用于提纯烃物流的复合吸附剂.pdf

上传人:111****11 文档编号:324780 上传时间:2018-02-09 格式:PDF 页数:12 大小:500.32KB
返回 下载 相关 举报
摘要
申请专利号:

CN01143106.7

申请日:

2001.12.07

公开号:

CN1359749A

公开日:

2002.07.24

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效|||公开

IPC分类号:

B01J20/18; C07C7/13

主分类号:

B01J20/18; C07C7/13

申请人:

环球油品公司;

发明人:

V·I·卡纳兹雷

地址:

美国伊利诺斯

优先权:

2000.12.08 US 09/733,693

专利代理机构:

中国国际贸易促进委员会专利商标事务所

代理人:

王杰

PDF下载: PDF下载
内容摘要

本发明提供可用于从各种烃物流中除去污染物的改良的吸附剂。该吸附剂含有沸石、氧化铝和金属成分。金属成分(Madd)的含量至少为平衡沸石晶格的负电荷所需的金属(M)(表示为氧化物)的化学计量量的10摩尔%。在具体的应用中,包含沸石X、氧化铝和钠的吸附剂用来提纯乙烯物流,以便除去CO2、H2S、甲醇和其它含S-和O-化合物。

权利要求书

1: 一种用于提纯烃物流的固体成型吸附剂,包括氧化铝成分、沸石 成分和金属成分(M add ),所述金属成分的含量至少为补偿沸石晶格的负电 荷所需金属(M)的化学计量量的10摩尔%,表示为氧化物。
2: 根据权利要求1的吸附剂,其中,所述沸石选自沸石X、沸石Y、 沸石A及其混合物。
3: 根据权利要求1或2的吸附剂,其中,所述金属成分(M add )含量 约为每100克吸附剂有0.018-约0.08摩尔的金属,用氧化物表示。
4: 一种制备根据权利要求1或2的固体成型吸附剂的方法,包括形 成成型制品,即通过以任何顺序混合氧化铝成分、沸石成分和金属成分 前体,形成成型制品,在固化条件下固化所述成型制品获得固化成型制 品,在活化条件下活化所述固化制品获得固体成型吸附剂。
5: 根据权利要求4的方法,其中,所述金属成分前体选自所述金属 成分的羧酸盐、碳酸盐和氢氧化物。
6: 根据权利要求4或5的方法,其中,所述固化条件包括约室温-约 200℃的温度和约5分钟-约25小时的时间,所述活化条件包括约275℃ -约600℃的温度和约5-约70分钟的时间。
7: 根据任意权利要求4-6的方法,其中,把所述氧化铝、沸石和 所述金属前驱体的一种水溶液混合并成形成成型制品。
8: 一种从烃物流中除去污染物的方法,包括使所述物流在吸附条件 下与根据任意权利要求1-3的固体成型吸附剂接触,以至少除去至少 一种污染物的一部分。
9: 根据权利要求8的方法,其中,所述烃物流是一种液体物流,所 述吸附条件包括约室温-约80℃的温度,约大气压-约1.01×10 4 kPa 的压力,和约0.5-约10小时 -1 的LHSV。
10: 根据权利要求8的方法,其中,所述烃物流是气态物流并以约500 -约10,000小时 -1 的GHSV与吸附剂接触。

说明书


用于提纯烃物流的复合吸附剂

    【技术领域】

    本申请涉及吸附剂,它包含沸石、氧化铝成分和金属成分,例如含量至少为沸石离子交换容量的10%的钠。这种新型吸附剂用于从烃流中除去污染物,例如从乙烯、丙烯,C3-C4的烃产品和其它轻烃流中除去CO2、COS、H2S、AsH3、甲醇、硫醇和其它含S-或O-的有机化合物。背景技术

    固体吸附剂常用于从烃,如烯烃类、天然气和轻烃馏分中除去污染物。由于这些物流可能含有不同的污染物,需要一种以上的吸附剂或吸附剂床来充分地提纯物流,使其可以用在希望的过程中。在这些物流中可能存在的污染物包括H2O、CO、O2、CO2、COS、H2S、NH3、AsH3、PH3、Hg、甲醇、硫醇和其它含S-和O-的有机化合物。

    但是,虽然各种吸附剂可以除去一种或多种污染物,它们也可以除去和/或促进希望的烃的反应。例如,八面沸石型沸石,如沸石13X,是硫和氧化的化合物的良好吸附剂,但是它们也是烯烃类的良好吸附剂,产生大的温度升高,可能引起失控的反应。另外,由于沸石的残留表面活性,在再生过程中可能发生齐聚反应和聚合反应等反应。这导致污垢的产生和性能退化。

