香烟过滤嘴材料 本发明涉及在香烟过滤嘴中的过滤嘴主体材料。
用于香烟的含纤维过滤嘴是众所周知的。在一种已知的结构中,过滤嘴主体由一束连续的长丝构成,一般为醋酸纤维素(醋酸酯)长丝,其排列平行于香烟的纵轴。在另一种已知的结构中,过滤嘴主体由压缩成圆柱状的折叠纸或槽纹纸构成。这样的结构包含一个过滤元件,因此称之为“单”过滤嘴。另一种已知的所谓“双”过滤嘴的结构含有两个过滤元件,例如一个纸过滤嘴朝向香烟的内部,一个丝束过滤嘴朝向香烟的外部。还有一种已知的所谓“三”过滤嘴的结构,类似于双过滤嘴只是在上述的两种过滤元件中间插入一定量的活性炭。
人们已知,纸过滤嘴从烟草烟雾中除去焦油比丝束过滤嘴更有效。考虑到低焦油香烟这个趋势,特别需要高的除去焦油效率。当吸香烟时,纸过滤嘴从烟草烟雾中吸收水汽,结果变得朝湿而易于压缩,增加烟通过过滤嘴的阻力。一般香烟过滤嘴地外端会随着香烟的抽吸而变色。已知醋酸酯过滤嘴一般显示淡褐色的均匀污迹,而纸过滤嘴显示颜色较深的斑点状污迹,后种很不雅观。单过滤嘴中,尽管纸过滤嘴的生产工艺较复杂,但由于纸的成本低于醋酸酯,纸过滤嘴的成本仍低于醋酸酯丝束过滤嘴。双过滤嘴由于其生产过程更复杂,一般生产成本较纸单过滤嘴或丝束单过滤嘴高,三过滤嘴的成本更高。本发明的目的之一是提供一种除去焦油效率高的香烟过滤嘴,它至少能克服普通的纸过滤嘴的某些缺点。
本发明提供了一种香烟过滤嘴,其特点是过滤嘴的主体含有的是一种溶纺纤维素短纤维的水力缠结织物。本发明进一步提供一种具有这类过滤嘴的香烟。
溶纺纤维素纤维是已知的材料,例如在US-A-4,246,221中描述了其制备。这种纤维很容易生物降解。它们可购自Courtaulds plc,其商标为‘Tencel’。其制备方法为:将纤维素先溶解在一种溶剂中,将生成的溶液通过一个抽丝板挤出到一个凝固浴中,凝固浴的作用是沉淀出纤维素纤维,从纤维上洗去溶剂。这一过程称之为溶液纺丝,因此生成的纤维也可称之为溶纺纤维素纤维。通常用的纤维素是木浆。溶剂可以是一种N-氧化叔胺,最好是N-氧化N-甲基吗啉,而且通常还含少量的水。如果溶剂是N-氧化叔胺,凝固浴最好是水性浴。基本上由溶纺纤维素纤维组成的织物称之为溶纺纤维素织物。溶液纺丝法应区别于其他已知的基于纤维素的某种化学衍生物的形成和分解的制备纤维素纤维的方法,例如粘胶法。
水力缠结是通过使用高速水流或水帘的基料中的纤维相互机械缠结来形成织物的方法。一般这种基料包括一层或多层平行的短纤维例如经梳理的基料。当使用两层或多层纤维时,各层的放置应使纤维基本上相互平行,最好在各层的纤维相互间有一定的角度。后一种结构形式能在织物的各种方向的平面上提供更为均一的物理性能,例如撕裂强度。基料还可以包括一层或多层(最好是一层)的纸和一层或多层的平行短纤维。纸可以含有溶纺纤维素纤维和/或其他类型的纤维,如单用木浆纤维或醋酸酯纤维或其混合物。水力缠结织物也可称为射流喷网法非织造织物。水力缠结织物含有极少量粘合剂或不含粘结剂。在US-A-3,485,706中描述了水力缠结方法和水力缠结织物,其中的内容参考结合于本发明中。
水力缠结织物可以完全或基本上完全由溶纺纤维素纤维组成。织物也可由溶纺纤维素纤维和用于香烟过滤嘴的一种或多种其他类型的纤维例如醋酸纤维素酯纤维或木浆纤维的混合物组成。用于经受水力缠结处理的基料的层,每一层由一种纤维组成或由短纤维混合物组成。各个层的组成可以相同,也可以不同。水力缠结织物可包括至少25重量%,至少50重量%或至少75重量%的溶纺纤维素纤维。
水力缠结织物的单位重量一般类似于已知的纸过滤嘴使用的纸的单位重量,一般其范围为15-150克/米2,最好为2-80克/米2。要经受水力缠结处理的织物基料中的层数,其范围为1-10,最好为1-5。
溶纺纤维素纤维和选择的其他类型纤维的纤度一般范围为0.05-20分特,经常为1-5分特。
在水力缠结织物中含有的纤维最好是原纤化的。可将溶纺纤维素纤维在湿态例如在水缠绕过程中进行机械研磨达到原纤化。原纤化导致很细的纤维(原纤维)从纤维的主体部分上脱离,因此单根纤维获得“表面毛状”的外观。原纤化的溶纺纤维素纤维与未原纤化的纤维相比,比表面积增大,这一点被认为可能对提高过滤效率有利。
