聚烯烃纤维和采用该纤维制成的非织造织物 【技术领域】
本发明涉及一种聚烯烃纤维和采用该纤维制成的非织造织物。更精确地说,本发明涉及一种聚烯烃纤维,它可用热熔粘合方法处理成具有高强度和优良手感的非织造织物,以及涉及采用该纤维制成的非织造织物。
技术背景
由于采用热熔粘合纤维制成的非织造织物不含如粘合剂之类的化学结合剂,织物的安全性能优良,因此已得到广泛应用。特别是由于聚烯烃类的非织造织物在性能和经济性方面非常优异,它们已应用于很多领域中,如工作服、尿布和卫生巾之类的卫生用品、民用工程材料、农用材料和工业材料等。制造热熔粘合类的非织造织物方法大致可分成利用热空气的贯穿空气法和加热滚筒法。尽管贯穿空气法可用于聚乙烯/聚丙烯复合纤维,其存在问题是生产率低,因为其处理速度低于加热滚筒法。另一方面,由于处理速度高,加热滚筒法具有生产率高的优点。作为适合采用加热滚筒法的纤维,在日本专利公开号Sh062-156310中推荐了包含乙烯/丙烯无规共聚物的聚丙烯纤维,它具有低于132℃的软化点和含有规定数量的乙烯单元。然而,该纤维存在这样的缺陷:采用该纤维制成的非织造织物的手感较差,以及纤维的处理温度范围太窄,在该温度范围内才能制造出在实际使用中具有足够强度的非织造织物。在日本专利公开号Hei2-112456中推荐了包含低立构规整性聚丙烯纤维的非织造织物,它具有专门地全同立构五价物部分。尽管该非织造织物手感良好,但其强度不满意。尽管在日本专利公开号Hei2-264012中推荐了掺入专门化合物的聚丙烯纤维,但其手感和强度均不满意。在日本专利公开号Hei4-228666中公开了一种制造非织造织物的方法,其中纤维被强烈地热熔粘合,因而具有高的强度,通过从纤维表面向中心的氧化降解,所采用的纤维形成三个区域(即表面区、中间区和内部区),其聚合物的分子量从表面向中心逐渐增加。此外,在日本专利公开号Hei7-11508中公布了这样的事实:采用具有皮芯结构的长纤维或短纤维,可得到纤维被强烈热熔粘合的非织造织物。然而,从非织造织物强度与手感相匹配的观点看,这些非织造织物不能认为是满意的。
本发明的说明
如上所述,通过常规技术,不可能制造出在强度和手感上同时满意的非织造织物。因此,本发明的目的是解决上述问题,并提出聚烯烃纤维来制备高强度和手感优异的非织造织物。
本发明的方面或实施例如下:
(1)一种表层为低取向区和内层为高取向区的聚烯烃纤维,用Raman分光镜测定的取向参数,在低取向区比高取向区小2.2以上,但不超过8.0。
(2)在以上(1)中所述的聚烯烃纤维,其中低取向区截面积与纤维总截面积之比(面积百分比)大于5%,但不超过40%。
(3)在以上(1)或(2)中所述的聚烯烃纤维,其中聚烯烃纤维是聚丙烯纤维。
(4)在以上(1)至(3)任一个中所述的聚烯烃纤维,其中聚烯烃纤维的聚丙烯是采用Ziegler-Natta催化剂或二茂金属络合物催化剂聚合的聚丙烯。
(5)一种非织造织物,它由以上(1)至(4)任一个中所述的聚烯烃纤维的凝聚物,采用点粘结法作热熔粘合而制成。
附图简述
图1是本发明中取向参数的曲线图。
图2表示一个截面简图,说明本发明中具低取向区的表层截面积与纤维总截面积之比(面积百分比)。
图3表示在非织造织物中轧花点上的纤维结构截面简图,非织造织物由本发明的聚烯烃纤维采用点粘结法制成。
实施本发明的最佳方式
在本发明中,“取向参数”由具规定波长的光的相对强度R‖和R⊥之比(R‖/R⊥)来定义,光在纤维的一个测点上被分子散射,并由Raman分光镜确定(Raman激光微探针法)。在平行纤维长度方向并通过纤维横截面中心的断面中,对表面、中心和另一侧表面上的许多测点确定取向参数。R‖/R⊥(在两个极化方向上R的比)与取向程度有关,该值愈大,分子的取向程度愈高。在公式R‖/R⊥中,R‖是当光极化布置与纤维轴平行时确定的散射光(波长为810cm-1或840cm-1)的相对强度(I810/I840),R⊥是当光极化布置与纤维轴垂直时确定的散射光(波长为810cm-1或840cm-1)的相对强度(I810/I840)。