    在解决这个问题地尝试中,在现有技术中有使沸石与氧化铝混合的报道。美国专利4,762,537公开了使用包含沸石Y和氧化铝的吸附剂从氢气流中除去HCl。在美国专利4,686,198和美国专利4,717,483中,公开了氧化铝和钠Y沸石的混合物可以从废水中除去氨硫化物和有机杂质。钠Y沸石含有至少12.7重量%的Na2O。相同的吸附剂还用来减少用过的有机磷酸酯官能流体的酸度和含水量,见美国专利4,751,211。在美国专利6,013,600中公开了含有碱金属或碱土金属的氧化铝用于除去HCl和其它污染物。

    本申请人已经开发了一种改良的吸附剂,可以从各种烃物流中除去多种污染物。意外的是,能用小的温度升高除去这些污染物。此外,该吸附剂提高了多次再生时的稳定性。这种吸附剂包含沸石、氧化铝和金属成分(Madd),该金属成分的量为补偿沸石晶格负电荷所需金属(表示为氧化物)的化学计量量的至少10摩尔%。本发明的详细描述

    本申请人的发明包括固体成型的吸附剂、制备该吸附剂的方法和使用该吸附剂的提纯方法。关于固体成型的吸附剂,一种必需的成分是活化氧化铝。活化氧化铝包括表面积通常大于100m2/g,典型的是在100-400m2/g范围内的氧化铝。此外,活化氧化铝粉末优选的是通过氢氧化铝的快速脱水获得,例如,三水铝石的三水合氧化铝在热气流中或固体加热载体中。可使用热气流或固体加热载体用任何合适的设备进行脱水。一般来说,加热或与空气接触的时间非常短,一般为几分之一秒到4或5秒。通常,气体温度在400℃和1000℃之间变化。该方法通常指的是闪速煅烧,例如在美国专利2,915,365中所公开的。然而,可以使用其它煅烧方法。

    适用于本发明的活化氧化铝的中值颗粒尺寸在0.1-300微米范围内,优选的是1-100微米,典型的是1-20微米。在某些情形中,使用中值颗粒尺寸为1-10微米的氧化铝可能是希望的。氧化铝可以在活化前或之后研磨到希望的颗粒尺寸。活化氧化铝在200-1000℃温度下的LOI(灼减量)典型的是约为5-12%范围内。

    活化氧化铝的一种来源是三水铝石,这是使用Bayer法得自铝土矿的水合氧化铝的一种形式。然而,如果充分煅烧,可以使用α-氧化铝一水合物、假勃姆石或三水合氧化铝。也可以使用其它氧化铝源,包括粘土和氧化铝的醇盐。

    本发明的另一种必需的成分是沸石。沸石是微孔的结晶铝硅酸盐组合物,具有从共角的AlO2和SiO2四面体形成的三维氧化物网络。沸石的特征在于具有均匀尺寸的孔隙开口,有明显的离子交换容量,能够可逆解吸分散在晶体内部空隙而不显著置换构成固定的沸石晶体结构的任何原子的吸附相。可以用在本发明中的沸石是孔隙开口约5-10埃的那些沸石。

    一般来说,沸石的组成用经验式表示为:

    M2/nO∶Al2O3∶bSiO2

    M是“n”价的阳离子,“b”值约为2-500。优选的沸石是SiO2/Al2O3比约为2∶1-约6∶1的沸石和/或晶体结构为沸石X、八面沸石、沸石Y、沸石A、丝光沸石、β和镁碱沸石的沸石。特别优选的是沸石X、Y和A。

    这些沸石的制备在现有技术中是熟知的,包括形成由这些成分的反应性源组成的反应混合物,然后水热反应形成沸石。具体地,在美国专利3,130,007和美国专利4,503,023中描述了沸石Y的合成,在美国专利2,883,244和美国专利3,862,900中描述了沸石X的合成。

    虽然沸石的合成,特别是沸石X和Y的合成是众所周知的,为了完整起见,这里将给出简要叙述。M的反应性源包括卤化物和碱金属或碱土金属的氢氧化物,如氯化钠、氢氧化钠、氢氧化钾等。铝源包括但不局限于勃姆石氧化铝、γ-氧化铝和可溶性铝酸盐,如铝酸钠或铝酸四乙铵。最后,硅源包括二氧化硅、二氧化硅水溶胶、硅酸等。

    反应性源混合形成反应混合物,组成用氧化物摩尔比表示为:

    SiO2/Al2O3=8-12

    M2O/Al2O3=2.5-4

    H2O/M2O=120-180

    然后,该混合物反应形成沸石。

    作为所合成的沸石,沸石将在通道和/或孔隙中含有“M”金属。这些金属阳离子的作用是平衡沸石晶格的负电荷。因为这些阳离子不是网络的部分,它们是可交换的,据说是占据交换位置的。在沸石中存在的金属阳离子的量按沸石的化学计量量或最大离子交换容量表示。该量通常用摩尔表示。

    由于开始在沸石中存在的金属阳离子是可交换的,所以,它们可以被其它(不同的)碱金属、碱土金属、水合氢离子、铵离子或其混合物交换。如果所用的沸石部分或完全含有水合氢离子或铵离子,那么,或者在复合吸附剂的制备前,或者在复合吸附剂的制备过程中,这些离子必须完全用碱金属、碱土金属或其混合物交换。

    本发明的成型吸附剂的另一种必需的成分是金属成分(Madd),选自由碱金属、碱土金属及其混合物组成的组中。这种金属成分(Madd)是除了沸石的交换位置中存在的金属阳离子(M)以外的。此外,Madd金属可以与M金属相同或不同。例如,沸石中的M金属可以是钾,而Madd可以是钠。

    Madd的具体实例包括但不限于钠、钾、锂、铷、铯、钙、锶、镁、钡、锌和铜。金属源(成分前驱体)可以是在活化状态下(见下文)分解成金属氧化物的任何化合物。这些源的实例是金属的硝酸盐、氢氧化物、羧酸盐、碳酸盐和氧化物。成型吸附剂可以通过以任何顺序混合三种成分并成形成成型制品来制备,尽管不必具有等价的结果。

    在一种方法中,氧化铝、沸石和希望的金属化合物的水溶液混合并成形成成型制品。例如,γ-氧化铝、沸石X和醋酸钠的溶液可以混合成泥团,然后通过现有技术中熟知的方法,挤压或成形成小球、丸、片或球(例如通过油滴法)等形状。成形成大体为圆形的形状或物体的一种优选的方法包括使用盘式球化机。这种技术使用转盘或盘式球化机,在其上喂入氧化铝成分、沸石成分和金属成分的溶液,从而形成大体为圆形的制品或物体。

    形成成型制品的另一种方法是混合氧化铝、沸石和金属化合物的粉末,然后成形成小球、丸等。第三种方法是混合氧化铝和沸石成分(粉末),把它们成形成成型制品,然后用金属化合物的水溶液浸渍成型制品。成型步骤通过上面列举的方法的任一种进行。

    在制备希望的金属化合物的溶液过程中,优选的是调节pH值到约7-约14,更优选的是约12-约14,最优选的是约12.7-约13.8。通过加入适量的希望的金属氢氧化物来控制溶液的pH值。例如,如果钠是希望的金属,可以使用醋酸钠形成水溶液,然后使用氢氧化钠调节pH值。

    已经获得了成型制品后,它们可以在室温到约200℃固化或干燥约5分钟-25小时。成型制品可以分批固化,例如箱式或托盘式固化,或者使用移动的带,用连续的方法固化。一旦成型制品固化后,通过在约275℃-约600℃的温度加热成型制品约5分钟-约70分钟来活化成型制品。加热可以用在移动盘中或移动带中的制品进行,制品在这里直接焙烧,得到最终的固体吸附剂。

    三种成分的相对含量可以在很宽范围内明显变化。通常,氧化铝含量从吸附剂的约40%变化到约90%,沸石含量从吸附剂的约5%变化到约55重量%。金属成分Madd的含量也可以显著地变化,但是含量必须至少等于在沸石的交换位置中存在的金属阳离子M的化学计量量的10%。由于实际的原因,Madd的最大量应该不大于M的化学计量量的50%。用绝对值表示,优选的是Madd含量为每100克吸附剂存在约0.015-0.08摩尔的Madd。M和Madd的含量表示为金属的氧化物,例如Na2O。

    现在,最终的吸附剂可以用来从各种烃物流中除去污染物。可以被处理的物流包括但不限于,烃物流,尤其是含有饱和的和/或不饱和烃的物流。尤其可以使用本发明的吸附剂处理烯烃类物流,如乙烯、丙烯和丁烯。这些物流将含有下列污染物的一种或多种:H2O、CO、O2、CO2、COS、H2S、NH3、AsH3、PH3、Hg、甲醇、硫醇和其它含S-或O-的有机化合物。

