一种基于贝叶斯网络的追尾预警方法.pdf

上传人:b*** 文档编号:271981 上传时间:2018-02-07 格式:PDF 页数:18 大小:1.25MB
返回 下载 相关 举报
摘要
申请专利号:

CN201410381532.4

申请日:

2014.08.06

公开号:

CN104182618A

公开日:

2014.12.03

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):G06F 19/00申请日:20140806|||公开

IPC分类号:

G06F19/00(2011.01)I; G08G1/16

主分类号:

G06F19/00

申请人:

西安电子科技大学

发明人:

陈晨; 李美莲; 裴庆祺; 薛刚; 吕宁

地址:

710071 陕西省西安市太白南路2号西安电子科技大学

优先权:

专利代理机构:

北京科亿知识产权代理事务所(普通合伙) 11350

代理人:

汤东凤

PDF下载: PDF下载
内容摘要

一种基于贝叶斯网络的追尾预警方法,选取天气情况Y1、道路情况Y2、驾驶员反应时间Y3、后车与前车的距离Y4、后车速度Y5、后车相对于前车的速度差Y6和后车加速度Y7作为追尾事故Y8的变量节点,得到追尾事故的贝叶斯网络的节点集Y:Y={Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8},确定变量节点值域;仿真追尾事故的交通场景,构成追尾事故的贝叶斯网络学习数据集,对该学习数据集离散处理;通过离散学习数据集,构造追尾事故的贝叶斯网络的结构,计算该结构中节点的条件概率分布;得到检验数据样本,预测检验数据样本中除追尾事故Y8的各个节点在下一时刻的取值并离散处理;利用所述贝叶斯网络,计算下一时刻发生追尾事故的概率;设定阀值,若下一时刻发生追尾事故概率大于阀值,采取预警措施。

权利要求书

1.  一种基于贝叶斯网络的追尾预警方法,其特征在于: 
其包括, 
S1选取天气情况Y1、道路情况Y2、驾驶员反应时间Y3、后车与前车的距离Y4、后车速度Y5、后车相对于前车的速度差Y6和后车加速度Y7作为追尾事故Y8的变量节点,得到追尾事故的贝叶斯网络的节点集Y为:Y={Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8},并确定各个变量节点的值域; 
S2仿真追尾事故的交通场景,构成追尾事故的贝叶斯网络的学习数据集,并对该学习数据集进行离散处理; 
S3利用节点集Y和离散的学习数据集,构造追尾事故的贝叶斯网络的结构; 
S4并计算该结构中各个节点的条件概率分布; 
S5使用交通模拟软件得到检验数据样本,预测检验数据样本中除追尾事故Y8的各个节点在下一时刻的取值并进行离散处理; 
S6利用所述贝叶斯网络,计算下一时刻发生追尾事故的概率; 
S7设定阀值,若下一时刻发生追尾事故的概率大于阀值,则采取预警措施。 

2.
  如权利要求1所述的一种基于贝叶斯网络的追尾预警方法,其特征在于:所述步骤S1中确定各个变量节点的值域包括: 
设天气情况Y1包括:晴、雨、雪; 
设道路情况Y2包括:干燥路面、潮湿路面、冰雪路面; 
设驾驶员反应时间Y3分为三个区域:Y3≤0.5s、0.5s<Y3≤1.5s、Y3>1.5s; 
设后车与前车的距离Y4分为两个区域:Y4≤L、Y4>L,其中,L是车辆的期望安全车距; 
设后车速度Y5分为三个区域:Y5≤21m/s、21m/s<Y5≤28m/s、Y5>28m/s; 
设后车相对于前车的速度差Y6分为两个区域:Y6≤0、Y6>0; 
设后车加速度Y7分为三个区域:Y7≤-0.25m/s2、-0.25m/s2<Y7≤0.25m/s2、Y7>0.25m/s2; 
设追尾事故Y8包括:没有发生追尾事故、发生追尾事故。 

3.
  如权利要求2所述的一种基于贝叶斯网络的追尾预警方法,其特征在于:所述步骤S2包括: 
根据节点集Y中包含的节点,仿真车辆追尾事故的交通场景,得到m条数据样本d1,...,di,...,dm,构成追尾事故的贝叶斯网络的学习数据集D1={d1,...,di,...,dm},其中i=1,...,m,di包括节点集Y中的所有节点的取值情况;对学习数据集D1进行离散处理,得到学习数据集D2={e1,...,ei,...em},其中i=1,...,m,ei是di离散后的数据样本。 

4.
  如权利要求3所述的一种基于贝叶斯网络的追尾预警方法,其特征在于:所述步骤S3包括: 
利用节点集Y和学习数据集D2构造追尾事故的贝叶斯网络的结构N; 
构造贝叶斯网络的结构N,其具体实现如下: 
S3.1将节点集Y中所有节点进行排序,得到排序ρ={Y1,Y2,Y3,Y5,Y6,Y4,Y7,Y8}; 
S3.2节点集Y中每个节点Yj的父节点集是π(Yj),父节点集π(Yj)中包含的父节点个数的上界u=4,其中j=1,...,8; 
S3.3由节点集Y、学习数据集D2、排序ρ和父节点个数的上界u构造追尾事故的贝叶斯网络的结构N。 

5.
  如权利要求4所述的一种基于贝叶斯网络的追尾预警方法,其特征在于:所述S4中计算该结构中各个节点的条件概率分布包括: 
设参数向量其中,是需要计算的节点集Y中各个节点Yj的条件概率分布,j=1,...,8,其具体包括以下步骤: 
S4.1确定参数向量θ的先验概率分布p(θ); 
S4.2用似然函数L(θ|D2)=p(D2|θ)归纳学习数据集D2对参数向量θ的影响; 
S4.3利用贝叶斯公式将所述先验概率分布p(θ)和所述似然函数L(θ|D2)结合,得到参数向量θ的后验概率分布: 

其中,p(θ|D2)是参数向量θ的后验概率分布,p(D2)是学习数据集D2的先验概率; 
S4.4根据步骤S4.3得到的参数向量θ的后验概率分布p(θ|D2),对参数向量θ进行估计: 

其中,是参数向量θ的估计向量,是计算得到的节点集Y中节点Yj的条件概率分布。 

6.
  如权利要求5所述的一种基于贝叶斯网络的追尾预警方法,其特征在于:所述步骤S5包括: 
根据节点集Y中包含的节点,仿真车辆追尾事故的交通场景,得到一条检验数据样本dn,该检验数据样本dn包括节点集Y中的所有节点的取值情况; 
预测检验数据样本dn中除追尾事故Y8的各个节点在下一时刻的取值,其包括以下步骤: 
S5.1根据迭代法,计算检验数据样本dn中的天气情况Y1、道路情况Y2、驾驶员反应时间Y3在下一时刻的取值: 
G'=BG; 
其中,G包含检验数据样本dn中的天气情况Y1、道路情况Y2、驾驶员反应时间Y3的取值;G'包含检验数据样本dn中的天气情况Y1、道路情况Y2、驾驶员反应时间Y3在下一时刻的取值;B是迭代矩阵; 
S5.2根据卡尔曼滤波器,计算检验数据样本dn中后车与前车的距离Y4、后车速度Y5、后车相对于前车的速度差Y6和后车加速度Y7在下一时刻的取值: 
S5.3对检验数据样本dn中除追尾事故Y8的各个节点在下一时刻的取值进行离散处理,得到离散证据样本ds。 

7.
  如权利要求6所述的一种基于贝叶斯网络的追尾预警方法,其 特征在于:所述步骤S5.2包括: 
S5.2.1根据“当前”统计模型,建立车辆的状态方程:其中,所述“当前”统计模型是通过瑞利分布来描述车辆加速度的统计特性; 

其中,k是当前时刻的序数,k+1是下一时刻的序数;X(k)=[s(k) v(k) a(k)]T表示k时刻车辆的状态向量;s(k)是k时刻车辆的位置;v(k)是k时刻车辆的速度;a(k)是k时刻车辆的加速度;X(k+1|k)是k+1时刻车辆状态的预测向量;φ(k+1|k)是车辆的状态转移矩阵;X(k|k)是k时刻车辆状态的估计向量;U(k)是k时刻车辆的控制矩阵;为车辆“当前”加速度的均值,且W(k)是满足正态分布的过程噪声向量,且W(k)~N(0,Q(k)),Q(k)为过程噪声的协方差矩阵,且α是机动时间常数的倒数,是“当前”加速度的方差,qoz是前后两个时刻的时间差T0的函数,且o=1,2,3,z=1,2,3; 
S5.2.2建立车辆的观测方程: 
Z(k)=H(k)X(k)+V(k); 
其中,Z(k)是k时刻车辆的观测向量;H(k)是车辆的观测矩阵;V(k)是满足正态分布的观测噪声向量,且V(k)~N(0,R(k)),R(k)为k时刻观测噪声的协方差矩阵; 
S5.2.3卡尔曼滤波器的初始化:确定车辆在k-1时刻状态的估计向量X(k-1|k-1)和状态向量的误差协方差矩阵P(k-1|k-1),其中,k-1 是前一时刻的序数; 
S5.2.4卡尔曼滤波器的预测过程:根据步骤S5.2.3得到的k-1时刻状态的估计向量X(k-1|k-1)、状态向量的误差协方差矩阵P(k-1|k-1),计算k时刻车辆状态的预测向量X(k|k-1)及其预测的误差协方差矩阵P(k|k-1): 
X(k|k-1)=φ1(k|k-1)X(k-1|k-1); 
P(k|k-1)=φ(k|k-1)P(k-1|k-1)φT(k|k-1)+Q(k-1); 
其中,
S5.2.5卡尔曼滤波器的滤波过程:计算k时刻车辆状态的估计向量X(k|k)及其状态向量的误差协方差矩阵P(k|k): 
X(k|k)=X(k|k-1)+K(k)[Z(k)-H(k)X(k|k-1)]; 
P(k|k)=[I-K(k)H(k)]P(k|k-1); 
其中,K(k)是卡尔曼滤波器的增益矩阵,且K(k)=P(k|k-1)HT(k)[H(k)P(k|k-1)HT(k)+R(k)]-1;I是单位矩阵; 
S5.2.6卡尔曼滤波器的参数更新过程:根据车辆“当前”加速度的均值计算“当前”加速度的方差

