微流模块 【技术领域】
本发明涉及一种微流模块,应用于与微机电相关的制造产业,特别是一种具有流场方向一致性的微流模块。
背景技术
现今社会科技的进步一日千里,带给人们更为便利的生活,尤以在微机电(MEMS,Micro-Electro Mechanical Systems)方面的研究发展。近年来国内半导体以及信息电子产业持续蓬勃发展,已成为我国产品出口的主力。由于电子产品不断地走向“轻薄短小”,连带影响其使用的各类元组件及加工设备的精度及尺寸也日趋要求严苛,因此也促成了另一波制造技术上的革命,朝向超精密化、高密度化、高速化、知能化、微小化等方向发展,进而衍生出为廿一世纪产业所需求的“下一代制造技术”(Next Generation Manufacturing Technology)。下一代制造技术中主要发展方向为两大项目:纳米技术(Nano Technology)、微机电系统技术。前者为加工精度位于102nm~10-1nm范围内的制造技术;后者则为应用纳米及微米加工技术研制微细元件及组件,并整合微电子电路与控制器的系统。
其中微流体的相关技术,常见微流体的喷头如包含喷墨印头(InkJet Print Head)、喷射器(Injector)等各类流体喷射元件的相关应用,逐渐为研究发展的重要方向。传统的微流体流通道结构,请参考图1A,为现有微流体流通道结构示意图,其中由单一的流体通道13流入阻障层12的喷射腔体15。因此当加热器11对喷射腔体15内地工作流体加热而产生热气泡,而借助瞬间的压力喷射出外界,并同时将部分的工作流体由流体通道13推出。接着,加热器11上的热气泡消散,此时补充槽14提供工作流体,并再次经由流体通道13填充于喷射腔体15。由上述可知,工作流体的流场方向,喷射时由内朝外,而补充时由外朝内,皆经由流体通道13来进行。
然而相邻喷射腔体的喷孔喷射动作导致邻近喷射腔体内的工作流体,遭受吸引而造成液面不稳定,而产生“Cross talk”的干扰现象,再者工作流体回填的速度必将减缓,喷头操作的频率无法有效提升。相同的设计,请参照图1B,为现有微流体流通道流场示意图,其中美国专利第6042222号中揭露,经由加热器11进行喷射动作时,工作流体的喷射及回填补充此二动作周期,在流体通道13内的流场方向为相反方向,因此喷射与补充回填时,工作流体所产生的流体流动阻力,将严重迟缓流体回填补充的速度,进而严重影响喷头的操作频率。
【发明内容】
鉴于以上现有技术的问题,本发明的目的在于克服现有技术的不足与缺陷,提供一种微流模块,利用微流体流通道以及驱动时序的交替运作,而导引工作流体的流动。
为达上述目的,本发明的一种微流模块,包含有复数组微动单元,每一微动单元包含有微流体流通道阻障层、流体喷射腔体、致动元件以及复数个渐缩式流体进入通道与流体输出通道。其中流体喷射腔体设置于微流体流通道阻障层,用以储存工作流体;致动元件如加热器装设于流体喷射腔体内部,用以加热工作流体而使之产生热气泡,复数个流体输出通道以及流体进入通道分别开设于微流体流通道阻障层的两侧;更为特别的是,此流体输出通道与流体进入通道具有渐缩的几何形状,使得一端口具有较大横截面,而相对的另一端口具有较小的横截面,因此工作流体容易从大端口进入,而由另一小端口流出;因此,在流体喷射腔体的一侧开设微流体流通道,使得工作流体容易从大端口进入流体喷射腔体,而相对的小端口可防止工作流体产生逆流的现象;同时流体喷射腔体另一侧的微流体通道,其大端口与流体喷射腔体相连通,而使得流体喷射腔体内储存的工作流体容易从此侧的微流体通道流出。另外,邻近的微动单元的致动元件,输以不同的驱动时序。所以经由致动元件对流体喷射腔体内储存的工作流体加热而产生热气泡时,便产生瞬间的压力,使得部分工作流体向外界喷出;其余工作流体经由微流体流通道阻障层一侧的流体输出通道排出。
此外,借助流体进入通道与流体输出通道的渐缩的几何构造,使得微动单元内的工作流体的流动具有单一方向性。依据本发明的一种微流模块,相邻的微动单元,其微流体流通道渐缩的方向相反,使得相邻的微动单元的工作流体流动方向相反,当复数个微动单元串接组装时,其整体的工作流体的流动方向性呈现“S”形;再借助不同的驱动时序,而避免相邻的微动单元同时驱动而产生工作流体液面不稳定的干扰现象,因此不仅工作流体的回填速度增快,系统的操作频率也随之提升。