    通过使物流与固体吸附剂在吸附条件下接触来提纯烃物流。接触可以分批或连续的方法进行,连续是优选的。吸附剂可以以固定床、移动床或径向流动床的形式存在,固定床是优选的。在使用固定床时,喂料物流可以在向上流动或向下流动的方向上流动,对于液体喂料,向上流动一般是优选的。如果使用移动床,喂料物流可以顺流或逆流。此外,在使用固定床时,可以使用多个床,这些床可以放在一个或多个反应器容器中。吸附条件包括温度:约室温-约80℃、压力:约大气压-约1.01×104kPa(100大气压)、接触时间:取决于烃物流是液体或气体物流。对于液体物流,用液体时空速度(LHSV)表示的接触时间约为0.5-约10小时-1,而对于气体物流,气体时空速度从约500变化到约10,000小时-1。

    在一定的时间后,该时间取决于污染物的浓度、床的尺寸和空间速度,吸附剂基本被消耗,即已经吸附了一定量的污染物,使得在提纯后的物流中的污染物含量高于可接受的水平。此时,移走吸附剂并更换新的吸附剂。废吸附剂可以通过该技术熟知的方法再生,然后放回使用。在典型的再生过程中,吸附剂先排出并减压,然后用惰性气流冷喷扫。然后,在80-150℃以向下流动的方向热喷扫,从床上排出保留的烃。最后,把温度缓慢升高到280-320℃,并保温至少2小时,然后冷却到室温。

    为了更充分说明本发明,提出了下列实施例。应该理解,这些实施例仅用于说明,不作为对所附权利要求书提出的本发明的较宽范围的不恰当限制。

    实施例1

    含有氧化铝、沸石13X和钠的球制备如下。通过同时加入活化氧化铝粉(AP)和沸石13X粉末(Z),并用醋酸钠溶液(NaAc)喷洒粉末,使用转盘装置连续形成珠子。质量比(在无挥发的基础上)为1.0AP∶0.23Z∶0.04NaAc。按需要加入水,保持醋酸钠溶解并提供足够的团聚作用。通过加入NaOH溶液,把NaAc溶液的pH值调节到13.3。使用加热的带,把尺寸分布为1.2-4毫米的球在60-80℃固化3小时。最后,把固化的珠子在约450℃的炉子中活化1小时。发现在无挥发基础上的每种成分的量(wt%)为78.7%AP∶18.1%Z∶3.2%Na2O。

    实施例2

    使用实施例1提出的方法制备球,但是AP∶Z∶NaAc的质量比为1.0∶0.55∶0.035。发现在无挥发基础上的每种成分的量(wt%)为63.1%AP∶34.7%Z∶2.2%Na2O。

    实施例3

    使用实施例1提出的方法制备球,但是AP∶Z∶NaAc的质量比为1.0∶0.37∶0.05。发现在无挥发基础上的每种成分的量(wt%)为70.4%AP∶26.1%Z∶3.5%Na2O。

    实施例4

    使用实施例3提出的方法制备球,但是使用水代替NaAc。发现在无挥发基础上的每种成分的量(wt%)为72.9%AP∶26.9%Z∶0.2%Na2O。

    实施例5

    进行实施例1的方法,但是使用沸石NaY(从UOP LLC获得)代替沸石13X,比例为1AP∶0.37Z。发现在无挥发基础上的每种成分的量(wt%)为72.9%AP∶26.9%Z∶0.2%Na2O。

    实施例6

    在旋转容器中,放入500克来自实施例5的球和200克4.6重量%的醋酸钠溶液。通过旋转密闭容器使球固化1小时,然后与实施例1一样活化。发现在无挥发基础上的每种成分的量(wt%)为72.36%AP∶26.7%Z∶0.94%Na2O。

    实施例7

    与实施例6一样制备球,但是使用含有10.9重量%醋酸钠的溶液。发现在无挥发基础上的每种成分的量量(wt%)为71.65%AP∶26.44%Z∶1.91%Na2O。

    实施例8 

    与实施例6一样制备球,但是使用含有17.1重量%醋酸钠的溶液。发现在无挥发基础上的每种成分的量(wt%)为70.9%AP∶26.18%Z∶2.88%Na2O。

    实施例9

    使用McBain天平,测试来自实施例1-7的试样的CO2和丙烯吸附。使用CO2测量酸性气体的吸附,而丙烯测量吸附有机化合物的能力。把约30毫克的每种试样在流动的氦中以25℃/分钟的速度加热到400℃,保温约45分钟,然后冷却(在氦气下冷却到室温)。吸附按如下进行,使氦气中含1%丙烯的气流或氦气中含1.5%CO2的气流在38℃的试样上流过20分钟,测量重量变化。结果在表1中给出。