图1以图解形式说明了纤维表层中低取向区的取向参数与中间层及芯子中高取向区的取向参数之间的取向参数差ΔR,例如,其值为6.0(在2.2至8.0范围内)。即,图1是一个曲线图,它是根据直径18.5μm(细度2.2d/f)的聚丙烯纤维所确定的R‖/R⊥值作出的。如图1所示,如把表示取向参数值的线的两端用直线连接,则构成一个对称的梯形,纤维中心轴是梯形的中心。由于在具有这种取向参数的纤维中,芯子提供了纤维的强度和表层提供了纤维的热粘合或熔粘合性能,因而如果用这种纤维处理成纤维网并对纤维网作热熔粘合处理,可得到极高强度的非织造织物而不会牺牲良好的手感。取向参数的差值优选取4.0以上,但不超过8.0,特别是,最理想是取5.0以上,但不超过8.0。如果取向参数差值小于2.2,则由点粘结法通过热粘合在非织造织物中得到的粘合是不充分的。另一方面,如果取向参数差值超过8.0,则在制备非织造织物时纤维网的梳理通过能力变得很差。
在本发明中,取向参数比高取向参数区小2.2至8.0的区面积与纤维总截面积之比(面积百分比)优选取5%以上,但不超过40%,特别是,最理想是取15%以上,但不超过30%。这种纤维的整个横截面简化地表示在图2中,其中用斜线表示的部分(1)是具有上述低取向参数的区域,该区与纤维总截面积的面积百分比用下式表示:
如果面积百分比小于5%,则在纤维处理成点粘结的非织造织物时,纤维的粘合不充分。然而,如果它超过40%,则在制备非织造织物时的梳理通过能力和非织造织物的手感均很差。
在本发明中,术语“聚烯烃纤维”是指这样的含义:纤维组成为丙烯均聚物,或者是以丙烯单元为主要成分的烯烃共聚物或三元共聚物。
作为以丙烯单元为主要成分的烯烃共聚物,可举出的例子如:具有乙烯(重量小于15%)的丙烯(重量大于85%)无规共聚物和具有1-丁烯(重量小于50%)的丙烯(重量大于50%)无规共聚物。作为以丙烯单元为主要成分的三元共聚物,可举出的例子如:由丙烯(重量大于85%)、乙烯(重量小于10%)和1-丁烯(重量小于15%)制备的三元共聚物。
作为这些聚烯烃,可采用所谓的Ziegler-Natta催化剂或二茂金属络合物催化剂来聚合而成。
本发明的纤维可以是单成分纤维,或者是皮/芯或并列型结构的复合纤维。
纤维的细度通常为0.5至30d/f,优选取1.0至15d/f,更理想是1.5至6.0d/f。如果细度太小,则在制备非织造织物时的可纺性和梳理通过能力均差。另一方面,如果细度太大,则非织造织物的手感变差。尽管对用于纤维的润滑剂没有专门限制,但最好至少从矿物油、二元酸酯和脂肪酸酯组成的一类中选取一种润滑剂,因为它对改进纤维的粘合性能特别有效。
制备本发明聚烯烃纤维的条件并不受特别限制。然而,本发明的纤维通常如下法制造:在320至350℃温度下把聚烯烃树脂挤压成纤维,把已形成的纤维以高于800m/min速率卷绕,然后在低于100℃的拉伸温度下以小于3倍的拉伸比对纤维作拉伸。特别是,如果树脂的挤压温度高于323℃但低于350℃,可稳定地形成具有上述面积百分比的低取向参数区的本发明纤维。
为了采用本发明的聚烯烃纤维来制备非织造织物,可应用至今已公开的各种方法,如:使用轧花滚筒、贯穿空气、或砑光滚筒的处理方法,或者声粘结处理方法。特别是,最理想的方法是把上述纤维凝聚物经受梳理后得到的纤维网,用轧花滚筒或其它方法作处理,制备成点粘接的非织造织物。此外,必要时可在已梳理的纤维网经受如针刺或水针之类的处理后,用轧花滚筒来处理已梳理的纤维网,制备成点粘接的非织造织物。另外,对于由温纸制造工艺得到的纤维网,或者由用轧花滚筒之类的气流辅置工艺得到的纤维网作处理后,可制备成点粘接的非织造织物。如果采用本发明的纤维来制备点粘接的非织造织物,则最好选取轧花滚筒的条件,使得在轧花点上形成如图3的凹截面形状的纤维结构。如果在轧花点上纤维截面形状变凹的条件下制备非织造织物,则在织物中的纤维相互以抱合状态粘合,因此进一步提高了非织造织物的强度。