本发明所揭露一种微流模块,利用流体进入通道以及流体输出通道具有渐缩几何的结构,使得微动单元内的工作流体其流动的流场方向一致,且依据不同的需求,可对微流体流通道阻障层做不同型态的变化,也可分别开设复数个流体进入通道与流体输出通道,使得系统中的工作流体具有不同类型的流场运动;再加上相邻微动单元的致动元件驱动时序为交替运作,而避免产生“Cross talk”的干扰现象,因此大幅增加工作流体回填补充的速度,并同时提升系统的操作频率。
【附图说明】
图1A为现有微流体流通道结构示意图;
图1B为现有微流体流通道流场示意图;
图2为本发明微流模块的第一实施例的示意图;
图3A为本发明微流模块的运动示意图;
图3B为本发明微流模块的实验数据表;
图4为本发明微流模块的第二实施例示意图;
图5为本发明微流模块的第三实施例示意图;
图6为本发明微流模块的第四实施例示意图;
图7为本发明微流模块的第五实施例示意图;
图8为本发明微流模块的第六实施例示意图。
图中符号说明
10 微动单元
11 加热器
12 阻障层
13 流体通道
14 补充槽
15 喷射腔体
20 微流体流通道阻障层
30 流体喷射腔体
40 致动元件2
50 流体进入通道
51 进入端口
52 输出端口
60 微流体流通道
70 流体补充槽
80 流体输出通道
81 进入端口
82 输出端口
【具体实施方式】
依据本发明所揭露的一种微流模块,应用于与微机电相关的制造产业,利用交错的流场方向以及驱动时序交替的运作,而导引工作流体的流动,并借助致动元件所造成的压力源将流体喷出外界。
依据本发明的一种微流模块,请参考图2,为本发明微流模块的第一实施例的示意图,其中微动单元10包含有微流体流通道阻障层20以及流体喷射腔体30,其中流体喷射腔体30设置于微流体流通道阻障层20之内,用以储存工作流体,另外还包含有致动元件40,装设于流体喷射腔体30的内部,并由外部输入电位差信号而产生压力源,此致动元件40通常为压电陶瓷材质的加热器。致动元件40装设于流体喷射腔体30的内部,以对储存于喷射腔体30内的工作流体加热;微流体流通道阻障层20的两侧分别开设有一流体进入通道50与一流体输出通道80,而两者皆具有渐缩的几何形状。其中流体进入通道50左端的进入端口51具有较大的横截面,而右端的输出端口52具有相对较小的横截面,因此工作流体容易从较大横截面的进入端口51进入,而自较小横截面的输出端口52流出。同理,流体输出通道80左端具有较大横截面的进入端口81,另一端具有较小横截面的输出端口82。也就是说,流体进入通道50以及该流体输出通道80连通于该流体喷射腔体30,流体喷射腔体30由流体输出通道80以及该流体进入通道50与工作流体连通,并以储存流体补充槽70供给的工作流体,且流体进入通道50由微流体流通道阻障层20外侧至流体喷射腔体30,为渐缩的横截面,流体输出通道80由流体喷射腔体30至微流体流通道阻障层20外侧也为渐缩的横截面。
在此详细说明工作流体的实际运作情形,请参考图3A,为本发明微流模块的运动示意图,由致动元件40提供工作流体热能,而产生热气泡以及流体喷射腔体的瞬间压力,因此经由流体喷射腔体30的上方喷孔(图中未示),使得部分的工作流体喷出外界,同时受到流体喷射腔体30内产生热气泡的瞬间压力的影响,其余的工作流体将经由微流体流通道阻障层20右侧的流体输出通道80,具有较大横截面的进入端口81推挤至微流体流通道60。然后,由流体补充槽70提供的工作流体于微流体流通道60中流动。接着,流体喷射腔体30此时因热气泡的消散,使得流体喷射腔体30与外部的通道60具有压力不均的现象;因此工作流体经由流体进入通道50的进入端口51的导引,进入微流体流通道阻障层20,再由输出端口52将工作流体填充流体喷射腔体30之内。在此说明工作流体,或者说一般流体的特性,当受到瞬间的压力时,流体会随之产生流动;然而当工作流体面临一个较大横截面的进入端口51,与较小横截面的输出端口52时,自然容易朝着较大横截面的进入端口51的方向流动。由上述可知,工作流体容易从流体喷射腔体30右侧的流体输出通道80的较大横截面的进入端口81流动,接着经由较小横截面的输出端口82流出至通道60。同理,工作流体流经微流体流通道阻障层20左侧的流体进入通道50,经由具有较大横截面的进入端口51进入,然后由另一端的输入端口52导引至流体喷射腔体30之内。另外,微流体流通道阻障层20两侧的流体进入通道50与流体输出通道80其渐缩方向一致,而造成流体喷射腔体30内工作流体的流动为同一方向,并且喷射与填充的动作经由不同的微流体通道50来进行,使得工作流体的回填速度增快,整体系统的操作频率也随之提升。
