用于液体处理装置的模块化微反应器结构及方法 【技术领域】
本发明涉及微反应器及用于操作这些微反应器的方法的领域。
【发明背景】
在开发用于多种应用的中等规模化学处理系统方面已经作了巨大的努力。这些应用一般包括与一个或多个热交换器相联的一个或多个化学反应器,以及相关的流量操纵操作。已经受到相当关注的一种特别应用是用于燃料电池的燃料处理系统(美国专利No.5861137、5938800和6033793)。受到关注的其它应用包括燃料蒸发器及个人加热和冷却装置。
这些系统的开发者共同面对的挑战包括很较慢的负载跟随响应,较差地部件负载效率以及难以制造。较差的负载跟随响应是许多中等规模设计以其为基础的大规模工业过程设计的遗留物。这些设计中的填充床反应器和热交换器的操作具有热和化学惯性,限制了这些系统快速响应负载处理通量的变化的能力。这些设计一般在一个相对较窄和紧密控制的处理条件范围内操作,带有背离设计点的显著的效率降低。可制造性也由于在改变处理通量能力时遇到的困难的按比例增大和按比例减小的挑战而受到阻碍。
在微化学处理系统领域中的最新进展(美国专利Nos.6192596、5961932、5534328、5595712和5811062)已经开始解决前述挑战中的某一些。通过从相对较小的热质量是提供增大的热传导面积,某些微反应器设计中固有的高的表面积与体积比可降低热惯性效果,并能够更加精确地控制温度和热交换速度。通过高热通量以及加速的明显反应速度,负载跟随问题得到一定程度的改进。几百微米数量级的热交换表面厚度是通过微制造技术提供的,由于缩短了导引路径而能够提高热通量。在热和质量传送长度通过小型化而减小时,当它们接近手边化学反应的固有动态时,明显反应速度受到加速。由于反应器一般都由平行微沟槽的阵列构成,这些设计可在一定程度上度量,并可通过简单地增加或减少沟槽而度量。通过使用夹层片组件而进一步解决了制造难度(美国专利No.6192596)。
尽管如此,今天,微反应器系统已经不能充分地解决部件负载效率降低的问题,因为它们仍然优选地在一个窗的通量范围内工作。
发明概述
本发明旨在提供一种结构和制造简单的流体处理装置,它本质上可以是模块化的,具有集合的结构,容易度量和独立控制构成集成微反应器处理器单元,在这些处理器单元中可发生所需工艺的各种构成子工艺。根据本发明的一个方面,每个子系统单元可优化而在嵌套管和联接总管中高效执行完整的化学工艺。根据对于该工艺所需的热传导和流体流量特性,这些管可具有多种截面几何形状中的任一种,包括圆形、椭圆形、方形、矩形、多边形或不规则形状。这些管不必沿它们的长度具有统一或规则的截面。集成的化学处理装置包括一个或多个子系统单元,它们可借助于在联接总管中的热交换、流体混合和/或流量分割而彼此相通。这些总管可构造成将这些管相对于彼此机械固定在所需位置。
根据本发明的另一方面,对子系统单元的独立控制可通过一个或多个适当定位在端板中的微阀阵列来提供,从而控制向每个单元的材料流的流动。可响应处理负载的变化而打开或关闭,或者节流各子系统单元。当这样有益时,可打开或关闭经选择的材料流用于子系统单元的储存库(或各单元)。微反应器几何形状的低热惯性以及子系统单元之间的热集成有助于提供响应负载变化而快速起动各反应器的能力。
附图简介
图1是一个四模块燃料处理装置的等轴视图。
图2是图1中一个处理器的嵌套管的剖视图,其中省略了部分。
图3是以相反定向图示的两个相同的四阀阵列的分解透视图。
图4是与一个总管端块联接的模块化嵌套管反应器组件的分解视图。
图5是一个端块总管组件的分解视图,包括各夹层中用于从共同入口导引流体流量的沟槽。
图6是一个端块总管的分解视图,示出一个总管板,其中通过切口布局形成热交换器。
图7是一个端块组件的分解视图,该端块组件用于从一个共同入口分支一个流体流量。
图8是一个端块组件的分解视图,其中流体沟槽将平行流体流量导引到八个热交换器的布局中。
图9是一个端块组件的分解视图,具有两组由相邻端块板中的切口布局形成的逆流热交换器。
