用于在工具中热成形或淬火的具有改善的延展性的钢 【技术领域】
本发明涉及制造热轧或冷轧的钢零件,所述零件在工具(outil)中热成形或淬火后具有特别有利且均匀的强度、伸长率和耐腐蚀性能。
背景技术
对于一些应用,目的是要制备兼具高抗拉强度、高抗冲击性和良好耐腐蚀性的组合的钢零件。这种类型的组合在寻求显著减轻车辆的汽车工业中是特别希望的。这特别可通过使用具有高机械性能的钢零件而获得,所述钢的显微组织为马氏体或贝氏体-马氏体:例如机动车辆的防侵入零件、结构零件或有助于安全性的零件如护板横梁和车门,或者中心柱加强件,需要上述性能。
因此,专利FR 2 780 984公开了涂覆铝的钢片材,该片材在热处理后具有非常高的强度,这种处理包括在Ac3与1200℃之间加热随后在工具内热成形。钢的组成元素如下:C:0.15-0.5%;Mn:0.5-3%;Si:0.1-0.5%;Cr:0.01-1%,Ti:<0.2%;Al,P:<0.1%;S:<0.05%;B:0.0005-0.08%。在热处理期间通过预涂层和钢之间的相互扩散形成的合金化合物提供对脱碳和腐蚀的防护。
在一个实施方案中,使用包含0.231%C、1.145%Mn、0.239%Si、0.043%Al、0.020%P、0.0038%S、0.179%Cr、0.009%Cu、0.020%Ni、0.032%Ti、0.0042%N、0.0051%Ca和0.0028%B的钢使得能够在热成形后获得与完全马氏体组织有关的大于1500MPa的强度。
这种非常高的强度水平的不利方面是断裂伸长率,在热处理后其相对低,约为5%。然而,某些应用不需要这样的高强度水平,但另一方面它们需要超过15%的断裂伸长率能力。这些应用还需要零件的良好腐蚀防护。
这些结构应用涉及厚度为约0.5-4mm的加强零件。所寻求的是在零件的热处理后具有分别大于500MPa和15%的强度和伸长率的钢。这些机械性能的组合确保在冲击情况下高的能量吸收。即使工具内的冷却速率可在0.5mm厚的零件和约4mm厚的零件之间不同,也必须满足这些强度和伸长率要求。这种情形例如可允许调整工业生产线,该调整包括在生产线上相继处理上述厚度范围内的不同厚度零件时加热和冷却均不改变。
此外,已知零件的热冲压或其在工具之间的淬火可在某些区域中导致相对大幅度的局部变形。零件和工具之间的接触可以较理想,或较不理想,使得冷却速率可能在各个位置处有所不同。这些变形程度或冷却速率方面的局部变化可能具有的后果是,在热处理后,零件具有非均匀的组织和不均匀的性能。
【发明内容】
本发明的目的是解决上述问题。具体地,本发明的目的是提供热轧或冷轧的钢零件,对于约0.5-4mm的厚度范围,该零件在工具中热成形或淬火后兼具有大于500MPa的强度和大于15%的断裂伸长率。本发明的另一目的是提供具有优异的组织均匀性和均匀的机械性能的零件,即其中强度和伸长率在零件的各个部分中不发生变化的那些零件,即使在制造期间其中的局部变形程度或局部冷却速率不均匀。
本发明地另一目的是提供可通过常见组装工艺容易地进行焊接的钢零件(电阻焊、电弧焊、激光焊),能够在工具中进行热成形或淬火之前或之后焊接所述零件。
为此,本发明的一个目的是一种钢零件,该零件的钢的组成包含,含量以重量计:0.040%≤C≤0.100%;0.80%≤Mn≤2.00%;Si≤0.30%;S≤0.005%;P≤0.030%;0.010%≤Al≤0.070%;0.015%≤Nb≤0.100%;0.030%≤Ti≤0.080%;N≤0.009%;Cu≤0.100%;Ni≤0.100%;Cr≤0.100%;Mo≤0.100%;和Ca≤0.006%,组成的余量由铁和熔炼产生的不可避免的杂质构成,所述钢的显微组织包含至少75%的等轴铁素体、不小于5%但不超过20%的马氏体、和不超过10%的贝氏体。
本发明的另一目的是根据上文给定的特征的钢零件,其特征在于钢的组成包含,含量以重量计:0.050%≤C≤0.080%;1.20%≤Mn≤1.70%;Si≤0.070%;S≤0.004%;P≤0.020%;0.020%≤Al≤0.040%;0.030%≤Nb≤0.070%;0.060%≤Ti≤0.080%;N≤0.009%;Cu≤0.100%;Ni≤0.100%;Cr≤0.100%;Mo≤0.100%;Ca≤0.005%,组成的余量由铁和熔炼产生的不可避免的杂质构成。