    表1

    各种吸附剂的吸附容量*    试样编号Na2O mol/100/gm总量Na2O mol/100gm添加量    丙烯    CO2    实施例1    0.108    0.052    2.57    3.9    实施例2    0.147    0.035    4.06    4.8    实施例3    0.140    0.056    3.22    4.3    实施例4    0.089    0.003***    3.3    3.5    实施例5    0.058    无    2.37    0.78**    实施例6    0.071    0.012    2.29    0.85**    实施例7    0.087    0.028    2.2    0.99**    实施例8    0.103    0.044    2.22    1.1*

    *容量用被吸附物的克数/100克吸附剂表示

    **预处理温度为232℃

    ***在制备过程中,加入NaOH调节pH值

    实施例1-4使用沸石X,而实施例5-8使用沸石Y。对于这两种沸石,观察到丙烯吸附受加入钠的影响非常小,但是,CO2吸附明显改进。

    实施例10

    使用1-己烯作为探测分子,测试来自实施例1-4的试样的表面活性。把约70毫克的每种试样(粉末)放入置于炉内的管式流动反应器中。每种试样在350℃在氦气中活化1小时,然后冷却到150℃。然后,使氦鼓泡通过含1-己烯的饱和器制备的喂料物流以20cc/min流过催化剂,同时在150-500℃的温度范围内的各种温度下测量己烯转化率。使用气相色谱测量己烯转化率。在低转化率下的该反应的主要产物是2-己烯和3-己烯。在高转化率下形成甲基支链异构体和裂解产物。1-己烯的总转化率表示于表2

    表2 

    各种吸附剂的1-己烯转化率(%)    试样编号    200℃    250℃    350℃    实施例1    0    0    7.4    实施例2    0    0    15.5    实施例3    0    0    7.5    实施例4    18.8    57.8    83.4

    该数据清楚表明,没有添加钠(实施例4)的氧化铝/沸石吸附剂对于1-己烯转化有高得多的活性。因为在与表2相同的温度范围内再生吸附剂,实施例1-3的吸附剂的低催化活性表明,当上述吸附剂进行再生时,钠的存在(在上述含量)强烈降低结焦或失控反应的可能性。

    如上所述测试来自实施例5-8的试样,结果表示于表3。

    表3

    各种吸附剂的1-己烯转化率(%)    试样编号    200℃    250℃    300℃    实施例5    45.2    79.4    89    实施例6    5.9    38.5    71.3    实施例7    0.7    6.4    24.5    实施例8    0.2    -    10.8

    表3中的结果表明使用沸石Y与表2中所示的使用沸石X的相同性能。即添加钠的存在大大降低了吸附剂的活性。

    实施例11

    把一系列沸石与氧化铝(AP)和醋酸钠粉末混合且充分混合。把少量试样送到微量天平中,在氦气流中在700℃活化,然后,冷却到38℃。按实施例9进行丙烯吸附测试,结果在表4中给出。

    表4

    成分对丙烯吸附的作用 试样编号                               组成(wt.%) 丙烯吸附量  (g/100g)    AP    NaY    13X    3A    Na2O    A    72.7    27.3    3.29    B    69.7    26.2    4.1    2.66    C    25.4    70.6    4.0    1.33    D    77.1    22.9    2.42    E    74.7    22.2    3.2    2.12    F    21.2    74.6    4.2    0.84

    表4的结果表明,钠的加入对丙烯吸附影响不大(对比试样A对B和D对E)。但是,当吸附剂只含有沸石时,添加的钠降低丙烯的吸附量(试样A对C和D对F)。这表明了氧化铝的作用。

用于提纯烃物流的复合吸附剂.pdf_第1页
第1页 / 共12页
用于提纯烃物流的复合吸附剂.pdf_第2页
第2页 / 共12页
用于提纯烃物流的复合吸附剂.pdf_第3页
第3页 / 共12页
点击查看更多>>
资源描述

《用于提纯烃物流的复合吸附剂.pdf》由会员分享,可在线阅读,更多相关《用于提纯烃物流的复合吸附剂.pdf(12页珍藏版)》请在专利查询网上搜索。

本发明提供可用于从各种烃物流中除去污染物的改良的吸附剂。该吸附剂含有沸石、氧化铝和金属成分。金属成分(Madd)的含量至少为平衡沸石晶格的负电荷所需的金属(M)(表示为氧化物)的化学计量量的10摩尔%。在具体的应用中,包含沸石X、氧化铝和钠的吸附剂用来提纯乙烯物流,以便除去CO2、H2S、甲醇和其它含S和O化合物。。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 作业;运输 > 一般的物理或化学的方法或装置


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1