图10是一个端块组件的分解视图,具有用于向和从热交换器导引气流的流体沟槽。
图11是一个端块组件的分解视图,具有向和从第二热交换器导引气流的流体沟槽。
图12是用于一个简单蒸气重整工艺的工艺流程图。
图13是用于一个四模块燃料处理装置的控制结构的方块图。
图14是用于一个四模块燃料处理装置的控制逻辑的流程图。
图15是一个64模块燃料处理装置的等轴视图,该处理装置直接与一个燃料电池叠层联接而形成一个集成的发电模块。
图16是图15中燃料处理装置旋转180°的等轴视图。
图17是图16的分解视图,具有由六个同心管构成的嵌套管微反应器结构的放大图。
图18是用于与燃料电池叠层集成的燃料处理器的处理流程图。
发明详述
这里参照燃料处理系统的实施例对本发明进行说明,但本发明同样适用于其它领域和化学反应类型等。
图1示出一个模块化流体处理系统10的实施例,该系统10执行蒸气重整、燃烧而产生系统所需的热量,以及在一个四处理器设备中进行水气转换反应,该四处理器设备在与一氧化碳(CO)抛光反应器和适当的辅助设备包括过滤器、压缩机和泵(未图示)联接之后可用作用于小型(50-100W)质子交换薄膜(PEM)燃料电池的燃料处理器的一部分。装置由四个与两个端块总管12和13连接的处理器模块11A-D组成。如表1中概括的,流体流通过管14-18进入装置中,在途中经过阀阵列组件5-9,到达位于四个处理器模块11和端块总管12和13中的多个化学处理器操作,穿过管20和21离开。
表1入口管流体流14天然气燃烧器燃料15燃烧空气16用于水气转化的辅助蒸气17用于重整器的主蒸气18天然气重整器给料出口管流体流20富含氢气的产品流21燃烧器废气
下面参照图2,本实施例中,每个处理器模块11包括三个外径为6毫米、4毫米和2毫米的同心不锈钢管22-24。虽然这里选择的基本模块几何形状由具有均匀圆形截面的三个同心管22-24构成,但管22-24可具有任何截面形状,包括但不限于矩形、椭圆形、多边形和三角形,并可以任何构造设置。本实施例的这些管和端块总管可由不锈钢制成,因为这种材料提供了良好的耐腐蚀性和良好的导热性,具有高熔点,并可从多个制造商广泛获得标准管尺寸。适于本工艺或其它工艺的替换管材料包括但不限于金属和金属合金、陶瓷、聚合物和复合物。
化学反应器形成在环形空间25-27中。应当注意,尽管本实施例讨论的反应器在其中进行化学反应,但反应器空间25-27也可用于加热流体,如空气或天然气,用于冷却,这可通过使两相水蒸气流经过反应器空间而实现,用于蒸发流体,如用于燃料蒸发或蒸发冷却,以及用于其它工艺。可在对相邻反应器之间的热传导,以及每个反应器中所需流量特性,包括停留时间、压降和流体涡流的考虑的基础上确定管22-24的适当的长度、直径和壁厚。对于本实施例的处理器模块11,下面的表2中列出的长度、壁厚和直径应当对于下面所述的工艺足够了。
表2 管直径(毫米)壁厚(毫米)长度(毫米) 22 2 0.25 44 23 4 0.50 42 24 6 0.50 40
可将催化剂材料施加到管23、24的内和/或外表面上以及管22的内表面上,以促进在管22-24中或者之间的空间25-27中的化学反应。可用多种已知技术将催化剂施加到管壁表面上,包括化学蒸气沉积(CVD)、物理蒸气沉积(PVD)和溶胶-凝胶法。催化剂还可设置在空间25-27中,或者作为在多孔陶瓷整料中或者溶胶-凝胶产生矩阵中的填塞颗粒床,或者通过其它本领域中公知的手段。对于本实施例的反应,可用铝土承载铂燃料催化剂颗粒(如可从美国马萨诸塞州Ward Hill的Johnson Matthey公司由Alfa Aesar获得的Aesar#11797)填塞空间27,可用铝土承载镍蒸气重整催化剂颗粒(如可从英国Billingham的SYNETIX获得的ICI57-3、ICI25-4M,或者从德克萨斯州休斯敦的BASF公司获得的BASF GI-25S)填塞空间26,用铝土承载铜锌水气转化催化剂颗粒(如Sud Chenie G66-B)填塞空间25;但也可使用其它催化剂配方和载体。