其中,amax是车辆加速度的正上限;a-max是车辆加速度的负下限; 
根据“当前”加速度的方差更新过程噪声的协方差矩阵Q(k); 
S5.2.7根据k时刻车辆状态的估计向量X(k|k)和步骤S5.2.4中的预测方程,可以得到k+1时刻前车状态的预测向量X1(k+1|k)和后车状态的预测向量X2(k+1|k);
其中,X1(k+1|k)=[s1(k+1|k) v1(k+1|k) a1(k+1|k)]T,s1(k+1|k)是前车在下一时刻的位置,v1(k+1|k)是前车在下一时刻的速度,a1(k+1|k)是前车在下一时刻的加速度;X2(k+1|k)=[s2(k+1|k) v2(k+1|k) a2(k+1|k)]T,s2(k+1|k)是后车在下一时刻的位置,v2(k+1|k)是后车在下一时刻的速度,a2(k+1|k)是后车在下一时刻的加速度; 
S5.2.8利用前车状态的预测向量X1(k+1|k)和后车状态的预测向量X2(k+1|k)计算后车与前车的距离Y4、后车速度Y5、后车相对于前车的速度差Y6和后车加速度Y7在下一时刻的取值: 
Y4=s1(k+1|k)-s2(k+1|k); 
Y5=v2(k+1|k); 
Y6=v2(k+1|k)-v1(k+1|k); 
Y7=a2(k+1|k)。 

8.
  如权利要求7所述的一种基于贝叶斯网络的追尾预警方法,其特征在于: 
计算下一时刻发生追尾事故的概率pC包括: 
根据离散证据样本ds,前、后车辆在下一时刻发生追尾事故的概率pC为: 

其中,E是证据节点的集合,本发明中E包括节点集Y中除追尾事故Y8的各个节点; 
根据变量消元法和各个节点的条件概率分布可得: 