过滤嘴中水力缠结织物的安装,应使织物的主平面平行于香烟的纵轴。织物最好是一种褶裥织物或槽纹织物。这种织物可在生产纸过滤嘴的普通设备上制成过滤嘴。已经发现在这样的设备上用水力缠结织物加工制造成过滤嘴比用纸更快,因此降低了生产成本。
水力缠结织物可用于取代纸来制备各种已知结构形式的过滤嘴,例如双过滤嘴、三过滤嘴特别是单过滤嘴。
本发明的香烟过滤嘴与已知的醋酸酯纤维素丝束过滤嘴相比具有较高的过滤(烟尘颗粒的去除)效率,而与某些已知纸过滤嘴相比过滤效率则相似。本发明的过滤嘴能减少香烟的‘纸质的’或其他令人不愉快的气味。这一点令人惊奇,因为溶纺纤维素纤维属于纤维素纤维。众所周知普通的纤维素纤维,如木浆和粘胶人造纤维确实使香烟在抽吸时具有‘纸质’气味。当抽香烟时,本发明的过滤嘴末端最终的外观(污迹着色形式)与普通的醋酸酯纤维素丝束过滤嘴差不多,但明显优于普通纸过滤嘴。当抽香烟时,本发明的过滤嘴保持良好的回弹性能(抗压压性)和空气流动特性。这一点对含纤维素纤维的过滤嘴是很重要的。本发明的过滤嘴用作单过滤嘴是很有利的。
现用下面的实施例说明本发明:
实施例1
将溶纺纤维素纤维(1.7分特,25毫米长,半消光,Courtaulds plc的商标为‘Tencel’的商品)梳理成一基料。将两条基料组合起来,用8个喷嘴和100巴的峰值水压进行水力缠结,制成单位重量为33克/米2的水力缠结溶纺纤维素织物。在纵向上和横向上织物的拉伸强度和伸长分别为3.6千克/英寸和1.7千克/英寸,24.1%和72.7%。
在普通的生产纸过滤嘴的设备上,将织物制成槽纹状,制成香烟过滤嘴。此种过滤嘴的质量经测试为优秀。与普通的纸过滤嘴和醋酸酯纤维素(CA)丝束过滤嘴相比,这种过滤棒性质列于表1(在括号中给出性质的百分变异系数)。
表 1
类型 过滤嘴棒 周长,过滤嘴棒 27毫米过滤嘴 过滤效率 硬度
重量/克 毫米 RTD RTD % %溶纺纤维素 0.882 24.37 606 155 73 92.1
(A) (2.8) (0.2) (6.1) (15.0)溶纺纤维素 0.803 24.49 429 13 66 86.1
(B) (1.9) (0.2) (3.7) (3.3) (9.9)
纸 0.857 24.46 433 119 76 89.6
(0.7) (0.2) (2.7) (2.9) (9.8) CA丝束 - - - 100 68 - CA丝束 - - - 154 67 -
用溶纺纤维素(样品B)、纸和醋酸酯纤维素三种过滤嘴制备的香烟,在抽烟试验中进行了评价。结果表明,尽管溶纺纤维素过滤嘴,不是最佳的香烟嘴,但溶纺纤维素过滤嘴和纸过滤嘴的香烟,在抽吸时的主观效果结果上是相同的。结果列于表2:
表 2
烟 雾 醋酸酯纤维素 溶纺纤维素 纸 搭接长度,毫米 35.0 35.0 35.0 FTC焦油,毫克/支烟 4.5 4.4 3.8 TPM,毫克/支烟 5.4 5.1 4.4 尼古丁,毫克/支烟 0.44 0.37 0.32 水,毫克/支烟 0.43 0.39 0.33 每支烟抽吸数 7.7 7.4 7.2 过滤效率% 62 69 77 香烟 总RTD水的毫米高 111 117 112 静态燃烧时间,分 7.2 7.2 7.4 过滤嘴 RTD,水的毫米高 130 122 123 过滤嘴纸长度,毫米 32.0 32.0 32.0 换气率,% 51 43 36实施例2
将溶纺纤维素纤维(1.7分特,25毫米)铺制成基料,然后进行水力缠结形成实施例1中描述的织物。进一步的细节和织物的性质列于表3:
表 3 料号 纤维光泽 指 标 单位重量,克/米2 厚度,毫米 A 无光 34克/米2 33.2 0.33 B 光亮 34克/米2 36.6 0.36 C 光亮 29克/米2 30.5 0.33 D 光亮 29克/米2 42.4 0.38 E 光亮 同B,高MD取向 32.9 0.39 F 光亮 同B,高针剌压力 36.6 0.32 G 光亮 同B,高挤压/低厚度 37.6 0.35 H 光亮 同B,背面带纸 59.0 0.34 I 光亮 同B,表面压花 39.7 0.36 J 无光 同A,表面压花 35.6 0.34