阀阵列组件5-9将入口流体流量分成四个平行的流,用于在处理器模块11中处理,并允许独立地开关处理流,以控制单个模块11的操作。参照图3,每个阀阵列可由安装在一个阀基片66上的风室63构成,垫圈65形成气密密封。阀组件可用插入孔图形57-59中并紧固到端块中的锥形孔中的螺栓而固定到端块总管12和13上。可替换地,可用粘结剂将阀组件固定到端块上。阀组件5-9位于总管端块12和13的表面上,使阀开口68与端块中适当的流体通道相通。阀67可用微电机械系统(MEMS)领域技术人员公知的标准微制造技术制作在一个硅基片66上。对阀67的致动可用由下列现象中的一种产生的力来完成:形状记忆合金相位转移、双金属接合膨胀、静电力、压电力或热气动力。本实施例使用基于形状记忆合金技术的阀阵列,如由加利弗尼亚州San Leandro的TiNi Alloy公司制造的阀阵列。
端块总管12和13可构造成具有小孔的多个夹层和通道图形,它们接合在一起形成气体流动路径来执行如下面图4至11中所示并在下面详细讨论的流量切换、热交换、流量分割和气体混合操作。本实施例中,可通过冲压厚度在50微米至2毫米范围内的不锈钢片而制成夹层。这些夹层应当接合,从而基本上防止从通道中泄漏。这可通过对准由端块12、13构成的夹层叠层并在高压高温下在真空中它们,这样通过扩散粘合而实现,如扩散粘合领域中公知的。当考虑制造技术和/或处理要求时,可适当使用其它夹层厚度。其它夹层材料可包括但不限于,其它金属和金属合金、陶瓷、聚合物和复合物。替换的夹层制造方法可包括但不限于,喷水切割、粉末注射金属成形、化学蚀刻、激光切割、铸造、电镀和常规机加工。替换的接合方法可包括但不限于螺栓和垫圈组件、超声焊接、常规焊接、铜焊和粘结剂联接。
特别参照图4,处理器模块11的管22-24可通过连续连接到单个夹层片30-33上而与端块总管13联接。夹层30具有四个小孔34,处理器模块11的外管22穿过这些小孔34。管22-24的端部35-37分别压靠并密封到夹层板31-33上,中间管23穿过夹层31中的小孔40,中间管22的端部36密封到夹层32上。内管24延伸穿过夹层31中的小孔41,内管24和端部37压靠并密封到夹层33上。
仍参照图3,夹层31中的小孔40大致为圆形形状,但夹层31在每个小孔40的一侧开槽而提供一个液体通道42,该流体通道42与形成于外管和中间管22、23之间的空间25中的反应器相通。相似地,夹层32中的小孔41在其一侧包括一个液体通道44,该流体通道44与形成于中间管和内管23、24之间的空间26中的反应器相通。形成于管24的内部空间27中的反应器与夹层33中的小孔45相通。流体可分别通过夹层31-33中的流体通道42、43在端块13的其它夹层与形成于空间25中的反应器之间流通。相似地,流体可分别通过夹层32和33中的流体通道44和47与端块13的反应器剩余夹层以及形成于空间26中的反应器相通。
本实施例可如下面的工艺中那样,使用压缩装配和扩散粘合相结合将管22-24固定和密封到端块13上。在例如通过扩散粘合而形成端块13之后,通过小孔34、40和41暴露的夹层30-33的内表面可电镀一层金属薄膜,该金属薄膜具有比端块材料更高的热膨胀系数。本实施例中,端块材料是不锈钢,适当的电镀金属可以是银。接下来升高端块的温度(如升高到400℃),使小孔34、40和41膨胀,从而产生一个间隙配合而将管22-24插入。当室温管22-24插入小孔34、40和41中时,用一个夹具将它们保持对准,从而如上所述,使它们分别压靠一个夹层31-33。接下来冷却端块13,形成一个压力干涉配合而将管22-24固定到位。重复上述过程,将管22-24的相对端部固定到端块12上。然后将组装后的装置放入一个真空炉中,以升高的温度下熟化,从而端块材料与电镀金属之间热膨胀系数的不匹配导致端块12和13、电镀金属和管22-24之间的应力产生的扩散联接。在本特别实施例中,扩散联接是将管联接到夹层上所需要的技术,但可使用任意数量的联接技术,包括将端部35-37弯曲到夹层31-33上的环形沟槽中,超声焊接、粘结剂联接、激光焊接、铜焊或常规焊接。
