高分子电解质和使用它的锂电池 【技术领域】
本发明涉及一种锂电池,具体地说,本发明涉及一种电化学稳定的高分子电解质和使用它的锂电池。
背景技术
锂二次电池通过锂离子在正极和负极之间移动产生电流。与锂镉电池或镍氢电池相比,锂二次电池具有较高的单位体积能量密度和较高的电压。而且,与锂镉电池或镍氢电池相比,锂二次电池较轻,简而言之,大约是那两种的一半重。因此,锂二次电池非常适合小型化和长时间使用的电器。
如上所述,由于锂二次电池比传统镍镉电池或镍氢电池具有较高电压特性和较长充/放电寿命,又不会引起环境问题,因此它作为最有前景的高效电池引起许多重视。但是,由于锂二次电池的爆炸危险性使实现安全成为至关重要的事。
为了确保锂二次电池的安全性,实现用作电解质的材料的稳定性是很重要的。也就是说,为了获得安全的锂二次电池,采用一种在2.75-4.3V溶解时没有危险的电解质是很重要的。
发明概述
为解决上述问题,本发明的第一个目地是提供一种电化学稳定的新型高分子电解质。
本发明的第二个目的是提供一种制备所述高分子电解质的方法。
本发明的第三个目的是提供一种通过使用所述高分子电解质,改善了安全性的锂电池。
本发明的第四个目的是提供一种制备上述锂电池的方法。
为实现本发明的第一个目的,在此提供通过将具有聚环氧乙烷主链和NCO封端的预聚物与交联剂、有机溶剂和锂盐反应制备的交联聚醚氨酯高分子电解质。
通过提供一种制备交联的聚醚氨酯高分子电解质的方法实现本发明的第二个目的,该方法包括将具有聚环氧乙烷主链和NCO封端的预聚物与交联剂、有机溶剂和锂盐混合的步骤,以及将该混合物交联的步骤。
为实现本发明的第三个目的,在此提供一种锂电池,包括负极、正极和介于负极和正极之间的交联的聚醚氨酯高分子电解质,它通过将具有聚环氧乙烷主链和NCO封端的预聚物、交联剂、有机溶剂和锂盐反应制得。
在负极和正极之间也可以有一个隔膜,它具有网状结构并由绝缘树脂制成。
通过提供一种制造锂电池的方法实现本发明的第四个目的,该方法包括将具有聚环氧乙烷主链和NCO封端的预聚物与交联剂、有机溶剂和锂盐混合,将该混合物浇注在至少一个选自负极和正极的表面上,以及将得到的产物交联的步骤。
作为选择,通过提供另一种制造锂电池的方法也可以实现本发明的第四个目的,该方法包括将具有聚环氧乙烷主链和NCO封端的预聚物与交联剂、有机溶剂和锂盐混合,将隔膜放置于负极和正极之间以形成电极组和将电极组放入电池箱中,并将所述混合物注入电池箱内,以及将得到的产物交联的步骤。
在所述的高分子电解质和锂电池中,制备交联的聚醚氨酯所用的预聚物是通过将异氰酸酯与选自聚乙二醇、聚丙二醇和它们的组合的二元醇反应得到。这里的异氰酸酯优选自甲苯2,4-二异氰酸酯、甲苯2,6-二异氰酸酯、二苯甲烷4,4’-二异氰酸酯、六亚甲基二异氰酸酯、二苯甲烷二异氰酸酯、异佛尔酮二异氰酸酯、三苯甲烷二异氰酸酯、三-(异氰酸酯苯基)硫代磷酸盐、赖氨酸酯三异氰酸酯、1,8-二异氰酸酯-4-异氰酸酯甲基辛烷、十一烷1,6,11-三异氰酸酯、六亚甲基1,3,6-三异氰酸酯和二环戊烷三异氰酸酯中的至少一种。
本发明中所用的交联剂优选自甘油乙氧基化合物、甘油丙氧基化合物、3-甲基-1,3,5-戊烷三醇和己内酯中的至少一种。
在制备所述高分子电解质和锂电池的方法中,交联温度优选25-65℃范围内。
本发明的高分子电解质和锂电池中,所述锂盐优选自高氯酸锂(LiClO4)、四氟硼酸锂(LiBF4)、六氟磷酸锂(LiPF6)、三氟甲烷磺酸锂(LiCF3SO3)和二(三氟甲磺酰基)氨基化锂(LiN(CF3SO2)2)中的至少一种。并且,所述有机溶剂优选自碳酸异丙烯酯、碳酸亚乙酯、碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯和碳酸亚乙烯酯中的至少一种溶剂。
本发明的锂电池中,所述电极组优选缠绕式的,并且电池箱优选为盒状。