由于这种纤维足以支承拉伸应力、剪切应力和压缩应力,非织造织物也具有优异的构型稳定性。本发明的主要特征之一是:因为纤维具有上述规定低取向参数区的表面和高取向参数区的内部,纤维可处理成非织造织物的范围很宽,因而可容易地处理纤维。也就是说,在本发明的纤维中,在把纤维处理成非织造织物时的很宽温度范围中,其表面的低取向区均具有处理纤维所需的热熔粘合性质。因此,在非织造织物中的纤维可在其接触点上相互充分熔粘合。另一方面,纤维的所有内部提供了纤维的强度。因此,所得非织造织物的强度增高。特别是,如果选取的滚筒轧花条件,使得在上述的纤维熔粘合点上形成具有凹截面的纤维结构,则上述优点非常显著。此外,与内部较高取向区相比,可在较低温度下处理表面的较低取向区,因此不会损害非织造织物的手感。另一方面,由于常规聚烯烃纤维在纤维表面和内部均具有高的取向区,因此可以预计采用本发明纤维能得到上述优点。
举例
现参照例子和对比例来对本发明作更详细的说明。当然,应理解到本发明决不限于这些规定的例子。在每个例子中,采用以下方法来进行各个项目的评估:(1)取向参数:
在平行于纤维长度方向把采样的纤维切成试样,从纤维表面通过中心到相对的表面,以1μm的步长作出测量点,确定R‖和R⊥,R‖是当光极化布置与纤维轴平行时,采用Raman分光镜(Raman激光微探针法)确定的波长810cm-1与840cm-1的散射光相对强度,R⊥是当光极化布置与纤维轴垂直时,采用上述相同分光镜确定波长810cm-1与840cm-1的散射光相对强度。把所得两类相对强度比(R‖/R⊥)设定为取向参数,取向参数愈大,分子的取向程度愈高。从Raman分光镜中典型测点与图1所示取向参数的关系,计算出取向参数差和面积百分比。(2)纤维的梳理通过能力:
用滚筒梳理机在速率20m/min下梳理采样纤维,凡满足以下所有三个标准的纤维为“优”等,至多满足一个标准的纤维为“差”等:
①采样纤维应不嵌进梳理机的滚筒表面中。
②由梳理采样纤维所得的纤维网应无肉眼看得见的不平度。
③从纤维网的10个任选点上取得25cm×25cm见方的试样,其中任一个试样的单位面积重量应在试样平均单位面积重量的±15%以内。(3)非织造织物的CD强度:
采用130℃加热的滚筒,把由滚筒梳理机所得纤维网处理成单位面积重量为20g/m2的非织造织物,把非织造织物沿平行于机器方向切成5cm、沿垂直于机器方向切成15cm,得到一个试样。在夹持距离为10cm、拉伸速率为10cm/min的条件下,采用破坏强度拉伸机对试样作试验,把所得强度设定为非织造织物的CD强度。(4)非织造织物的手感:
采用预定温度(以2℃的间隔作改变)加热的滚筒,把由滚筒梳理机所得纤维网处理成单位面积重量为20g/m2的非织造织物。非织造织物采样的手感由有组织的功能试验来判断,五名有代表性的用户凭手感判定为“优”或“差”,三名或三名以上用户的相同判断作为非织造织物手感的结论。(5)处理纤维网的可用温度范围
如果采用上述(4)的方法,可得到CD强度在0.6kg/5cm或以上和手感优良的非织造织物,则该加热滚筒的温度范围被设定为把纤维网处理成非织造织物的可用温度范围。例如,如果采用126至130℃温度的加热滚筒可满足上述条件,则处理纤维网的可用温度范围为4℃。(6)在轧花点的纤维结构形状
采用130℃加热滚筒所得的非织造织物中,用扫描电子显微镜(日本电子公司生产的JEOL JSM-T220)观察在轧花点的纤维结构截面形状。例1至例5,对比例1至对比例3
采用丙烯均聚物(用Ziegler-Natta催化剂作聚合,其MFR为10g/10min)作为聚烯烃树脂,在树脂温度从273至342℃和卷绕速度为1000m/min下进行熔纺。熔纺后,采用80℃加热滚筒把所得纤维拉伸1.3倍,用填塞箱作机械卷曲,然后切成纤维段,其细度为1.8至3.3d/f,长度为38mm。采用分光镜在规定波长下,在纤维表层、内层和另一侧表层的同一纵向截面的测点上,对所得纤维段中的一根确定其取向参数。其余的纤维在20m/min速率下经受滚筒梳理机的梳理,以得到单位面积重量为20g/m2的纤维网。然后,采用在规定温度上加热、具接触面积百分比25%的轧花滚筒,以6m/min速率把所得纤维网处理成非织造织物。评估所得非织造织物的CD强度和手感,以及在轧花点上的纤维结构形状。例6和例7