如由各种流体流量的压降和热传导方面的考虑所确定的,流体通道42-47的横截面尺寸中的高度和宽度可在250微米至2毫米之间范围内。本实施例中,流体沟槽42、43、44、46和47为1毫米宽2毫米高,而流体沟槽45为0.75毫米宽1.5毫米高。这些尺寸是组装过程中沟槽切口的特性。
接下来特别参照图5,以分解视图形式示出端块总管13的板50-53。夹层50上的流量沟槽54-56和夹层51上的流体沟槽60-62分别与夹层33上的流体沟槽46、45和47相通。夹层50中的流体沟槽55通过阀阵列组件5与流体入口14联接。从而将来自入口14的流体分割成四股流,它们导引经过流体沟槽55和45,最终到达形成于管24内部空间27中的反应器。
特别参照图5,本实施例中,夹层52中的流量沟槽70通过阀阵列组件7与流体入口管16联接,将流体流(这里称作第三流体流)从入口管16导引到反应器模块。
参照图6,夹层(板)71-77配合而提供了一个逆流热交换器,用于在两个流体流(下面称作第二和第四流体流)之间进行热交换。夹层71、72含有图6中以放大图A最佳示出的流体沟槽80-83,这些流体沟槽80-83将上述第四流体流导引到并将上述第二流体流导引出位于相同夹层73、74中的逆流热交换器84。热交换器84中沟槽的数量和几何形状可确定成满足上述第四流体流与上述第二流体流之间的热传导要求。夹层75包括如图6中以放大图B最佳表示的集管沟槽85,用于将上述第四流体流从热交换器84导引到夹层73、74中的流体沟槽86。夹层76中的细长流量沟槽87将第二流体流从夹层77中的流体沟槽90导引到夹层73、74的热交换器84。
更具体地参照图7,四个孔88将已经通过入口管15进入装置中并已经由阀阵列组件6分割成至多四个平行流的第二流体流导引到流体沟槽89和91,流体沟槽89和91将上述流体流导引到流体沟槽90。
接下来参照图8,夹层94-97与图4中所示的夹层30-33类似,用于将反应器模块管22-24接合并密封到总管端块12上,并将流入和流出反应器空间25-27的流体流导引到流体沟槽100-102。反应器空间25与沟槽100联接,反应器空间26与流体沟槽101联接,反应器空间27与流体沟槽102联接。流体沟槽106将第五流体流(反应器27的产品)导引到逆流热交换器113,在此处第五流体流将热量传导到第六流体流。流体沟槽104将第七流体流(反应器25的产品)导引到逆流热交换器112,在此处第七流体流将热量传导到第八流体流。总管流体沟槽109分别从热交换器113和112收集第六和第八流体流,并将混合流导引到流体沟槽105,随后引导到反应器模块26。
接下来参照图9,夹层114含有逆流热交换器112、113。夹层114中热交换器沟槽112、113的数量和几何形状可选择成分别在第七和第八以及第五和第六流体流之间实现所需的热传导。
夹层121中的流体沟槽115、116、118和119将已经通过入口管18进入装置中并已经由阀阵列组件9分割成四个平行流量的第八流体流导引到热交换器112。
如图10中所示,夹层123中的流体沟槽122将第七流体流从热交换器112导引到夹层124中的流体沟槽130,在此处将被分割而在第四反应器模块11中处理的部分第七流体流结合并导引到出口管20。
参照图11,夹层126中的流体沟槽135-138将已经通过入口管17进入装置中并已经由阀阵列组件8分割成四个平行流量的第六流体流导引到热交换器113。
夹层132中的流体沟槽128将第五流体流从热交换器导引到形成于夹层133中的“U”形流体沟槽139,在此处将被分割而在四个基本模块中处理的部分第五流体流混合并导引到出口管21。夹层134不包含流体沟槽,并用作端块总管12的端板。