由此,可得前、后车辆在下一时刻发生追尾事故的概率pC。 

9.
  如权利要求1-8任意一项所述的一种基于贝叶斯网络的追尾预警方法,其特征在于:所述预警措施为通过音频和视频报警。 

10.
  如权利要求9所述的一种基于贝叶斯网络的追尾预警方法,其特征在于:若驾驶员在接收到报警之后,没有采取制动措施,车辆自动制动。 

说明书

一种基于贝叶斯网络的追尾预警方法
技术领域
本发明涉及交通安全技术领域,特别涉及一种基于贝叶斯网络的追尾预警方法。可用于避免车辆追尾事故,保证机动车安全行驶。
背景技术
随着现代交通的日益发达和汽车工业的不断发展,随之而来的是交通事故的频繁发生。据统计,所有的交通事故中,汽车追尾事故是主要形式,约占交通事故的60%~70%。其中汽车追尾事故的发生主要是由行车速度过快,行车间距过小,刹车不及时等因素造成。这种事故尤其在驾驶员疲劳驾驶、注意力不集中等状态和雨、雪、雾等环境下最容易发生。因此,如何避免和减少车辆追尾事故的发生,成为交通安全领域亟待解决的问题。
欧洲的一项研究表明:驾驶员只要在发生碰撞0.5s前得到预警,就可以避免至少60%追尾事故的发生;若提前1s预警,则可避免90%的事故发生。因此,研究车辆避撞-预警方法,防止后车追尾前车,对于提高车辆行驶安全,减少追尾事故的发生,具有重要的意义。
现有的避撞预警方法主要有安全时间逻辑方法与安全距离逻辑方法两类,然而这两种方法在真实环境下的适应性都不够,其主要存在以下两个方面的问题:
1)没有全面系统地揭示人、车、路、环境等因素对追尾事故的 影响。例如,东南大学的专利“一种高速公路汽车防追尾前车的自适应报警方法”(专利申请号:201210203507.8,授权公告号:CN102745194A)。该发明基于安全时间逻辑方法,通过初始模式选择和车载传感器采集车辆行驶相关信息,首先通过判别驾驶员意图设置报警抑制策略以减少虚警率,进而计算出自车与前车碰撞时间TTC,并根据驾驶员特性和当前驾驶环境实时计算出当前报警安全门限值Tw,最后依据所计算出的自车与前车的碰撞时间TTC和报警安全门限值Tw,判别当前是否存在潜在的追尾前车的危险,当判别存在潜在危险时,发出报警指令。该专利的不足是,仅针对人、车、路、环境这些局部原因来寻找解决方案,没有全面系统地揭示人、车、路、环境对追尾事故的影响,以及这些因素之间的关联关系,无法避免追尾事故发生。
2)不能保证驾驶员在接受预警后有充足的时间正确操作车辆,导致追尾事故发生。例如,江苏大学拥有的专利技术“一种高速公路追尾碰撞预警及防护系统及控制方法”(专利申请号:201210335897.4,授权公告号:CN102849009A)。该专利包括驾驶员路况选择模块、环境监测模块、主控制模块和执行模块。驾驶员路况选择包括干燥路面,潮湿路面,冰雪路面三种选择情况。驾驶员根据实际路面情况选择相对应的开关位置,通过激光测距仪实时测量自车与后车的距离,距离信息、自车车速信息和路面选择开关位置信息得到的实时临界安全车距与测量的实际车距进行比较,并根据危险程度的大小控制高位制动灯的亮起和主动安全头枕触发单元的启动。该专 利的不足是,在危险情况下预警不及时,使驾驶员没有足够的时间来避免即将发生的追尾事故。
发明内容
为了解决上述技术问题,本发明提供一种基于贝叶斯网络的追尾预警方法,其包括,
S1选取天气情况Y1、道路情况Y2、驾驶员反应时间Y3、后车与前车的距离Y4、后车速度Y5、后车相对于前车的速度差Y6和后车加速度Y7作为追尾事故Y8的变量节点,得到追尾事故的贝叶斯网络的节点集Y为:Y={Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8},并确定各个变量节点的值域;
S2仿真追尾事故的交通场景,构成追尾事故的贝叶斯网络的学习数据集,并对该学习数据集进行离散处理;
S3利用节点集Y和离散的学习数据集,构造追尾事故的贝叶斯网络的结构;
S4并计算该结构中各个节点的条件概率分布;
S5使用交通模拟软件得到检验数据样本,预测检验数据样本中除追尾事故Y8的各个节点在下一时刻的取值并进行离散处理;
S6利用所述贝叶斯网络,计算下一时刻发生追尾事故的概率;
S7设定阀值,若下一时刻发生追尾事故的概率大于阀值,则采取预警措施。
在上述技术方案的基础上,所述步骤S1中确定各个变量节点的值域包括:
设天气情况Y1包括:晴、雨、雪;
设道路情况Y2包括:干燥路面、潮湿路面、冰雪路面;
设驾驶员反应时间Y3分为三个区域:Y3≤0.5s、0.5s<Y3≤1.5s、Y3>1.5s;
设后车与前车的距离Y4分为两个区域:Y4≤L、Y4>L,其中,L是车辆的期望安全车距;
设后车速度Y5分为三个区域:Y5≤21m/s、21m/s<Y5≤28m/s、Y5>28m/s;
设后车相对于前车的速度差Y6分为两个区域:Y6≤0、Y6>0;
设后车加速度Y7分为三个区域:Y7≤-0.25m/s2、-0.25m/s2<Y7≤0.25m/s2、Y7>0.25m/s2
设追尾事故Y8包括:没有发生追尾事故、发生追尾事故。
在上述技术方案的基础上,所述步骤S2包括:
根据节点集Y中包含的节点,仿真车辆追尾事故的交通场景,得到m条数据样本d1,...,di,...,dm,构成追尾事故的贝叶斯网络的学习数据集D1={d1,...,di,...,dm},其中i=1,...,m,di包括节点集Y中的所有节点的取值情况;对学习数据集D1进行离散处理,得到学习数据集D2={e1,...,ei,...em},其中i=1,...,m,ei是di离散后的数据样本。
在上述技术方案的基础上,所述步骤S3包括:
利用节点集Y和学习数据集D2构造追尾事故的贝叶斯网络的结构N;
构造贝叶斯网络的结构N,其具体实现如下:
S3.1将节点集Y中所有节点进行排序,得到排序ρ={Y1,Y2,Y3,Y5,Y6,Y4,Y7,Y8};
S3.2节点集Y中每个节点Yj的父节点集是π(Yj),父节点集π(Yj)中包含的父节点个数的上界u=4,其中j=1,...,8;
S3.3由节点集Y、学习数据集D2、排序ρ和父节点个数的上界u构造追尾事故的贝叶斯网络的结构N。
在上述技术方案的基础上,所述S4中计算该结构中各个节点的条件概率分布包括:
设参数向量θ={θY1|π(Y1),...,θYj|π(Yj),...,θY8|π(Y8)},]]>其中,θYj|π(Yj)=p(Yj|π(Yj))]]>是需要计算的节点集Y中各个节点Yj的条件概率分布,j=1,...,8,其具体包括以下步骤:
S4.1确定参数向量θ的先验概率分布p(θ);
S4.2用似然函数L(θ|D2)=p(D2|θ)归纳学习数据集D2对参数向量θ的影响;
S4.3利用贝叶斯公式将所述先验概率分布p(θ)和所述似然函数L(θ|D2)结合,得到参数向量θ的后验概率分布:
p(θ|D2)=p(θ)p(D2|θ)p(D2)=p(θ)L(θ|D2)p(D2);]]>
其中,p(θ|D2)是参数向量θ的后验概率分布,p(D2)是学习数据集D2的先验概率;
S4.4根据步骤S4.3得到的参数向量θ的后验概率分布p(θ|D2),对参数向量θ进行估计:
θ^=∫θP(θ|D2);]]>
其中,是参数向量θ的估计向量,θ^={θ^Y1|π(Y1),...,θ^Yj|π(Yj),...,θ^Y8|π(Y8)},]]>是计算得到的节点集Y中节点Yj的条件概率分布。
在上述技术方案的基础上,所述步骤S5包括:
根据节点集Y中包含的节点,仿真车辆追尾事故的交通场景,得到一条检验数据样本dn,该检验数据样本dn包括节点集Y中的所有节点的取值情况;
预测检验数据样本dn中除追尾事故Y8的各个节点在下一时刻的取值,其包括以下步骤:
S5.1根据迭代法,计算检验数据样本dn中的天气情况Y1、道路情况Y2、驾驶员反应时间Y3在下一时刻的取值:
G'=BG;
其中,G包含检验数据样本dn中的天气情况Y1、道路情况Y2、驾驶员反应时间Y3的取值;G'包含检验数据样本dn中的天气情况Y1、道路情况Y2、驾驶员反应时间Y3在下一时刻的取值;B是迭代矩阵;
S5.2根据卡尔曼滤波器,计算检验数据样本dn中后车与前车的距离Y4、后车速度Y5、后车相对于前车的速度差Y6和后车加速度Y7在下一时刻的取值:
S5.3对检验数据样本dn中除追尾事故Y8的各个节点在下一时刻的取值进行离散处理,得到离散证据样本ds
在上述技术方案的基础上,所述步骤S5.2包括:
S5.2.1根据“当前”统计模型,建立车辆的状态方程:其中, 所述“当前”统计模型是通过瑞利分布来描述车辆加速度的统计特性;
X(k+1|k)=φ(k+1|k)X(k|k)+U(k)a‾+W(k);]]>
其中,k是当前时刻的序数,k+1是下一时刻的序数;X(k)=[s(k) v(k) a(k)]T表示k时刻车辆的状态向量;s(k)是k时刻车辆的位置;v(k)是k时刻车辆的速度;a(k)是k时刻车辆的加速度;X(k+1|k)是k+1时刻车辆状态的预测向量;φ(k+1|k)是车辆的状态转移矩阵;X(k|k)是k时刻车辆状态的估计向量;U(k)是k时刻车辆的控制矩阵;为车辆“当前”加速度的均值,且W(k)是满足正态分布的过程噪声向量,且W(k)~N(0,Q(k)),Q(k)为过程噪声的协方差矩阵,且Q(k)=E[W(k)WT(k)]=2ασa2q11q12q13q12q22q23q13q23q33,]]>α是机动时间常数的倒数,是“当前”加速度的方差,qoz是前后两个时刻的时间差T0的函数,且o=1,2,3,z=1,2,3;
S5.2.2建立车辆的观测方程:
Z(k)=H(k)X(k)+V(k);
其中,Z(k)是k时刻车辆的观测向量;H(k)是车辆的观测矩阵;V(k)是满足正态分布的观测噪声向量,且V(k)~N(0,R(k)),R(k)为k时刻观测噪声的协方差矩阵;
S5.2.3卡尔曼滤波器的初始化:确定车辆在k-1时刻状态的估计向量X(k-1|k-1)和状态向量的误差协方差矩阵P(k-1|k-1),其中,k-1是前一时刻的序数;
S5.2.4卡尔曼滤波器的预测过程:根据步骤S5.2.3得到的k-1时 刻状态的估计向量X(k-1|k-1)、状态向量的误差协方差矩阵P(k-1|k-1),计算k时刻车辆状态的预测向量X(k|k-1)及其预测的误差协方差矩阵P(k|k-1):
X(k|k-1)=φ1(k|k-1)X(k-1|k-1);
P(k|k-1)=φ(k|k-1)P(k-1|k-1)φT(k|k-1)+Q(k-1);
其中,φ1(k|k-1)=1T0T02/201T0001;]]>
S5.2.5卡尔曼滤波器的滤波过程:计算k时刻车辆状态的估计向量X(k|k)及其状态向量的误差协方差矩阵P(k|k):
X(k|k)=X(k|k-1)+K(k)[Z(k)-H(k)X(k|k-1)];
P(k|k)=[I-K(k)H(k)]P(k|k-1);
其中,K(k)是卡尔曼滤波器的增益矩阵,且K(k)=P(k|k-1)HT(k)[H(k)P(k|k-1)HT(k)+R(k)]-1;I是单位矩阵;
S5.2.6卡尔曼滤波器的参数更新过程:根据车辆“当前”加速度的均值计算“当前”加速度的方差
σa2=4-ππ(amax-a&OverBar;)2,a&OverBar;>04-ππ(a-max+a&OverBar;)2,a&OverBar;<0;]]>
其中,amax是车辆加速度的正上限;a-max是车辆加速度的负下限;
根据“当前”加速度的方差更新过程噪声的协方差矩阵Q(k);
S5.2.7根据k时刻车辆状态的估计向量X(k|k)和步骤S5.2.4中的预测方程,可以得到k+1时刻前车状态的预测向量X1(k+1|k)和后车 状态的预测向量X2(k+1|k);
其中,X1(k+1|k)=[s1(k+1|k) v1(k+1|k) a1(k+1|k)]T,s1(k+1|k)是前车在下一时刻的位置,v1(k+1|k)是前车在下一时刻的速度,a1(k+1|k)是前车在下一时刻的加速度;X2(k+1|k)=[s2(k+1|k) v2(k+1|k) a2(k+1|k)]T,s2(k+1|k)是后车在下一时刻的位置,v2(k+1|k)是后车在下一时刻的速度,a2(k+1|k)是后车在下一时刻的加速度;
S5.2.8利用前车状态的预测向量X1(k+1|k)和后车状态的预测向量X2(k+1|k)计算后车与前车的距离Y4、后车速度Y5、后车相对于前车的速度差Y6和后车加速度Y7在下一时刻的取值:
Y4=s1(k+1|k)-s2(k+1|k);
Y5=v2(k+1|k);
Y6=v2(k+1|k)-v1(k+1|k);
Y7=a2(k+1|k);
在上述技术方案的基础上,计算下一时刻发生追尾事故的概率pC包括:
根据离散证据样本ds,前、后车辆在下一时刻发生追尾事故的概率pC为:

其中,E是证据节点的集合,本发明中E包括节点集Y中除追尾事故Y8的各个节点;
根据变量消元法和各个节点的条件概率分布可得:
p(Y1,...,Yj,...,Y8)=p(Y1)p(Y2|Y1)...p(Y8|Y1,...,Y7)=Σj=18p(Yj|π(Yj));]]>
由此,可得前、后车辆在下一时刻发生追尾事故的概率pC
在上述技术方案的基础上,所述预警措施为通过音频和视频报警。
在上述技术方案的基础上,若驾驶员在接收到报警之后,没有采取制动措施,车辆自动制动。
本发明有益效果在于:通过构造追尾事故的贝叶斯网络结构,全面系统地揭示人、车、路、环境对追尾事故的影响,提高了车辆对本车驾驶员预警的准确性。通过预测前、后车辆在下一个时刻发生追尾事故的概率,后车可以提前将预警发送给本车驾驶员,使驾驶员有足够的时间来避免即将发生的追尾事故。
附图说明
图1是本发明的整体流程图;
图2是本发明构造的追尾事故的贝叶斯网络的结构图;
图3是本发明中计算各个节点的条件概率分布的子流程图;
图4为本发明的仿真结果图。
具体实施方式
下面结合附图和具体实施方式对本发明做进一步的详细说明。
有关本发明的具体步骤和相关技术实施方法,现结合附图详细说明。
参照图1,本发明的实现步骤如下:
步骤S1:确定追尾事故的贝叶斯网络的节点集。
选取天气情况Y1、道路情况Y2、驾驶员反应时间Y3、后车与前车的距离Y4、后车速度Y5、后车相对于前车的速度差Y6和后车加速度Y7作为追尾事故Y8的变量节点,得到追尾事故的贝叶斯网络的节点集Y为:
Y={Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8};
并确定节点集Y中各个节点的值域:
设天气情况Y1包括:晴、雨、雪,其分别用1,2,3表示;
设道路情况Y2包括:干燥路面、潮湿路面、冰雪路面,其分别用4,5,6表示;
设驾驶员反应时间Y3分为三个区域:Y3≤0.5s、0.5s<Y3≤1.5s、Y3>1.5s,其分别用7,8,9表示;
设后车与前车的距离Y4分为两个区域:Y4≤L、Y4>L,其分别用10,11表示;
设后车速度Y5分为三个区域:Y5≤21m/s、21m/s<Y5≤28m/s、Y5>28m/s,其分别用12,13,14表示;
设后车相对于前车的速度差Y6分为两个区域:Y6≤0、Y6>0,其分别用15,16表示;
设后车加速度Y7分为三个区域:Y7≤-0.25m/s2、-0.25m/s2<Y7≤0.25m/s2、Y7>0.25m/s2,其分别用17,18,19表示;
设追尾事故Y8包括:没有发生追尾事故、发生追尾事故,其分别用20,21表示;
其中,L是车辆的期望安全车距;
步骤S2:根据节点集Y中包含的节点,相应地设置交通模拟软件VISSIM软件中的参数,仿真车辆追尾事故的交通场景,得到m条数据样本d1,...,di,...,dm,构成追尾事故的贝叶斯网络的学习数据集D1={d1,...,di,...,dm},其中i=1,...,m,di包括节点集Y中的所有节点的取值情况;
根据设置的值域,对学习数据集D1进行离散处理,得到学习数据集D2={e1,...,ei,...em},其中i=1,...,m,ei是di离散后的数据样本。
步骤S3:利用节点集Y和学习数据集D2构造追尾事故的贝叶斯网络的结构N;
本发明采用K2方法构造贝叶斯网络的结构N,其具体实现如下:
S3.1将节点集Y中所有节点进行排序,得到排列ρ={Y1,Y2,Y3,Y5,Y6,Y4,Y7,Y8};
S3.2节点集Y中每个节点Yj的父节点集是π(Yj),父节点集π(Yj)中包含的父节点个数的上界u=4,其中j=1,...,8;
S3.3由节点集Y、学习数据集D2、排列ρ和父节点个数的上界u构造追尾事故的贝叶斯网络的结构N,见附图2。
步骤S4:根据贝叶斯估计法,计算上述结构N中各个节点的条件概率分布;
设参数向量θ={θY1|π(Y1),...,θYj|π(Yj),...,θY8|π(Y8)},]]>其中,θYj|π(Yj)=p(Yj|π(Yj))]]>是需要计算的节点集Y中各个节点Yj的条件概率分布,j=1,...,8,,参照图3,本步骤的具体实现如下:
S4.1确定参数向量θ的先验概率分布p(θ);
S4.2用似然函数L(θ|D2)=p(D2|θ)归纳学习数据集D2对参数向量θ的影响;
S4.3利用贝叶斯公式将步骤S4.1的先验概率分布p(θ)和步骤S4.2的似然函数L(θ|D2)结合,得到参数向量θ的后验概率分布:
p(θ|D2)=p(θ)p(D2|θ)p(D2)=p(θ)L(θ|D2)p(D2);]]>
其中,p(θ|D2)是参数向量θ的后验概率分布,p(D2)是学习数据集D2的概率,服从狄利克雷分布;
S4.4根据步骤S4.3得到的参数向量θ的后验概率分布p(θ|D2),对参数向量θ进行估计:
θ^=&Integral;θP(θ|D2);]]>
其中,是参数向量θ的估计向量,θ^={θ^Y1|π(Y1),...,θ^Yj|π(Yj),...,θ^Y8|π(Y8)},θ^Yj|π(Yj)]]>是估计得到的节点集Y中节点Yj的条件概率分布。
步骤S5:根据节点集Y中包含的节点,相应地设置交通模拟软件VISSIM软件中的参数,仿真车辆追尾事故的交通场景,得到一条检验数据样本dn,该检验数据样本dn包括节点集Y中的所有节点的取值情况;
预测检验数据样本dn中除追尾事故Y8的各个节点在下一时刻的取值:
S5.1根据迭代法,计算检验数据样本dn中的天气情况Y1、道路情况Y2、驾驶员反应时间Y3在下一时刻的取值:
G'=BG;
其中,G包含检验数据样本dn中的天气情况Y1、道路情况Y2、驾驶员反应时间Y3的取值;G'包含检验数据样本dn中的天气情况Y1、道路情 况Y2、驾驶员反应时间Y3在下一时刻的取值;B是迭代矩阵;
S5.2根据卡尔曼滤波器,计算检验数据样本dn中后车与前车的距离Y4、后车速度Y5、后车相对于前车的速度差Y6和后车加速度Y7在下一时刻的取值:其具体包括以下步骤:
S5.2.1根据“当前”统计模型,建立车辆的状态方程:其中,所述“当前”统计模型是通过瑞利分布来描述车辆加速度的统计特性;
X(k+1|k)=φ(k+1|k)X(k|k)+U(k)a&OverBar;+W(k);]]>
其中,k是当前时刻的序数,k+1是下一时刻的序数;
X(k)=[s(k) v(k) a(k)]T表示k时刻车辆的状态向量;s(k)是k时刻车辆的位置;v(k)是k时刻车辆的速度;a(k)是k时刻车辆的加速度;X(k+1|k)是k+1时刻车辆状态的预测向量;φ(k+1|k)是车辆的状态转移矩阵;X(k|k)是k时刻车辆状态的估计向量;U(k)是k时刻车辆的控制矩阵;为车辆“当前”加速度的均值,且W(k)是满足正态分布的过程噪声向量,且W(k)~N(0,Q(k)),Q(k)为过程噪声的协方差矩阵,且Q(k)=E[W(k)WT(k)]=2ασa2q11q12q13q12q22q23q13q23q33,]]>是“当前”加速度的方差,qoz是前后两个时刻的时间差T0的函数,且o=1,2,3,z=1,2,3;
S5.2.2建立车辆的观测方程:
Z(k)=H(k)X(k)+V(k);
其中,Z(k)是k时刻车辆的观测向量;H(k)是车辆的观测矩阵;V(k)是满足正态分布的观测噪声向量,且V(k)~N(0,R(k)),R(k)为k时 刻观测噪声的协方差矩阵;
S5.2.3卡尔曼滤波器的初始化:确定车辆在k-1时刻的状态向量X(k-1|k-1)和状态向量的误差协方差矩阵P(k-1|k-1),其中,k-1是前一时刻的序数;
S5.2.4卡尔曼滤波器的预测过程:根据步骤S5.2.3得到的k-1时刻状态的估计向量X(k-1|k-1)、状态向量的误差协方差矩阵P(k-1|k-1),计算k时刻车辆状态的预测向量X(k|k-1)及其预测的误差协方差矩阵P(k|k-1):
X(k|k-1)=φ1(k|k-1)X(k-1|k-1);
P(k|k-1)=φ(k|k-1)P(k-1|k-1)φT(k|k-1)+Q(k-1);
其中,φ1(k|k-1)=1T0T02/201T0001;]]>
S5.2.5卡尔曼滤波器的滤波过程:计算k时刻车辆状态的估计向量X(k|k)及其状态向量的误差协方差矩阵P(k|k):
X(k|k)=X(k|k-1)+K(k)[Z(k)-H(k)X(k|k-1)];
P(k|k)=[I-K(k)H(k)]P(k|k-1);
其中,K(k)是卡尔曼滤波器的增益矩阵,且K(k)=P(k|k-1)HT(k)[H(k)P(k|k-1)HT(k)+R(k)]-1,I是单位矩阵;
S5.2.6卡尔曼滤波器的参数更新过程:根据车辆“当前”加速度的均值计算“当前”加速度的方差
σa2=4-ππ(amax-a&OverBar;)2,a&OverBar;>04-ππ(a-max+a&OverBar;)2,a&OverBar;<0;]]>
其中,amax是车辆加速度的正上限;a-max是车辆加速度的负下限;根据“当前”加速度的方差更新过程噪声的协方差矩阵Q(k);
S5.2.7根据k时刻车辆状态的估计向量X(k|k)和步骤S5.2.4中的预测方程,可以得到k+1时刻前车状态的预测向量X1(k+1|k)和后车状态的预测向量X2(k+1|k);
其中,X1(k+1|k)=[s1(k+1|k) v1(k+1|k) a1(k+1|k)]T,s1(k+1|k)是前车在下一时刻的位置,v1(k+1|k)是前车在下一时刻的速度,a1(k+1|k)是前车在下一时刻的加速度;X2(k+1|k)=[s2(k+1|k) v2(k+1|k) a2(k+1|k)]T,s2(k+1|k)是后车在下一时刻的位置,v2(k+1|k)是后车在下一时刻的速度,a2(k+1|k)是后车在下一时刻的加速度;
S5.2.8利用前车状态的预测向量X1(k+1|k)和后车状态的预测向量X2(k+1|k)计算后车与前车的距离Y4、后车速度Y5、后车相对于前车的速度差Y6和后车加速度Y7在下一时刻的取值:
Y4=s1(k+1|k)-s2(k+1|k);
Y5=v2(k+1|k);
Y6=v2(k+1|k)-v1(k+1|k);
Y7=a2(k+1|k);
对检验数据样本dn中除追尾事故Y8的各个节点在下一时刻的取值进行离散处理,得到离散证据样本ds
S6利用构造的贝叶斯网络的结构N,在得到离散证据样本ds的条件下,计算前、后车辆在下一时刻发生追尾事故的概率pC
根据离散证据样本ds,发生追尾事故即Y8=21时,前、后车辆在下一时刻发生追尾事故的概率pC为:
pC=p(Y8=21|E=ds)=p(Y8=21,E=ds)p(E=ds);]]>
其中,E是证据节点的集合,本发明中E包括节点集Y中除追尾事故Y8的各个节点;
根据变量消元法和各个节点的条件概率分布可得:
p(Y1,...,Yj,...,Y8)=p(Y1)p(Y2|Y1)...p(Y8|Y1,...,Y7)=Σj=18p(Yj|π(Yj));]]>
由此可得,前、后车辆在下一时刻发生追尾事故的概率pC
步骤S7:设置阀值,如本实施例阀值为0.5,判断获得的下一时刻发生追尾事故的概率pC的高、低:若pC>0.5,则下一时刻发生追尾事故的概率高,后车应及时向本车驾驶员发送预警:通过音频和视频提醒驾驶员采取避撞措施;若驾驶员在接收到报警之后,没有采取制动措施,车辆自动制动。反之,则下一时刻发生追尾事故的概率低,后车不需要向本车驾驶员发送预警。
本发明的效果可通过以下仿真进一步说明:
本发明利用matlab构造追尾事故的贝叶斯网络,并预测前、后车辆在下一时刻发生追尾事故的概率,如果下一时刻发生追尾事故的概率低,则后车在下一时刻的行驶过程中不存在追尾碰撞的风险,用0表示;如果发生追尾事故的概率高,则后车在下一时刻的行驶过程中存在追尾碰 撞的风险,用1表示。将预测的结果与真实情况进行对比,如图4所示,其中曲线1为前、后两车辆发生追尾碰撞风险的真实情况,曲线2为根据本发明构造的贝叶斯网络,对前、后车辆在下一时刻发生追尾碰撞风险的预测情况。从图4可以看出,曲线2与曲线1重合,即预测的结果与真实情况一致。因此,本发明提出的基于贝叶斯网络的追尾预警方法,能提高车辆对本车驾驶员预警的准确性;提前将预警发送给本车驾驶员,使驾驶员有足够的时间来避免即将发生的追尾事故,有效预防追尾事故的发生。
对于本领域的技术人员来说,可根据以上描述的技术方案以及构思,做出其它各种相应的改变以及变形,而所有的这些改变以及变形都应该属于本发明权利要求的保护范围之内。