如图3A所示,彼此相邻的微动单元10,其流体进入通道50以及流体输出通道80渐缩的几何形状相反,因此比邻的微动单元10内的工作流体的流动方向相反,而具有如“S”形的流场方向;再者,依据本发明的微流模块,其相邻的微动单元10的致动元件40的驱动时序不同。也就是说,当一微动单元10进行喷射运作时,比邻的微动单元10就停止动作;由上述可知,装设多组微动单元10之时,每一个微动单元10的工作流体的流场方向相反,驱动时序也不同,因此可防止产生邻近的工作流体遭受吸引,而产生液面不稳定的干扰现象。
请参考图3B,为本发明微流模块的实验数据表。我们可以从此数据中发现,现有的技术其工作流体喷射流量稳定值大约为2.7c.c./min,而此时的频率响应为5KHz。然而相同的工作环境下,本发明所揭露的实施例,其喷射流量稳定值为3.3c.c./min,频率响应为7KHz。因此从实际的实验中的数据显示,可以很清楚地明白到本发明所揭露的微流模块相较于现有的结构,不仅提供高频率的喷射运动,并同时拥有更佳的流体喷射流量稳定值。
流体进入通道50与流体输出通道80的渐缩几何形状,以及装设的数量并没有限制,其目的均在于使得工作流体容易从较大横截面的进入端口进入。于此另举一个实施例来加以说明,请参考图4,为本发明微流模块的第二实施例示意图,其中微流体流通道阻障层20的相对的两侧分别开设有复数个流体进入通道50与流体输出通道80,并具有渐缩的几何构造;特别的是,微流体流通道阻障层20的一侧开设有两个流体进入通道50,另一侧开设有两个流体输出通道80;如此的设计使得受热气泡产生的瞬间压力压迫的工作流体,经由流体输出通道80更为快速地导引出流体喷射腔体30,而流失的工作流体经由微流体流通道阻障层20的流体进入通道50,快速地加以补充,进而稳定流体喷射腔体30内工作流体的液面。
依据本发明所揭露的微流模块,流体进入通道50与流体输出通道80的位置,并不局限于微流体流通道阻障层20的相对的两侧,如图5所示,为本发明微流模块的第三实施例示意图,其中微流体流通道阻障层20的一侧如上述的第一实施例开设有渐缩几何形状的流体进入通道50,而相邻的一侧设置流体输出通道80,不同于上述实施例,第三实施例中储存于流体喷射腔体内的工作流体,其流动的流场方向转向,因此可以依据使用的状况,而产生不同的效果,应用上更为灵活。
另举一较佳实施例,请参考图6,为本发明微流模块的第四实施例示意图,依据本发明所揭露的微流模块,亦可设计为成矩阵式排列。如图所示,流体进入通道50具有较大横截面的进入端口51,以及较小横截面的输出端口52,使得流体进入通道50以直线或几何函数的型式成渐缩状态,使得工作流体能够轻易地从进入端口51流入,而由输出端口52流出。同理,流体输出通道80如同流体进入通道50,其两端分别具有较大横截面的进入端口81以及较小横截面的输出端口82,而以直线或几何函数的型式成渐缩状态。微流体流通道20开设有两个流体喷射腔体30,且其内部装设有致动元件40,而两个流体输出通道80以及流体进入通道50分别连通于一流体喷射腔体30,使得工作流体的流场方向,自流体进入通道50流入喷射腔体30,再经由流体输出通道80流出。本实施例与上述的实施例不同的地方在于开设两个流体喷射腔体30,并具有两个流体输出通道80,因此在有限的空间下,使得工作流体能够进行平顺的运动。
在此另举一实施例,请参考图7,为本发明微流模块的第五实施例示意图,其中流体进入通道50与流体输出通道80,其两端口与渐缩的型态如前所述,不同的是,微流体流通道阻障层20开设有四个流体喷射腔体30,且流体喷射腔体30为圆形,使得工作流体在喷射腔体30内进行平顺的运动,而减低矩形流体喷射腔体30所产生的阻力。
微流体流通道阻障层20除了为矩形外,亦可以是任意的形状。如图8所示,为本发明微流模块的第六实施例示意图。其中微流体流通道阻障层20具有六边形的态样,此结构的设计如同蜂窝巢状的型式,彼此相邻的微流体流通道阻障层20之间具有通道60,可供给工作流体流动。而复数个流体进入通道50以及流体输出通道80分别开设于微流体流通道阻障层20的一侧,如同上文所揭露的实施例,由渐缩或几何函数型式的设计,使得工作流体从流体进入通道50充填进入流体喷射腔体30之内,并通过流体输出通道80流出,此种设计将流体进入通道50以及流体输出通道80的开设的方向加以改变,而据以控制工作流体的流场方向,因此依据不同的需求产生不同的效果,使用上更为灵活。
以上所述,仅为本发明其中的较佳实施例,并非用来限定本发明的实施范围;即凡依本发明权利要求书范围所作的均等变化与修饰,皆为本发明权利要求书所涵盖。