图12示出根据本发明一个实施例在上述四个模块设备中实施的蒸气重整工艺的流程图。该系统名义上产生0.06Nm3(标准立方米)/小时的产品气体156,其中来自0.016Nm3/小时天然气的名义体积含量67%的氢气用作燃烧器燃料146和重整器给料140。因此四个处理模块11中的每一个产生至多0.015Nm3/小时的产品气体。部件负载效率提高了,因为通过适当切换端块总管12、13的流体沟槽中的流量,只有一个反应器需要在其最佳负载范围之外工作,同时系统供应从0到0.06Nm3/小时的处理负载。其余的模块在零或所需最大负载下工作。
天然气给料流140通过入口管18进入装置中,并分割成至多四个由一个阀阵列9控制的流量141。燃烧空气流142通过入口管15进入,并由阀阵列6分割成至多四个流量143。重整器蒸气流148通过入口管17进入,并由阀阵列8分割成至多四个流量149。燃烧燃料流146通过入口管14进入,并由阀阵列5分割成至多四个流量147。辅助蒸气流144通过入口管16进入,在此处由阀阵列7分割成至多四个流量145。每个处理入口流141、143、149、147和145中的至多四个流量仅在它们各自的单独处理器模块11中完成其余处理。下面针对一个示例模块对其余处理进行说明。
本实施例中描述为天然气的给料流141,流过热交换器112而将产品气体流155冷却到100℃,该温度是将产品气体流155引入CO抛光反应器并随后引入质子交换薄膜(PEM)燃料电池叠层中的一个适当温度。蒸气流149流过热交换器113,在此处由750℃燃烧产品158加热。热蒸气流151和热给料流150混合,在进入处理器模块11中的蒸气重整反应器空间26中之前形成蒸气重整器输入流152。吸热蒸气重整反应通过热通量160保持在725℃,该热通量160由处理器模块11中相邻反应器空间27中的放热燃烧反应支持。管23、24的壁厚和几何形状可选择成在反应器空间26、27之间提供适当的热阻力,同时保持反应器模块11的结构整体性和可制造性。本实施例中蒸气重整器输入流152的蒸气-碳摩尔比保持在2.5,以促进天然气给料向氢气和一氧化碳的完全转化,并禁止碳沉积在蒸气重整催化剂上。重整蒸气153然后流到热交换器84,在此处由进入的燃烧空气143冷却到300℃而引导到水气转化反应器25。辅助蒸气流145可与蒸气重整流混合而形成水含量提高的流154,从而进一步促进在水气转化反应器25中一氧化碳和水向二氧化碳和氧气的转化。管22、23的材料和壁厚及几何形状可选择成使反应器空间25与反应器空间26热隔绝,并保持在低于350℃。来自反应器空间25中的水气转化反应的产品流155流过热交换器112而加热进入的给料流141,之后通过出口管20离开设备。进入的燃烧燃料147(在各实施例中可以是或者包括天然气,燃料电池阳极净化流气体,其它碳氢化合物或酒精燃料)与由热交换器84加热的空气流157混合而引导和燃烧到反应器空间27中。可控制燃料和空气流量,使反应器空间27中的燃烧反应产生足够的热量以保持在725℃下经过反应器空间27的气体流量。如前所述,燃烧产品158在燃烧并流经热交换器113而加热蒸气流149之后离开反应器空间27,之后通过出口管21离开设备。
图13中所示的流量流切换控制系统结构响应处理负载变化而切换阀阵列5-9,以控制四个处理器模块11的操作。系统控制器还可控制辅助设备(未图示,如水泵、燃料压缩机、给料和燃烧器燃料控制阀,空气压缩机),从而在处理器模块11的活性部分保持适当的处理流量。例如,如果只有三个模块是活性的,则可将空气压缩机流速设定为全部负载的75%。
本实施例的控制系统可根据图14中所示的逻辑结构工作。控制系统可在一个一般或特殊用途的计算机或微控制器中工作。本实施例中,使用具有适当输入和输出、处理器电路、程序存储器等的微控制器。在完成了必要的起动步骤后,系统前进到下一步骤,用常规的电传感器传感燃料电池叠层电能负载。可替换地,或者组合地,可使用氢气传感器从燃料电池监测氢气侧出口中氢气的局部压力。由于燃料电池发电导致从位于PEM燃料电池的质子交换薄膜的氢气侧上的气体流中去除氢气,出口中氢气局部压力的下降显示需要产生另外的氢气来保持电能生产。