一种基于贝叶斯网络的追尾预警方法.pdf_第1页
第1页 / 共18页
一种基于贝叶斯网络的追尾预警方法.pdf_第2页
第2页 / 共18页
一种基于贝叶斯网络的追尾预警方法.pdf_第3页
第3页 / 共18页
点击查看更多>>
资源描述

《一种基于贝叶斯网络的追尾预警方法.pdf》由会员分享,可在线阅读,更多相关《一种基于贝叶斯网络的追尾预警方法.pdf(18页珍藏版)》请在专利查询网上搜索。

1、10申请公布号CN104182618A43申请公布日20141203CN104182618A21申请号201410381532422申请日20140806G06F19/00201101G08G1/1620060171申请人西安电子科技大学地址710071陕西省西安市太白南路2号西安电子科技大学72发明人陈晨李美莲裴庆祺薛刚吕宁74专利代理机构北京科亿知识产权代理事务所普通合伙11350代理人汤东凤54发明名称一种基于贝叶斯网络的追尾预警方法57摘要一种基于贝叶斯网络的追尾预警方法,选取天气情况Y1、道路情况Y2、驾驶员反应时间Y3、后车与前车的距离Y4、后车速度Y5、后车相对于前车的速度差Y6。

2、和后车加速度Y7作为追尾事故Y8的变量节点,得到追尾事故的贝叶斯网络的节点集YYY1,Y2,Y3,Y4,Y5,Y6,Y7,Y8,确定变量节点值域;仿真追尾事故的交通场景,构成追尾事故的贝叶斯网络学习数据集,对该学习数据集离散处理;通过离散学习数据集,构造追尾事故的贝叶斯网络的结构,计算该结构中节点的条件概率分布;得到检验数据样本,预测检验数据样本中除追尾事故Y8的各个节点在下一时刻的取值并离散处理;利用所述贝叶斯网络,计算下一时刻发生追尾事故的概率;设定阀值,若下一时刻发生追尾事故概率大于阀值,采取预警措施。51INTCL权利要求书4页说明书10页附图3页19中华人民共和国国家知识产权局12发。

3、明专利申请权利要求书4页说明书10页附图3页10申请公布号CN104182618ACN104182618A1/4页21一种基于贝叶斯网络的追尾预警方法,其特征在于其包括,S1选取天气情况Y1、道路情况Y2、驾驶员反应时间Y3、后车与前车的距离Y4、后车速度Y5、后车相对于前车的速度差Y6和后车加速度Y7作为追尾事故Y8的变量节点,得到追尾事故的贝叶斯网络的节点集Y为YY1,Y2,Y3,Y4,Y5,Y6,Y7,Y8,并确定各个变量节点的值域;S2仿真追尾事故的交通场景,构成追尾事故的贝叶斯网络的学习数据集,并对该学习数据集进行离散处理;S3利用节点集Y和离散的学习数据集,构造追尾事故的贝叶斯网络。

4、的结构;S4并计算该结构中各个节点的条件概率分布;S5使用交通模拟软件得到检验数据样本,预测检验数据样本中除追尾事故Y8的各个节点在下一时刻的取值并进行离散处理;S6利用所述贝叶斯网络,计算下一时刻发生追尾事故的概率;S7设定阀值,若下一时刻发生追尾事故的概率大于阀值,则采取预警措施。2如权利要求1所述的一种基于贝叶斯网络的追尾预警方法,其特征在于所述步骤S1中确定各个变量节点的值域包括设天气情况Y1包括晴、雨、雪;设道路情况Y2包括干燥路面、潮湿路面、冰雪路面;设驾驶员反应时间Y3分为三个区域Y305S、05SY315S、Y315S;设后车与前车的距离Y4分为两个区域Y4L、Y4L,其中,L。

5、是车辆的期望安全车距;设后车速度Y5分为三个区域Y521M/S、21M/SY528M/S、Y528M/S;设后车相对于前车的速度差Y6分为两个区域Y60、Y60;设后车加速度Y7分为三个区域Y7025M/S2、025M/S2Y7025M/S2、Y7025M/S2;设追尾事故Y8包括没有发生追尾事故、发生追尾事故。3如权利要求2所述的一种基于贝叶斯网络的追尾预警方法,其特征在于所述步骤S2包括根据节点集Y中包含的节点,仿真车辆追尾事故的交通场景,得到M条数据样本D1,DI,DM,构成追尾事故的贝叶斯网络的学习数据集D1D1,DI,DM,其中I1,M,DI包括节点集Y中的所有节点的取值情况;对学习。

6、数据集D1进行离散处理,得到学习数据集D2E1,EI,EM,其中I1,M,EI是DI离散后的数据样本。4如权利要求3所述的一种基于贝叶斯网络的追尾预警方法,其特征在于所述步骤S3包括利用节点集Y和学习数据集D2构造追尾事故的贝叶斯网络的结构N;构造贝叶斯网络的结构N,其具体实现如下S31将节点集Y中所有节点进行排序,得到排序Y1,Y2,Y3,Y5,Y6,Y4,Y7,Y8;S32节点集Y中每个节点YJ的父节点集是YJ,父节点集YJ中包含的父节点权利要求书CN104182618A2/4页3个数的上界U4,其中J1,8;S33由节点集Y、学习数据集D2、排序和父节点个数的上界U构造追尾事故的贝叶斯网。

7、络的结构N。5如权利要求4所述的一种基于贝叶斯网络的追尾预警方法,其特征在于所述S4中计算该结构中各个节点的条件概率分布包括设参数向量其中,是需要计算的节点集Y中各个节点YJ的条件概率分布,J1,8,其具体包括以下步骤S41确定参数向量的先验概率分布P;S42用似然函数L|D2PD2|归纳学习数据集D2对参数向量的影响;S43利用贝叶斯公式将所述先验概率分布P和所述似然函数L|D2结合,得到参数向量的后验概率分布其中,P|D2是参数向量的后验概率分布,PD2是学习数据集D2的先验概率;S44根据步骤S43得到的参数向量的后验概率分布P|D2,对参数向量进行估计其中,是参数向量的估计向量,是计算。

8、得到的节点集Y中节点YJ的条件概率分布。6如权利要求5所述的一种基于贝叶斯网络的追尾预警方法,其特征在于所述步骤S5包括根据节点集Y中包含的节点,仿真车辆追尾事故的交通场景,得到一条检验数据样本DN,该检验数据样本DN包括节点集Y中的所有节点的取值情况;预测检验数据样本DN中除追尾事故Y8的各个节点在下一时刻的取值,其包括以下步骤S51根据迭代法,计算检验数据样本DN中的天气情况Y1、道路情况Y2、驾驶员反应时间Y3在下一时刻的取值GBG;其中,G包含检验数据样本DN中的天气情况Y1、道路情况Y2、驾驶员反应时间Y3的取值;G包含检验数据样本DN中的天气情况Y1、道路情况Y2、驾驶员反应时间Y。