本发明的锂电池中,有机溶剂和锂盐混合物的重量优选为预聚物重量的3-30倍。特别是如果电极组中包括隔膜时,有机溶剂和锂盐混合物的重量优选为预聚物重量的5-30倍。并且,如果电极组中不包括隔膜时,有机溶剂和锂盐混合物的重量优选为预聚物重量的3-15倍。
【附图说明】
通过参考附图详细说明其中一个优选实施方案,将使本发明的上述目的和优点将变得更显而易见,其中:
图1表示衡量本发明所制备的高分子电解质的电化学稳定性的线性吹扫伏安图,其中代表扫描率的SR表示电压增加率。
图2表示含有本发明的一个实施方案所制备的高分子电解质的锂二次电池的标准充/放电曲线。
图3表示含有本发明的一个实施方案所制备的高分子电解质的锂二次电池的额定充/放电曲线。
优选实施方式说明
本发明的特征在于将具有聚环氧乙烷主链和NCO封端的预聚物与交联剂、有机溶剂和锂盐反应制得的交联的聚醚氨酯高分子电解质用作高分子电解质。优选通过将预聚物加入交联剂、有机溶剂和锂盐的混合物中,将该混合物加入安有电极组的电池箱中,并将所得到的产物交联制得的聚醚氨酯高分子电解质。
预聚物是通过将异氰酸酯与选自聚乙二醇、聚丙二醇和它们的组合的二元醇反应得到的。
根据已知刊物所描述的被合成用作锂电池电解质的基于聚氨基甲酸酯化合物的电化学稳定性的测定结果,基于氨基甲酸乙酯的电解质的溶解电位大约为4.2V(对锂),这是很难用于锂二次电池的(Journal of Power Sources 84(1999)12-23页)。然而,可通过改进聚氨基甲酸酯电解质的电化学稳定性来完成本发明。
现在说明制备本发明的交联聚醚氨酯高分子电解质的一种方法。
单步法和预聚物法常常被用于制备氨基甲酸乙酯键。在本发明中,通过使用预聚物法形成氨基甲酸乙酯键。
现在说明制备本发明的聚醚氨酯高分子电解质的方法。首先,通过将选自聚乙二醇、聚丙二醇和它们的组合的二元醇与异氰酸酯反应得到具有聚环氧乙烷主链和NCO封端结构的预聚物。
所述异氰酸酯优选自甲苯2,4-二异氰酸酯、甲苯2,6-二异氰酸酯、二苯甲烷4,4’-二异氰酸酯、六亚甲基二异氰酸酯、二苯甲烷二异氰酸酯、异佛尔酮二异氰酸酯、三苯甲烷二异氰酸酯、三-(异氰酸酯苯基)硫代磷酸盐、赖氨酸酯三异氰酸酯、1,8-二异氰酸酯-4-异氰酸酯甲基辛烷、十一烷1,6,11-三异氰酸酯、六亚甲基1,3,6-三异氰酸酯和二环戊烷三异氰酸酯中的至少一种。
然后,将该预聚物加入交联剂、有机溶剂和锂盐的混合物中,并进行反应以制备本发明的高分子电解质。
所述交联剂优选甘油乙氧基化合物或甘油丙氧基化合物。
同时,所述的有机溶剂和锂盐不限定为特定的有机溶剂和锂盐,而是本领域所公知的任何一种有机溶剂和锂盐。优选的锂盐选自LiClO4、LiBF4、LiPF6、LiCF3SO3和LiN(CF3SO2)2中的至少一种。所述有机溶剂优选自碳酸异丙烯酯、碳酸亚乙酯、碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯和碳酸亚乙烯酯中的至少一种。并且有机溶剂和锂盐混合物的重量优选为预聚物重量的3-30倍。该混合物中锂盐的浓度优选为0.5-2M。
为了促进交联,优选在高分子电解质的组合物中再加入一种催化剂如二月桂酸二丁锡。交联温度优选25-65℃范围内。
现在说明制备本发明的含所述高分子电解质的锂电池的方法。
首先,用含有电极活性物质、粘合剂、导电剂和溶剂的电极活性物组合物在集流器上形成电极活性物质层。所述电极活性物质层这样形成:将电极活性物质组合物直接涂在集流器上,或者电极活性物质组合物涂在单独的载体上并干燥,然后将载体上剥下的薄膜包在集流器上。作为载体可以使用所有能承载活性物质的材料,其具体例子包括聚酯薄膜和聚对苯二甲酸乙二酯(PET)薄膜。
在本发明中,复合氧化锂如LiCoO2可以用作负极的电极活性物质,并且碳或石墨可用作正极的电极活性物质。作为导电剂可以使用碳黑等。基于100重量份电极活性物质,优选含量为1-20重量份的导电剂,例如LiCoO2。