在下一步骤172中,系统在燃料电池电力输出的基础上计算实现该输出水平所需的氢气输出及所需的处理器模块的数量。这可以多种方式完成,包括使用查寻表格、算法、可预测模型或者前述的结合。对于可预测模型,如果对于控制系统特定数量的前述循环的需求已经连续计算了增加或减少的氢气需求,则可以更加急剧地增加或者减少所计算的对于氢气需求。
在确定了所需的输出后,系统前进到下一步骤173,确定操作处理器模块11的数量是否足够提供所需的氢气输出。如果操作处理器模块11的数量不足,或者如果存在的操作中的处理器模块11的数量超过满足需求所需的数量,则在下一步骤174中,可通过操作阀5-9来控制各处理器气体流,由系统打开或关闭一个或多个处理器模块11。当然,阀5-9还可用于以较高或较低的输出操作全部操作模块,或者以最大所需容量操作其中一个操作处理器模块11,并以小于最大所需容量操作其余模块,从而产生所需的氢气输出水平。此外,在该步骤中,如果控制系统传感到需求在增加,且很快需要另一个处理器模块11,则控制系统可例如通过起动反应器空间27中的燃烧过程,使热交换器113能够通过燃烧气体流158开始升温到操作温度,这样开始对于该处理器模块11的起动过程。
为了精调反应器选择,系统然后可在下一个步骤175中从氢气传感器读取氢气局部压力信息。如果在燃料电池出口(或者替换地在入口)中存在正确的氢气浓度,则系统接下来完成确定步骤。如果需要以提高或降低的速度生产氢气以保持对于燃料电池的正确操作条件,则可在步骤177中调节处理器在它们负载水平的数量,从而以与上面结合步骤173、174所述相类似的方式满足需求。
在最后的步骤178中,系统环行回到步骤171,重新开始控制过程。当然,可参照氢气需求和/或电能负载,并响应其它反馈原理来控制图13中参照的辅助设备。例如,如果燃料电池的电能输出减小因而氢气需求降低,则可减少对来自压缩机的空气的需求。当然,也可用如压缩机出口压力这些因素来控制压缩机。
本实施例所使用的设计允许每个微反应器子系统在一个窄通过量范围内以高处理效率工作,而装置作为一个整体在一个由装置中微反应器子系统的全部数量确定的更宽的通过量范围内以相同的高处理效率工作。可通过将流体流打开和关闭到处理器模块11中的各工序而实现快速负载跟随,它们具有较低的热惯性,因而具有相对较快的起动时间,且来自于微反应器结构中固有的处理强化。本发明的实施例可提供所使用微反应器结构的可量测性。可通过改变基本子系统单元的尺寸,或者可替换地,通过增加或减少各子系统单元而快速量测这些结构。在许多情况下可使用容易获得的或者容易制造的部件和工艺来构建,如用于夹层的不锈钢板,以及不锈钢或其它金属管。流体沟槽中的流量控制可通过现有的微阀阵列,并通过正确选择流体沟槽长度和截面积来实现。
尽管本发明是针对设置于两个端块之间的同心管而讨论的,但本发明也可在其它结构中体现,例如在一个中心块与端块之间,管从该中心块的相对表面伸出并在它们的远端安装到端块上。另外,该工序可由在离开中心块的两个方向设置于其间的成排的管来实现。可提供成排的块,这些成排的块在多层夹层之间延伸,对流体流量进行阀调节、接合和分割,并为流体流提供蒸发器和冷凝器,之后将它们传导到下一排。
图15示出本发明的另一个实施例。该实施例提供了一个集成发电模块195,该模块195由一个直接联接到一个1千瓦PEM燃料电池叠层224上的燃料处理系统196构成。如在图17B中最佳看到的,设备由64个与上述处理器模块11相似的处理器模块230构成。每个处理器模块230由六个同心管232、234、236、238、240和242构成,根据需要将催化剂施加到管的内和/或外壁表面上。端块总管219和220分别由36个和47个构成与前面针对燃料处理器10的端块12、13所述相类似的流量总管、阀阵列和热交换器的夹层构成,虽然按比例增大以容纳64个平行的处理流量。这些板的厚度可在250微米至5毫米之间范围内。
如图15中所示,燃料电池叠层224由15个单个单元组件223和四个串联电联接的冷却剂流量场217构成。每个单个单元组件223由位于一个阳极流量场板241和一个阳极流量场板216之间的薄膜电极组件215构成。燃料电池叠层214-217通过位于焊接到端块组件220上的螺杆221上的八个螺母222而保持彼此配合。燃料电池叠层通过电极204和205与一个外部负载电路联接。