9、3在下一时刻的取值;B是迭代矩阵;S52根据卡尔曼滤波器,计算检验数据样本DN中后车与前车的距离Y4、后车速度Y5、后车相对于前车的速度差Y6和后车加速度Y7在下一时刻的取值S53对检验数据样本DN中除追尾事故Y8的各个节点在下一时刻的取值进行离散处理,得到离散证据样本DS。7如权利要求6所述的一种基于贝叶斯网络的追尾预警方法,其特征在于所述步骤S52包括权利要求书CN104182618A3/4页4S521根据“当前”统计模型,建立车辆的状态方程其中,所述“当前”统计模型是通过瑞利分布来描述车辆加速度的统计特性;其中,K是当前时刻的序数,K1是下一时刻的序数;XKSKVKAKT表示K时刻车辆的。

10、状态向量;SK是K时刻车辆的位置;VK是K时刻车辆的速度;AK是K时刻车辆的加速度;XK1|K是K1时刻车辆状态的预测向量;K1|K是车辆的状态转移矩阵;XK|K是K时刻车辆状态的估计向量;UK是K时刻车辆的控制矩阵;为车辆“当前”加速度的均值,且WK是满足正态分布的过程噪声向量,且WKN0,QK,QK为过程噪声的协方差矩阵,且是机动时间常数的倒数,是“当前”加速度的方差,QOZ是前后两个时刻的时间差T0的函数,且O1,2,3,Z1,2,3;S522建立车辆的观测方程ZKHKXKVK;其中,ZK是K时刻车辆的观测向量;HK是车辆的观测矩阵;VK是满足正态分布的观测噪声向量,且VKN0,RK,R。

11、K为K时刻观测噪声的协方差矩阵;S523卡尔曼滤波器的初始化确定车辆在K1时刻状态的估计向量XK1|K1和状态向量的误差协方差矩阵PK1|K1,其中,K1是前一时刻的序数;S524卡尔曼滤波器的预测过程根据步骤S523得到的K1时刻状态的估计向量XK1|K1、状态向量的误差协方差矩阵PK1|K1,计算K时刻车辆状态的预测向量XK|K1及其预测的误差协方差矩阵PK|K1XK|K11K|K1XK1|K1;PK|K1K|K1PK1|K1TK|K1QK1;其中,S525卡尔曼滤波器的滤波过程计算K时刻车辆状态的估计向量XK|K及其状态向量的误差协方差矩阵PK|KXK|KXK|K1KKZKHKXK|K1。

12、;PK|KIKKHKPK|K1;其中,KK是卡尔曼滤波器的增益矩阵,且KKPK|K1HTKHKPK|K1HTKRK1;I是单位矩阵;S526卡尔曼滤波器的参数更新过程根据车辆“当前”加速度的均值计算“当前”加速度的方差权利要求书CN104182618A4/4页5其中,AMAX是车辆加速度的正上限;AMAX是车辆加速度的负下限;根据“当前”加速度的方差更新过程噪声的协方差矩阵QK;S527根据K时刻车辆状态的估计向量XK|K和步骤S524中的预测方程,可以得到K1时刻前车状态的预测向量X1K1|K和后车状态的预测向量X2K1|K;其中,X1K1|KS1K1|KV1K1|KA1K1|KT,S1K1。

13、|K是前车在下一时刻的位置,V1K1|K是前车在下一时刻的速度,A1K1|K是前车在下一时刻的加速度;X2K1|KS2K1|KV2K1|KA2K1|KT,S2K1|K是后车在下一时刻的位置,V2K1|K是后车在下一时刻的速度,A2K1|K是后车在下一时刻的加速度;S528利用前车状态的预测向量X1K1|K和后车状态的预测向量X2K1|K计算后车与前车的距离Y4、后车速度Y5、后车相对于前车的速度差Y6和后车加速度Y7在下一时刻的取值Y4S1K1|KS2K1|K;Y5V2K1|K;Y6V2K1|KV1K1|K;Y7A2K1|K。8如权利要求7所述的一种基于贝叶斯网络的追尾预警方法,其特征在于计算。

14、下一时刻发生追尾事故的概率PC包括根据离散证据样本DS,前、后车辆在下一时刻发生追尾事故的概率PC为其中,E是证据节点的集合,本发明中E包括节点集Y中除追尾事故Y8的各个节点;根据变量消元法和各个节点的条件概率分布可得由此,可得前、后车辆在下一时刻发生追尾事故的概率PC。9如权利要求18任意一项所述的一种基于贝叶斯网络的追尾预警方法,其特征在于所述预警措施为通过音频和视频报警。10如权利要求9所述的一种基于贝叶斯网络的追尾预警方法,其特征在于若驾驶员在接收到报警之后,没有采取制动措施,车辆自动制动。权利要求书CN104182618A1/10页6一种基于贝叶斯网络的追尾预警方法技术领域0001本。

15、发明涉及交通安全技术领域,特别涉及一种基于贝叶斯网络的追尾预警方法。可用于避免车辆追尾事故,保证机动车安全行驶。背景技术0002随着现代交通的日益发达和汽车工业的不断发展,随之而来的是交通事故的频繁发生。据统计,所有的交通事故中,汽车追尾事故是主要形式,约占交通事故的6070。其中汽车追尾事故的发生主要是由行车速度过快,行车间距过小,刹车不及时等因素造成。这种事故尤其在驾驶员疲劳驾驶、注意力不集中等状态和雨、雪、雾等环境下最容易发生。因此,如何避免和减少车辆追尾事故的发生,成为交通安全领域亟待解决的问题。0003欧洲的一项研究表明驾驶员只要在发生碰撞05S前得到预警,就可以避免至少60追尾事故。

16、的发生;若提前1S预警,则可避免90的事故发生。因此,研究车辆避撞预警方法,防止后车追尾前车,对于提高车辆行驶安全,减少追尾事故的发生,具有重要的意义。0004现有的避撞预警方法主要有安全时间逻辑方法与安全距离逻辑方法两类,然而这两种方法在真实环境下的适应性都不够,其主要存在以下两个方面的问题00051没有全面系统地揭示人、车、路、环境等因素对追尾事故的影响。例如,东南大学的专利“一种高速公路汽车防追尾前车的自适应报警方法”专利申请号2012102035078,授权公告号CN102745194A。该发明基于安全时间逻辑方法,通过初始模式选择和车载传感器采集车辆行驶相关信息,首先通过判别驾驶员意。

17、图设置报警抑制策略以减少虚警率,进而计算出自车与前车碰撞时间TTC,并根据驾驶员特性和当前驾驶环境实时计算出当前报警安全门限值TW,最后依据所计算出的自车与前车的碰撞时间TTC和报警安全门限值TW,判别当前是否存在潜在的追尾前车的危险,当判别存在潜在危险时,发出报警指令。该专利的不足是,仅针对人、车、路、环境这些局部原因来寻找解决方案,没有全面系统地揭示人、车、路、环境对追尾事故的影响,以及这些因素之间的关联关系,无法避免追尾事故发生。00062不能保证驾驶员在接受预警后有充足的时间正确操作车辆,导致追尾事故发生。例如,江苏大学拥有的专利技术“一种高速公路追尾碰撞预警及防护系统及控制方法”专利。

18、申请号2012103358974,授权公告号CN102849009A。该专利包括驾驶员路况选择模块、环境监测模块、主控制模块和执行模块。驾驶员路况选择包括干燥路面,潮湿路面,冰雪路面三种选择情况。驾驶员根据实际路面情况选择相对应的开关位置,通过激光测距仪实时测量自车与后车的距离,距离信息、自车车速信息和路面选择开关位置信息得到的实时临界安全车距与测量的实际车距进行比较,并根据危险程度的大小控制高位制动灯的亮起和主动安全头枕触发单元的启动。该专利的不足是,在危险情况下预警不及时,使驾驶员没有足够的时间来避免即将发生的追尾事故。说明书CN104182618A2/10页7发明内容0007为了解决上述。

19、技术问题,本发明提供一种基于贝叶斯网络的追尾预警方法,其包括,0008S1选取天气情况Y1、道路情况Y2、驾驶员反应时间Y3、后车与前车的距离Y4、后车速度Y5、后车相对于前车的速度差Y6和后车加速度Y7作为追尾事故Y8的变量节点,得到追尾事故的贝叶斯网络的节点集Y为YY1,Y2,Y3,Y4,Y5,Y6,Y7,Y8,并确定各个变量节点的值域;0009S2仿真追尾事故的交通场景,构成追尾事故的贝叶斯网络的学习数据集,并对该学习数据集进行离散处理;0010S3利用节点集Y和离散的学习数据集,构造追尾事故的贝叶斯网络的结构;0011S4并计算该结构中各个节点的条件概率分布;0012S5使用交通模拟软。

20、件得到检验数据样本,预测检验数据样本中除追尾事故Y8的各个节点在下一时刻的取值并进行离散处理;0013S6利用所述贝叶斯网络,计算下一时刻发生追尾事故的概率;0014S7设定阀值,若下一时刻发生追尾事故的概率大于阀值,则采取预警措施。0015在上述技术方案的基础上,所述步骤S1中确定各个变量节点的值域包括0016设天气情况Y1包括晴、雨、雪;0017设道路情况Y2包括干燥路面、潮湿路面、冰雪路面;0018设驾驶员反应时间Y3分为三个区域Y305S、05SY315S、Y315S;0019设后车与前车的距离Y4分为两个区域Y4L、Y4L,其中,L是车辆的期望安全车距;0020设后车速度Y5分为三个。