MD=纵向。在样品H中,将溶纺纤维素纤维在溶纺纤维素纸上干法成网,提供随后进行水力缠结的一种复合物。样品I和J是将溶纺纤维素纤维铺放在一个带有24目平纹图案的带子上,用水力缠结进行压花的。
由基料A-J制备香烟过滤嘴。进一步的细节和试验数据列于表4。
表4料号基料宽度,毫米褶皱水平过滤嘴棒重量,克变异系数过滤嘴棒周长,毫米变异系数过滤嘴棒RTD变异系数 RTD 24.20C过滤嘴27毫米 PD FE过滤效率, % A 200 275 0.779 1.8 24.27 0.7 469 3.4 477 - - 325 0.787 1.4 24.24 0.3 495 3.0 500 132.0 66 375 0.771 1.4 24.19 0.4 490 3.4 489 - - B 200 275 0.886 1.5 24.31 0.3 482 5.3 495 - - 325 0.883 1.5 24.39 0.4 527 3.8 552 139.2 69 375 0.898 1.3 24.43 0.4 612 3.0 648 - - C 200 250 0.751 1.9 24.12 0.3 356 5.2 349 - - 275 0.768 2.9 24.26 0.3 425 5.2 431 115.3 64 325 0.717 1.3 24.19 0.4 390 3.4 389 - - D 200 300 0.937 1.4 24.58 0.5 583 5.2 640 154.3 71 350 0.926 1.0 24.61 0.5 623 2.9 689 - - 400 0.923 1.7 24.74 0.6 641 3.4 732 - - E 200 275 0.810 1.4 24.24 0.3 422 2.9 426 - - 325 0.820 1.3 24.28 0.5 454 3.1 463 - - 375 0.820 1.1 24.38 0.5 464 2.8 485 123.2 66 F 200 275 0.903 1.8 24.41 0.5 514 4.5 541 139.4 73 325 0.910 1.2 24.46 0.4 561 3.0 598 - - 375 0.913 1.4 24.43 0.5 611 3.9 647 - - G 200 275 0.838 1.6 24.42 0.4 482 4.6 509 - - 325 0.847 1.3 24.45 0.5 506 3.7 538 132.0 68 375 0.834 2.3 24.48 0.5 520 4.1 557 - - H 200 290 1.362 0.8 24.58 0.9 - - - - - 310 1.344 1.0 24.60 0.5 - - - - - 330 1.354 0.9 24.59 0.4 - - - - - I 200 275 0.904 1.3 24.42 0.5 489 2.9 516 - - 325 0.917 2.3 24.48 0.5 523 5.4 560 - - 375 0.895 1.3 24.53 0.6 522 3.5 566 140.3 70 J 200 275 0.845 1.2 24.06 0.3 387 3.2 374 - -
(1)在表中的横线表示未进行测量。(2)Corr.Level=褶皱水平,所列的值是用人为单位表示的机器褶皱力。每种基料在三种褶皱力作用下转变成过滤嘴,这三种力是最小的力即用其产生的过滤嘴具有可接受的低的过滤嘴压力降变异系数;最大的力即在基料不致开裂下所能使用的力;在这两个力之间的中值力。最小和最大的力定义了材料的能力范围。(3)CV=变异系数,%。(4)RTD=抽吸阻力,以水的毫米高表示。(5)RTD 24.20=规一化周长为24.20毫米过滤嘴的抽吸阻力,以水的毫米高表示。(6)27毫米端PD=沿长为27毫米的过滤嘴棒的压力降,以水的毫米高表示。(7)FE=过滤效率,按从总产生的颗粒物质中除去的百分数测定。
为比较起见,普通27毫米纸过滤嘴的过滤效率从在RTD60毫米的65%线性增加到在RTD200毫米的90%。普通的27毫米醋酸酯纤维过滤嘴的过滤效率,在RTD100毫米为59%,在RTD152毫米为67%,在RTD195毫米为72%。