燃料处理器196的所容纳的管反应器模块230构造如下。可选择管尺寸,使相对壁厚和面积促进相邻反应器空间231、233、235、237、239、241之间的热交换水平。可选择相对管径和长度,以获得对于所需停留时间适当的反应器空间。本实施例中,最内部管232可以是60毫米长,外径为2毫米,壁厚为200微米。该管232中的反应器空间231容纳一个名义功率为8瓦的燃烧反应器。下一个管234可以是58毫米长,外径为4毫米,壁厚为600微米。形成于管232和234之间的反应器空间233容纳一个蒸气重整反应器,该反应器的名义处理速度为在750℃下0.19标准升每分钟天然气,蒸气与碳之比为2.5。管236可以是56毫米长,外径为6毫米,壁厚为700微米。形成于管234和236之间的反应器空间235将过热蒸气流279从端块219导引到端块220,随后在此处流到反应器空间233中的蒸气反应器的入口。管238可以是54毫米长,外径为8毫米,壁厚为500毫米。形成于管236和238之间的反应器空间237容纳一个水气转化反应器,在此处,处理流中的蒸气和一氧化碳(CO)在水气转化催化剂上在300-350℃下反应。管240可以是52毫米长,外径为10毫米,壁厚为700毫米。形成于管238和240之间的反应器空间239容纳一个蒸发器,当两相水/蒸气流278从端块220流到端块219时,该蒸发器冷却水气转化反应器237。管242可以是50毫米长,外径为12毫米,壁厚为500毫米。形成于管240和242之间的反应器空间241容纳一个优先氧化(PROX)反应器,该反应器以高CO选择性在氧化催化剂上使小量空气与重整气体反应,从而进一步从产品上去除CO,重整到低于10ppmv的水平。如图17B中所示,位于处理器模块230外部的空间243由一个壳体218包围,该壳体218将空气流262从端块219的内表面导引到出口管226,以冷却PROX反应器241并将其保持在低于120℃的温度,以促进PROX催化剂的高CO选择性。端块220的内表面包含一个用于每个处理器模块的PROX反应器241的孔口,用于从在空间243中流动的空气流262抽出已加热的空气264(与PROX反应器241中的流量方向相反),以冷却PROX反应器241。上述孔口的适当设计提供了对于流入PROX反应器241中的空气的计量。
管211将64个平行的预加热燃烧燃料260的流量从端块220导引到端块219,用于引导到燃烧反应器231。管210将8个平行的预加热燃烧空气267的流量从端块220导引到端块219,用于引导到燃烧反应器231。本实施例中,在八个反应器模块的储存库中用一个八阀阵列控制燃烧空气流,从而响应处理负载变化而快速起动燃烧反应器231和蒸气重整反应器233。可替换地,对于每个处理器模块可通过64阀阵列装置来分别控制空气流。这种快速起动能力是由于流过燃烧反应器231的热空气而实现的,即使一个特定模块被关闭。热空气流量将燃烧反应器231及相邻的蒸气重整反应器233保持在足以在其引导之后点燃燃烧燃料的升高温度下。
图18中示出至此所述的发电设备的处理流量图。重整器给料天然气流250从入口管208进入端块220中,在此处被分割成64个平行的流,分别由结构与前面参照四模块实施例所描述相类似的阀控制。这些蒸气流动到端块220中的热交换器285,在此处由来自发生于反应器空间231中的催化剂诱导燃烧过程的760℃ 燃烧排放流269对它们进行加热。
热输送流251然后与过热蒸气流279混合,产生2.5的蒸气与碳之比,然后进入蒸气重整反应器233。蒸气重整器233由来自相信燃烧反应器231的热量280保持在20磅/平方英寸和750℃。热重整流252由端块219中的热交换器286中的蒸气流量278冷却到300℃,加热气流278而产生过热蒸气279。其中发生水气转化反应的反应器空间237通过来自相邻流278的冷却,流过相邻反应器空间239中的蒸发器而保持在300-350℃,以促进从流253中的一氧化碳向二氧化碳的转化。从水气转化反应到蒸气流量的热交换图示为热流量281。