21、区域Y521M/S、21M/SY528M/S、Y528M/S;0021设后车相对于前车的速度差Y6分为两个区域Y60、Y60;0022设后车加速度Y7分为三个区域Y7025M/S2、025M/S2Y7025M/S2、Y7025M/S2;0023设追尾事故Y8包括没有发生追尾事故、发生追尾事故。0024在上述技术方案的基础上,所述步骤S2包括0025根据节点集Y中包含的节点,仿真车辆追尾事故的交通场景,得到M条数据样本D1,DI,DM,构成追尾事故的贝叶斯网络的学习数据集D1D1,DI,DM,其中I1,M,DI包括节点集Y中的所有节点的取值情况;对学习数据集D1进行离散处理,得到学习数据集D2E。

22、1,EI,EM,其中I1,M,EI是DI离散后的数据样本。0026在上述技术方案的基础上,所述步骤S3包括0027利用节点集Y和学习数据集D2构造追尾事故的贝叶斯网络的结构N;0028构造贝叶斯网络的结构N,其具体实现如下0029S31将节点集Y中所有节点进行排序,得到排序Y1,Y2,Y3,Y5,Y6,Y4,Y7,Y8;0030S32节点集Y中每个节点YJ的父节点集是YJ,父节点集YJ中包含的父节点个数的上界U4,其中J1,8;0031S33由节点集Y、学习数据集D2、排序和父节点个数的上界U构造追尾事故的说明书CN104182618A3/10页8贝叶斯网络的结构N。0032在上述技术方案的基。

23、础上,所述S4中计算该结构中各个节点的条件概率分布包括0033设参数向量其中,是需要计算的节点集Y中各个节点YJ的条件概率分布,J1,8,其具体包括以下步骤0034S41确定参数向量的先验概率分布P;0035S42用似然函数L|D2PD2|归纳学习数据集D2对参数向量的影响;0036S43利用贝叶斯公式将所述先验概率分布P和所述似然函数L|D2结合,得到参数向量的后验概率分布00370038其中,P|D2是参数向量的后验概率分布,PD2是学习数据集D2的先验概率;0039S44根据步骤S43得到的参数向量的后验概率分布P|D2,对参数向量进行估计00400041其中,是参数向量的估计向量,是计。

24、算得到的节点集Y中节点YJ的条件概率分布。0042在上述技术方案的基础上,所述步骤S5包括0043根据节点集Y中包含的节点,仿真车辆追尾事故的交通场景,得到一条检验数据样本DN,该检验数据样本DN包括节点集Y中的所有节点的取值情况;0044预测检验数据样本DN中除追尾事故Y8的各个节点在下一时刻的取值,其包括以下步骤0045S51根据迭代法,计算检验数据样本DN中的天气情况Y1、道路情况Y2、驾驶员反应时间Y3在下一时刻的取值0046GBG;0047其中,G包含检验数据样本DN中的天气情况Y1、道路情况Y2、驾驶员反应时间Y3的取值;G包含检验数据样本DN中的天气情况Y1、道路情况Y2、驾驶员。

25、反应时间Y3在下一时刻的取值;B是迭代矩阵;0048S52根据卡尔曼滤波器,计算检验数据样本DN中后车与前车的距离Y4、后车速度Y5、后车相对于前车的速度差Y6和后车加速度Y7在下一时刻的取值0049S53对检验数据样本DN中除追尾事故Y8的各个节点在下一时刻的取值进行离散处理,得到离散证据样本DS。0050在上述技术方案的基础上,所述步骤S52包括0051S521根据“当前”统计模型,建立车辆的状态方程其中,所述“当前”统计模型是通过瑞利分布来描述车辆加速度的统计特性;说明书CN104182618A4/10页900520053其中,K是当前时刻的序数,K1是下一时刻的序数;XKSKVKAKT。

26、表示K时刻车辆的状态向量;SK是K时刻车辆的位置;VK是K时刻车辆的速度;AK是K时刻车辆的加速度;XK1|K是K1时刻车辆状态的预测向量;K1|K是车辆的状态转移矩阵;XK|K是K时刻车辆状态的估计向量;UK是K时刻车辆的控制矩阵;为车辆“当前”加速度的均值,且WK是满足正态分布的过程噪声向量,且WKN0,QK,QK为过程噪声的协方差矩阵,且是机动时间常数的倒数,是“当前”加速度的方差,QOZ是前后两个时刻的时间差T0的函数,且O1,2,3,Z1,2,3;0054S522建立车辆的观测方程0055ZKHKXKVK;0056其中,ZK是K时刻车辆的观测向量;HK是车辆的观测矩阵;VK是满足正态。

27、分布的观测噪声向量,且VKN0,RK,RK为K时刻观测噪声的协方差矩阵;0057S523卡尔曼滤波器的初始化确定车辆在K1时刻状态的估计向量XK1|K1和状态向量的误差协方差矩阵PK1|K1,其中,K1是前一时刻的序数;0058S524卡尔曼滤波器的预测过程根据步骤S523得到的K1时刻状态的估计向量XK1|K1、状态向量的误差协方差矩阵PK1|K1,计算K时刻车辆状态的预测向量XK|K1及其预测的误差协方差矩阵PK|K10059XK|K11K|K1XK1|K1;0060PK|K1K|K1PK1|K1TK|K1QK1;0061其中,0062S525卡尔曼滤波器的滤波过程计算K时刻车辆状态的估计。

28、向量XK|K及其状态向量的误差协方差矩阵PK|K0063XK|KXK|K1KKZKHKXK|K1;0064PK|KIKKHKPK|K1;0065其中,KK是卡尔曼滤波器的增益矩阵,且KKPK|K1HTKHKPK|K1HTKRK1;I是单位矩阵;0066S526卡尔曼滤波器的参数更新过程根据车辆“当前”加速度的均值计算“当前”加速度的方差说明书CN104182618A5/10页1000670068其中,AMAX是车辆加速度的正上限;AMAX是车辆加速度的负下限;0069根据“当前”加速度的方差更新过程噪声的协方差矩阵QK;0070S527根据K时刻车辆状态的估计向量XK|K和步骤S524中的预测。

29、方程,可以得到K1时刻前车状态的预测向量X1K1|K和后车状态的预测向量X2K1|K;0071其中,X1K1|KS1K1|KV1K1|KA1K1|KT,S1K1|K是前车在下一时刻的位置,V1K1|K是前车在下一时刻的速度,A1K1|K是前车在下一时刻的加速度;X2K1|KS2K1|KV2K1|KA2K1|KT,S2K1|K是后车在下一时刻的位置,V2K1|K是后车在下一时刻的速度,A2K1|K是后车在下一时刻的加速度;0072S528利用前车状态的预测向量X1K1|K和后车状态的预测向量X2K1|K计算后车与前车的距离Y4、后车速度Y5、后车相对于前车的速度差Y6和后车加速度Y7在下一时刻的。

30、取值0073Y4S1K1|KS2K1|K;0074Y5V2K1|K;0075Y6V2K1|KV1K1|K;0076Y7A2K1|K;0077在上述技术方案的基础上,计算下一时刻发生追尾事故的概率PC包括0078根据离散证据样本DS,前、后车辆在下一时刻发生追尾事故的概率PC为00790080其中,E是证据节点的集合,本发明中E包括节点集Y中除追尾事故Y8的各个节点;0081根据变量消元法和各个节点的条件概率分布可得00820083由此,可得前、后车辆在下一时刻发生追尾事故的概率PC。0084在上述技术方案的基础上,所述预警措施为通过音频和视频报警。0085在上述技术方案的基础上,若驾驶员在接收。

31、到报警之后,没有采取制动措施,车辆自动制动。0086本发明有益效果在于通过构造追尾事故的贝叶斯网络结构,全面系统地揭示人、车、路、环境对追尾事故的影响,提高了车辆对本车驾驶员预警的准确性。通过预测前、后车辆在下一个时刻发生追尾事故的概率,后车可以提前将预警发送给本车驾驶员,使驾驶员有足够的时间来避免即将发生的追尾事故。说明书CN104182618A106/10页11附图说明0087图1是本发明的整体流程图;0088图2是本发明构造的追尾事故的贝叶斯网络的结构图;0089图3是本发明中计算各个节点的条件概率分布的子流程图;0090图4为本发明的仿真结果图。具体实施方式0091下面结合附图和具体实。

32、施方式对本发明做进一步的详细说明。0092有关本发明的具体步骤和相关技术实施方法,现结合附图详细说明。0093参照图1,本发明的实现步骤如下0094步骤S1确定追尾事故的贝叶斯网络的节点集。0095选取天气情况Y1、道路情况Y2、驾驶员反应时间Y3、后车与前车的距离Y4、后车速度Y5、后车相对于前车的速度差Y6和后车加速度Y7作为追尾事故Y8的变量节点,得到追尾事故的贝叶斯网络的节点集Y为0096YY1,Y2,Y3,Y4,Y5,Y6,Y7,Y8;0097并确定节点集Y中各个节点的值域0098设天气情况Y1包括晴、雨、雪,其分别用1,2,3表示;0099设道路情况Y2包括干燥路面、潮湿路面、冰雪。

33、路面,其分别用4,5,6表示;0100设驾驶员反应时间Y3分为三个区域Y305S、05SY315S、Y315S,其分别用7,8,9表示;0101设后车与前车的距离Y4分为两个区域Y4L、Y4L,其分别用10,11表示;0102设后车速度Y5分为三个区域Y521M/S、21M/SY528M/S、Y528M/S,其分别用12,13,14表示;0103设后车相对于前车的速度差Y6分为两个区域Y60、Y60,其分别用15,16表示;0104设后车加速度Y7分为三个区域Y7025M/S2、025M/S2Y7025M/S2、Y7025M/S2,其分别用17,18,19表示;0105设追尾事故Y8包括没有发。