根据一个特定的实施方案,零件的钢的平均铁素体晶粒尺寸小于6微米。
根据一个特定的实施方案,钢零件涂覆有合金化层,该层的整个厚度上是合金化的。该合金化层产生自用以在钢和预涂层之间进行合金化的至少一次热处理,所述预涂层是基于锌或铝的合金。
根据优选的实施方案,钢零件的强度大于或等于500MPa,其断裂伸长率大于15%。
本发明的另一个目的是焊接制品,其至少一个部分是根据上述特征中任一项的零件。
本发明的另一目的是制造带涂层钢零件的方法,该方法包括步骤:提供具有如上组成的热轧或冷轧的钢片材;然后向该片材施加预涂层,所述预涂层是基于锌或铝的合金。将该片材进行切割以便获得坯件(blank);然后任选地,焊接该坯件。任选地,将该坯件冷变形;然后在炉中将其加热到温度TR以便通过在钢和预涂层之间的合金化在坯件的表面上形成合金化层,所述合金化产生在该层的整个厚度中,以便赋予钢完全奥氏体组织。将坯件从炉中取出;然后任选地,将该坯件热变形以便获得零件,在适合于赋予该零件期望机械性能的条件下冷却该零件。
本发明的另一目的是制造零件的方法,该方法包括步骤:提供具有上面主张所要求的组成的热轧或冷轧的钢片材;然后将该片材进行切割以便获得坯件。任选地,焊接该坯件;然后任选地,将该坯件冷变形。在炉中将该坯件加热到温度TR以便赋予钢完全奥氏体组织;然后将坯件从炉中取出。任选地,将该坯件热变形以便获得零件;然后在适合于赋予该零件期望机械性能的条件下冷却该零件;和然后任选地,向该零件施加涂层。
根据一种特定方法,温度TR为880-950℃,在该温度下的均热时间tR为3-10分钟。
根据一种特定方法,温度TR和400℃之间的平均冷却速率VR为30-80℃/s。
优选地,在温度TR和400℃之间的平均冷却速率VR为35-60℃/s。
本发明的又一目的是上述零件或制品或者根据上述方法之一制造的零件或制品的用途,用于制造陆用机动车辆或者农业机械或造船领域的结构或安全零件。
【附图说明】
通过下面以举例方式给出的说明并参照下列附图,将清楚本发明的其它特征和优点:
-图1显示了根据本发明的钢在热处理后的显微组织;和
-图2显示了未根据本发明的钢在热处理后的显微组织。
【具体实施方式】
对于钢的化学组成,碳在跟随奥氏体化处理进行的冷却之后获得的淬硬性和抗拉强度中起重要作用。低于0.040重量%的含量时,在任何冷却条件下均不可能获得高于500MPa的强度。高于0.100重量%的含量时,在大多数快速冷却条件下例如当零件保持在冷却的工具内时,存在形成过大比例马氏体的风险。这时断裂伸长率可能小于15%。取决于制造条件,0.050-0.080%的碳含量能够使强度和伸长率性能非常稳定,并且能够使钢在常见组装工艺中表现出非常良好的可焊性。
除其脱氧作用外,锰还对淬硬性具有重要作用,特别是当其重量含量为至少0.80%时。然而,高于2.00%时,其奥氏体形成特性导致形成过于显著的带状组织。优选1.20-1.70%的Mn范围以便获得令人满意的淬硬性而无偏析的风险。另外,因此在静态或动态机械应力条件下获得非常良好的韧性。
硅有助于使液态钢脱氧并且促进钢的硬化。然而必须对其含量加以限制以避免过量形成表面氧化物并且促进可涂覆性和可焊性。加入大于0.30重量%的硅将导致在工具中冷却后奥氏体的可能稳定化,这不是本文所期望的。优选低于0.070%的硅含量以便获得上面结果。
硫和磷在过量时降低延展性。这是为何将它们含量分别限制到0.005%和0.030%的原因。更特别地,分别低于0.004%和0.020%的含量使得能够提高延展性和韧性。
铝在含量为0.010-0.070重量%时,使得液态钢能够被脱氧。0.020-0.040%的优选量防止奥氏体的任何稳定化。
钛和铌属于微合金化元素的类别,这些元素即使为几个10-3%至几个10-2%的微小量也是有效的。
-当钢的铌含量为0.015-0.100%时,热轧期间在奥氏体中或者在铁素体中形成细的硬化碳氮化物Nb(CN)析出物。这些析出物还使得能够在随后焊接期间限制奥氏体晶粒生长。0.030-0.070%的铌含量在提供明显硬化的同时仍适度地改善高温下的机械性能,从而使得能够限制在带材轧机中热轧期间的力;