除了采用由二茂金属络合物催化剂聚合的丙烯均聚物(MFR为14g/10min)作为聚烯烃树脂,以及在树脂温度从326至330℃下进行熔纺外,其余均重复例1。例8和例9,以及对比例4
除了采用由Ziegler-Natta催化剂聚合的丙烯/乙烯无规共聚物(pp无规①的MFR为10g/10min,pp无规②的MFR为12g/10min)作为聚烯烃树脂,以及在树脂温度从323至357℃下进行熔纺外,其余均重复例1。
纤维的制备条件,使纤维网成为非织造织物的处理条件,以及评估结果均一起在表1中说明。
从表1可知,在用点粘结法制备非织造织物时,本发明的聚烯烃纤维具有范围很宽的可用处理温度。此外,也可了解到:所得非织造织物在轧花点上具有凹状的纤维结构,强度高、手感优良。
工业应用
从本发明的聚烯烃纤维可得到强度高、手感优良的非织造织物。此外,由于在使用点粘结法把纤维处理成非织造织物时,纤维具有很宽的可用处理温度范围,因此本发明的纤维可制造出性质稳定的非织造织物。
表1细度(d/f)树脂1) 取向参数 纤维网处理参数差面积百分比梳理通过 能力 可用处理 温度范围 例1 1.8pp均匀① 2.4 8(%) 优 6.0(℃) 例2 2.4pp均匀① 4.1 16 优 8.0 例3 2.3pp均匀① 6.1 28 优 8.0 例4 2.5pp均匀① 6.5 34 优 8.0 例5 3.2pp均匀① 5.7 29 优 8.0 例6 1.6pp均匀② 2.5 8 优 8.0 例7 1.8pp均匀② 4.7 26 优 10.0 例8 2.5pp无规① 3.8 24 优 6.0 例9 3.4pp无规② 4.7 31 优 6.0对比例1 2.2pp均匀① 1.5 4 优 2.0对比例2 3.3pp均匀① 1.3 3 优 2.0对比例3 2.6pp均匀① 1.9 4 优 2.0对比例4 2.8pp无规① 8.3 41 差 4.0
注:
1)树脂:
pp均匀①:聚丙烯均聚物;MFR=10g/10min(Ziegler-Natta催化剂)
pp均匀②:聚丙烯均聚物;MFR=14g/10min(二茂金属络合物催化剂)
pp无规①:聚丙烯无规共聚物;MFR=12g/10min(Ziegler-Natta催化剂)乙烯含量0.7%(重量百分比)
pp无规②:聚丙烯无规共聚物;MFR=10g/10min(Ziegler-Natta催化剂)乙烯含量2.0%(重量百分比)
表1(续)非织造织物性能(滚筒温度130℃) 纤维制备条件CD强度 手感 形状2)树脂温度润滑剂3) 例1 0.6(kg/5cm ) 优 凹形 321(℃) 润滑剂① 例2 0.8 优 凹形 323润滑剂① 例3 0.9 优 凹形 331润滑剂① 例4 1.1 优 凹形 332润滑剂② 例5 1.0 优 凹形 342润滑剂① 例6 1.1 优 凹形 326润滑剂① 例7 1.3 优 凹形 330润滑剂① 例8 1.2 优 凹形 323润滑剂① 例9 1.3 优 凹形 325润滑剂①对比例1 0.3 优 平形 273润滑剂①对比例2 0.4 优 平形 302润滑剂②对比例3 0.3 优 平形 311润滑剂①对比例4 1.2 差 凹形 357润滑剂①注:2)形状:在轧花点上非织造物中纤维结构的横截面形状3)润滑剂:
润滑剂①:成分包括:50%(重量百分比)二月桂酸聚乙二醇
50%(重量百分比)单月桂酸聚乙二醇
润滑剂②:成分包括:10%(重量百分比)钠磺基硬脂酰
35%(重量百分比)甘油三硬脂酸
20%(重量百分比)己二酸二辛脂
35%(重量百分比)二硬脂酸聚乙二醇