选择一个非常小的值,并产生一个极小的电调制带宽(在Fel周围)。在使用两个级联的、利用相同频率工作的马赫-钱德尔干涉仅的情况下,在两个干涉仅的中点处馈入电信号是比较有意义的。在该情形下,有光波穿过的第一干涉仅M1利用与该光波方向相反的电波进行工作,而所述第二干涉仅M2则利用同向的电波进行工作。
最后,在图7中示出了一种马赫-钱德尔干涉仅M1,它具有对称的、只由电极EL、ER组成的导线。为了实现循环的电极结构,借助绝缘的中间层或通过焊线来设置电极的上下交叉。
为了使所需的控制功率最小化,最后还可以把包含有所述调制器的外壳实施为高频谐振器。