34、生追尾事故、发生追尾事故,其分别用20,21表示;0106其中,L是车辆的期望安全车距;0107步骤S2根据节点集Y中包含的节点,相应地设置交通模拟软件VISSIM软件中的参数,仿真车辆追尾事故的交通场景,得到M条数据样本D1,DI,DM,构成追尾事故的贝叶斯网络的学习数据集D1D1,DI,DM,其中I1,M,DI包括节点集Y中的所有节点的取值情况;0108根据设置的值域,对学习数据集D1进行离散处理,得到学习数据集D2E1,EI,EM,其中I1,M,EI是DI离散后的数据样本。0109步骤S3利用节点集Y和学习数据集D2构造追尾事故的贝叶斯网络的结构N;0110本发明采用K2方法构造贝叶斯网。

35、络的结构N,其具体实现如下0111S31将节点集Y中所有节点进行排序,得到排列Y1,Y2,Y3,Y5,Y6,Y4,Y7,Y8;0112S32节点集Y中每个节点YJ的父节点集是YJ,父节点集YJ中包含的父说明书CN104182618A117/10页12节点个数的上界U4,其中J1,8;0113S33由节点集Y、学习数据集D2、排列和父节点个数的上界U构造追尾事故的贝叶斯网络的结构N,见附图2。0114步骤S4根据贝叶斯估计法,计算上述结构N中各个节点的条件概率分布;0115设参数向量其中,是需要计算的节点集Y中各个节点YJ的条件概率分布,J1,8,参照图3,本步骤的具体实现如下0116S41确定。

36、参数向量的先验概率分布P;0117S42用似然函数L|D2PD2|归纳学习数据集D2对参数向量的影响;0118S43利用贝叶斯公式将步骤S41的先验概率分布P和步骤S42的似然函数L|D2结合,得到参数向量的后验概率分布01190120其中,P|D2是参数向量的后验概率分布,PD2是学习数据集D2的概率,服从狄利克雷分布;0121S44根据步骤S43得到的参数向量的后验概率分布P|D2,对参数向量进行估计01220123其中,是参数向量的估计向量,是估计得到的节点集Y中节点YJ的条件概率分布。0124步骤S5根据节点集Y中包含的节点,相应地设置交通模拟软件VISSIM软件中的参数,仿真车辆追尾。

37、事故的交通场景,得到一条检验数据样本DN,该检验数据样本DN包括节点集Y中的所有节点的取值情况;0125预测检验数据样本DN中除追尾事故Y8的各个节点在下一时刻的取值0126S51根据迭代法,计算检验数据样本DN中的天气情况Y1、道路情况Y2、驾驶员反应时间Y3在下一时刻的取值0127GBG;0128其中,G包含检验数据样本DN中的天气情况Y1、道路情况Y2、驾驶员反应时间Y3的取值;G包含检验数据样本DN中的天气情况Y1、道路情况Y2、驾驶员反应时间Y3在下一时刻的取值;B是迭代矩阵;0129S52根据卡尔曼滤波器,计算检验数据样本DN中后车与前车的距离Y4、后车速度Y5、后车相对于前车的速。

38、度差Y6和后车加速度Y7在下一时刻的取值其具体包括以下步骤0130S521根据“当前”统计模型,建立车辆的状态方程其中,所述“当前”统计模型是通过瑞利分布来描述车辆加速度的统计特性;0131说明书CN104182618A128/10页130132其中,K是当前时刻的序数,K1是下一时刻的序数;0133XKSKVKAKT表示K时刻车辆的状态向量;SK是K时刻车辆的位置;VK是K时刻车辆的速度;AK是K时刻车辆的加速度;XK1|K是K1时刻车辆状态的预测向量;K1|K是车辆的状态转移矩阵;XK|K是K时刻车辆状态的估计向量;UK是K时刻车辆的控制矩阵;为车辆“当前”加速度的均值,且WK是满足正态分。

39、布的过程噪声向量,且WKN0,QK,QK为过程噪声的协方差矩阵,且是“当前”加速度的方差,QOZ是前后两个时刻的时间差T0的函数,且O1,2,3,Z1,2,3;0134S522建立车辆的观测方程0135ZKHKXKVK;0136其中,ZK是K时刻车辆的观测向量;HK是车辆的观测矩阵;VK是满足正态分布的观测噪声向量,且VKN0,RK,RK为K时刻观测噪声的协方差矩阵;0137S523卡尔曼滤波器的初始化确定车辆在K1时刻的状态向量XK1|K1和状态向量的误差协方差矩阵PK1|K1,其中,K1是前一时刻的序数;0138S524卡尔曼滤波器的预测过程根据步骤S523得到的K1时刻状态的估计向量XK。

40、1|K1、状态向量的误差协方差矩阵PK1|K1,计算K时刻车辆状态的预测向量XK|K1及其预测的误差协方差矩阵PK|K10139XK|K11K|K1XK1|K1;0140PK|K1K|K1PK1|K1TK|K1QK1;0141其中,0142S525卡尔曼滤波器的滤波过程计算K时刻车辆状态的估计向量XK|K及其状态向量的误差协方差矩阵PK|K0143XK|KXK|K1KKZKHKXK|K1;0144PK|KIKKHKPK|K1;0145其中,KK是卡尔曼滤波器的增益矩阵,且KKPK|K1HTKHKPK|K1HTKRK1,I是单位矩阵;0146S526卡尔曼滤波器的参数更新过程根据车辆“当前”加速。

41、度的均值计算“当前”加速度的方差说明书CN104182618A139/10页1401470148其中,AMAX是车辆加速度的正上限;AMAX是车辆加速度的负下限;根据“当前”加速度的方差更新过程噪声的协方差矩阵QK;0149S527根据K时刻车辆状态的估计向量XK|K和步骤S524中的预测方程,可以得到K1时刻前车状态的预测向量X1K1|K和后车状态的预测向量X2K1|K;0150其中,X1K1|KS1K1|KV1K1|KA1K1|KT,S1K1|K是前车在下一时刻的位置,V1K1|K是前车在下一时刻的速度,A1K1|K是前车在下一时刻的加速度;X2K1|KS2K1|KV2K1|KA2K1|K。

42、T,S2K1|K是后车在下一时刻的位置,V2K1|K是后车在下一时刻的速度,A2K1|K是后车在下一时刻的加速度;0151S528利用前车状态的预测向量X1K1|K和后车状态的预测向量X2K1|K计算后车与前车的距离Y4、后车速度Y5、后车相对于前车的速度差Y6和后车加速度Y7在下一时刻的取值0152Y4S1K1|KS2K1|K;0153Y5V2K1|K;0154Y6V2K1|KV1K1|K;0155Y7A2K1|K;0156对检验数据样本DN中除追尾事故Y8的各个节点在下一时刻的取值进行离散处理,得到离散证据样本DS;0157S6利用构造的贝叶斯网络的结构N,在得到离散证据样本DS的条件下,。

43、计算前、后车辆在下一时刻发生追尾事故的概率PC;0158根据离散证据样本DS,发生追尾事故即Y821时,前、后车辆在下一时刻发生追尾事故的概率PC为01590160其中,E是证据节点的集合,本发明中E包括节点集Y中除追尾事故Y8的各个节点;0161根据变量消元法和各个节点的条件概率分布可得01620163由此可得,前、后车辆在下一时刻发生追尾事故的概率PC。0164步骤S7设置阀值,如本实施例阀值为05,判断获得的下一时刻发生追尾事故的概率PC的高、低若PC05,则下一时刻发生追尾事故的概率高,后车应及时向本车驾驶员发送预警通过音频和视频提醒驾驶员采取避撞措施;若驾驶员在接收到报警之后,没有采。

44、取制动措施,车辆自动制动。反之,则下一时刻发生追尾事故的概率低,后车不需要向说明书CN104182618A1410/10页15本车驾驶员发送预警。0165本发明的效果可通过以下仿真进一步说明0166本发明利用MATLAB构造追尾事故的贝叶斯网络,并预测前、后车辆在下一时刻发生追尾事故的概率,如果下一时刻发生追尾事故的概率低,则后车在下一时刻的行驶过程中不存在追尾碰撞的风险,用0表示;如果发生追尾事故的概率高,则后车在下一时刻的行驶过程中存在追尾碰撞的风险,用1表示。将预测的结果与真实情况进行对比,如图4所示,其中曲线1为前、后两车辆发生追尾碰撞风险的真实情况,曲线2为根据本发明构造的贝叶斯网络。

45、,对前、后车辆在下一时刻发生追尾碰撞风险的预测情况。从图4可以看出,曲线2与曲线1重合,即预测的结果与真实情况一致。因此,本发明提出的基于贝叶斯网络的追尾预警方法,能提高车辆对本车驾驶员预警的准确性;提前将预警发送给本车驾驶员,使驾驶员有足够的时间来避免即将发生的追尾事故,有效预防追尾事故的发生。0167对于本领域的技术人员来说,可根据以上描述的技术方案以及构思,做出其它各种相应的改变以及变形,而所有的这些改变以及变形都应该属于本发明权利要求的保护范围之内。说明书CN104182618A151/3页16图1说明书附图CN104182618A162/3页17图2图3说明书附图CN104182618A173/3页18图4说明书附图CN104182618A18。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 物理 > 计算;推算;计数


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1