水气转化产品254在位于端块220中的热交换/蒸发器287中由水流282的一部分282A冷却,加热并蒸发水流282A。流255然后进入PROX反应器241中,在此处以高CO选择性在氧化催化剂上与已加热的空气流264反应,从而进一步将CO转化成CO2,将重整产品中CO的浓度降低到低于10ppmv的水平。空气流264在通过位于端块220表面中的孔口进入反应器中之后,与处理流255在通向PROX反应器241的入口处混合。在由位于端块219中的热交换器288中的空气流261冷却到85℃之后,64个平行的产品流256混合而重新成为一股流257。产品流257然后流过管212和端块220,到达燃料电池叠层224的阳极流量场214。
空气流261在从端块219经过流量沟槽(未图示)进入由护罩218包围的空间243中之前,在约20℃下穿过端块219中的入口管225进入处理器196中,在此处流到端块219中的热交换器288,加热到40℃,在空间243中,空气流262辅助将PROX反应器241保持在接近100℃ 的所需操作温度下。空气流264从流262分支出来,通过前述位于端块220内表面中的孔口供应PROX反应器241。其余的空气265通过管226离开装置,在此处铅垂到达入口管202,从而引导到燃料电池叠层224的阳极流量场216。
处理空气流没有在燃料电池叠层224的上游被分割成若干单独的流。阳极排放流258从燃料电池叠层阳极出口管203铅垂到达一个混合器(未图示),在此处它与入口燃料流259混合而提供用于燃料反应器231的燃料混合物。如果使用一个阳极燃料循环方案,入口管206可提供一个联接,将一部分排出物重新引导到燃料电池叠层224。燃烧燃料混合物以两个相等的流量通过入口管213和227进入处理器196中,在流到位于端块220中的热交换器290而从废气流271回收热量之前,在此处由结构与前面参照燃料处理器10所述相类似的两个32阀阵列分割成64个平行流。可根据需要,用通过连续夹层中的重叠的小孔而彼此相通的多个夹层中的流量沟槽在每个储存库中的阀之间循环和沟通流体,从而实现对流体的适当开导。预加热的燃料流260通过管211流到端块219,在进入燃烧反应器231中之前在此处与预加热的空气流267混合。阳极废气流266从燃料电池叠层流到端块220,在此处对于8个模块的块分割成8个平行的流,每个流由如前所述的阀控制。空气流266然后流到位于端块220中的热交换器289,在如前所述流过管210到达端块219而与燃料流260混合之前在此处由燃烧废气流270加热。燃烧反应器231保持在760℃,以供应由反应器233中的蒸气重整反应消耗的热量280。燃烧废气流268离开燃烧反应器231进入端块220,随后在此处被分割成流269和270,以提供两个对热交换器285中的重整给料250、热交换器290中的燃烧器燃料259、热交换器289中的燃烧空气266以及热交换器293中的重整蒸气282B进行预加热中使用的两个热传导流。废气流273和274在通过出口管207离开装置之前在端块220中混合。叠层冷却剂水流276通过管201进入,并由燃料电池废热加热到80℃。从叠层冷却剂出口流277中取热水291,并通过管206离开装置,用于在废热发电应用中的潜在用途。其余的冷却水282被分割成平行的流282A和282B,用于分别在热交换器287和293中加热和蒸发。在流到蒸发器239和热交换器286之前,这些流重新混合到流278中,以产生用于重整反应器233中的过热蒸气279。处理流在流过热交换器287和293之前被分割成用于各反应器的64个阀调节的流。
从前述可以理解,尽管这里已经为了示意的目的而描述了本发明的具体实施例,但在不脱离本发明的精神和范围的情况下可作多种修改,因此,本发明并不受除附属权利要求之外的其它限制。