作为粘合剂可使用偏1,1-二氟乙烯-六氟丙烯(VdF/HFP)共聚物、聚偏1,1-二氟乙烯、聚丙烯腈、聚甲基丙烯酸甲酯和它们的混合物,并基于100重量份电极活性物质,其含量优选为3-30重量份。
所有用于传统锂电池的溶剂都能用作所述溶剂,其具体例子包括丙酮和N-甲基吡咯烷酮。
在某些情况下,为了改善电池性能,也可将Li2CO3加入电极活性物质组合物中。
本发明的隔膜不作特别限定,适用的隔膜包括容易卷起来的聚乙烯隔膜和聚丙烯/聚乙烯/聚丙烯三层隔膜。同时,由于本发明所制备的高分子电解质也用作隔膜,所以不必使用单独的隔膜。
隔膜放在上述方式制备的负极和正极板之间,并用胶质压延法卷成电极组或双池电极组。随后将电极组放入电池箱中。接下来,将所形成的具有聚乙烯主链和NCO封端的预聚物加入交联剂、锂盐和有机溶剂的混合物中,然后将得到的物质注入电池箱。
随后,将电池箱密封,并将所得产物在维持预定温度的炉中放置预定的时间。这里所述的炉子优选温度维持在25-65℃范围内。如果炉温超过65℃,该电解液分解,发生不希望的褪色。
然后,作为该反应的结果,预聚物发生热聚合产生交联的产物,从而使电解液凝胶化。如果电解液以胶体形式存在,将不易外泄,从而防止因为电解液泄露造成的电池稳定性和可靠性下降。
作为选择,如果不使用单独隔膜,就将所形成的具有聚乙烯主链和NCO封端的预聚物加入含有交联剂、锂盐和有机溶剂的混合物中,然后将得到的物质浇注在负极板、正极板或两极板上,然后在炉中进行热聚合,从而构成本发明的锂电池。
对本发明的锂电池的类型不作特别限定,包括锂原电池和锂二次电池。
通过以下实施例说明本发明,但本发明决不仅限于此。实施例1
将具有分子量400的聚乙二醇4g和六亚甲基二异氰酸酯4.205g在65℃下反应,制备具有聚环氧乙烷主链和NCO封端的预聚物。这里使用0.092g(约1重量%)二月桂酸二丁锡作为催化剂。
随后,将0.085g预聚物与0.077g作为交联剂的甘油乙氧基化合物、2.92g含有1.3M LiPF6与混合比为41∶49∶10的碳酸乙酯/碳酸异丙烯酯/碳酸二乙酯的混合溶液和0.0235g二月桂酸二丁锡混合。将3g该混合物注入有可卷起的胶质卷的电池盒中,密封,随后放置两天。然后,将所得到的产物在65℃下热交联4小时以制备高分子电解质。
采用所获得的高分子电解质制备的锂二次电池(标称容量:800mAh)的标准充/放电数据(0.5C充电,0.2C放电)显示在图2中。实施例2
以与实施例1相同的方式制备用于形成聚醚氨基聚合物的预聚物。
随后,将0.1g预聚物与0.091g作为交联剂的甘油乙氧基化合物和2.28g含有1.3M LiPF6与混合比为41∶49∶10的碳酸乙酯/碳酸异丙烯酯/碳酸二乙酯的混合溶液混合。将该混合物在25℃下放置12小时以制备高分子电解质。
将该高分子电解质放在正极(Li)和负极(LiCoO2)之间以形成纽扣电池。该纽扣电池的充/放电特性以2.7-4.3V扫描测定,结果显示在图3中。实验实施例1
该实验是为了测定实施例1和2所制备的聚醚氨酯高分子电解质的电化学稳定性。
实施例1所制备的聚醚氨酯高分子电解质的溶解电位用锂电极和不锈钢(sus)电极测定,结果显示在图1中。
图1表示衡量本发明所制备的高分子电解质的电化学稳定性的线性吹扫伏安图,图1显示本发明的聚醚氨酯高分子电解质即使在5.0V或更高都是电化学稳定的。
因此,本发明的高分子电解质适用于锂二次电池,它必须使用在2.75-4.3V溶解时没有危险的高分子电解质。
由于本发明的锂二次电池使用了电化学稳定的聚醚氨酯高分子电解质,改善了该锂二次电池的可靠性和安全性。
虽然本发明参考优选实施例进行说明,但上述公开应解释为仅仅是举例说明,并应理解为在不背离本发明的精神的情况下,熟悉该领域的技术人员很容易进行各种改进和变化。因此,本发明真正的范围和精神应由以下权利要求限定。