-当钛含量为0.030-0.080重量%时,在非常高的温度下以TiN氮化物形式发生析出,然后在较低的温度下,在奥氏体中以细TiC碳化物形式发生析出,从而导致硬化。TiN析出物有效地限制任何焊接操作期间奥氏体晶粒的生长。0.060%-0.080%的钛含量导致更加强烈地析出TiC或钛的碳硫化物;和
-氮含量小于0.009%以便防止TiN以粗大形式析出,所述析出正是从凝固发生。
在热轧或冷轧以及退火后,铌和钛为析出形式。在根据本发明的方法中,然后进行钢的完全奥氏体化,接着在工具内进行淬火。本发明人已证实,析出物、特别是钛析出物在阻止奥氏体晶粒因加热而生长以及限制降低延展性的极硬二次成分的形成方面是有效的。奥氏体晶粒尺寸的这种控制使得能够获得对冷却速率变化的低敏感性。
钢的组成还可以包含例如铜、铬、镍和钼的元素,这些元素有助于通过固溶硬化或者通过它们对淬硬性的影响来提高强度。然而,它们的单独含量必须限制到0.1%,否则在炉内奥氏体化后形成贝氏体组织,这些组织对于冷却速率的变化是敏感的。
该钢还可以包含至多0.006%且优选0.005%的钙加入量,用于球化硫化物和改善抗疲劳性。
根据本发明的制造方法如下:
-提供具有上述组成之一的片材或从该片材切割的坯件。在随后发生完全奥氏体化的情况下,该片材的初始显微组织起相对较小的作用。然而,微合金化元素必须为析出形式:例如,可以通过浇铸液态钢并接着再加热到1100℃制得片材或坯件。热轧将以低于940℃的终轧温度进行。然后以20-100℃/s的速率将该片材冷却到500-700℃。在随后的空气冷却后,这时可在450-680℃的温度下卷取该片材。这些条件使得能够获得微合金化元素的细分散的析出。
可对片材或坯件执行本发明,无论它们是裸露的或预涂覆的。在预涂覆的情形中,将预涂层施加到片材,所述预涂层是基于锌或铝的合金。具体地,可以通过热浸处理、通过电沉积或者通过真空沉积处理施加这种预涂层。可以在单一步骤中或者通过相继步骤的组合进行沉积。优选连续地进行沉积。为了获得耐受处理条件的涂层,该预涂层的厚度可以为5-35微米。
该预涂层的合金可以是铝或铝基合金。例如,可以通过在另外含有8-11重量%硅和2-4重量%铁的铝基浴液中进行热浸涂覆来施加预涂层。
该预涂层的合金还可以是锌或锌基合金。这种锌合金可另外含有例如至多5重量%的铝。锌基合金还可以任选含有一种或多种例如硅、铅、锑、铋、镧和铈的元素。
然后切割预涂覆的片材以便获得坯件,该坯件的几何形状符合于有待获得的最终部分的几何形状。
根据本发明的变体,可任选地将预涂覆的坯件焊接到其它钢零件。实际上,已知某些应用不需要在零件中的所有位置均具有相同水平的机械性能。因此,存在使用拼焊(tailor-welded)坯件方面的进展,所述拼焊坯件是由可能具有不同组成或不同厚度的钢片材制成的组装件。因此可通过焊接将本发明的预涂覆坯件结合成较复杂的组装件。可通过连续处理例如激光束焊接和电弧焊或者通过不连续处理例如电阻点焊进行焊接。可以将坯件与一个或多个其它钢坯件进行组装,所述坯件的组成和厚度可以相同或不同,以便在最终阶段获得具有如下机械性能的零件:在成形和热处理后的机械性能在它们之间存在不同并且局部适应随后的应力。除铁和不可避免的杂质外,与根据本发明的坯件进行组装的钢坯件的组成以重量计可例如包含0.040-0.25%C;0.8-2%Mn;≤0.4%Si;≤0.1%Al。
根据本发明的另一个变体,可任选对预涂覆的坯件进行冷变形。可进行这种变形使得几何形状相对接近希望获得的部分的最后几何形状。在进行冷变形的情形中,可进行热变形对此加以补充,正如随后将说明的。如果冷变形基本上产生最终的几何形状,则对零件加热,随后使零件在工具内经受保形步骤。该最后步骤的目的是防止零件在冷却时的任何变形和提供特别的冷却循环,这归因于零件和工具之间的适当接触。因此这个保形步骤的特征在于工具对零件施加最小的力。
在这些任选的焊接和冷变形步骤后,将坯件在热处理炉中加热。该处理的目的是进行钢的完全奥氏体化。如果坯件是预涂覆的,则该处理还具有形成能够在该处理期间和在零件的随后使用期间保护其表面的涂层的目的。
铝基或锌基预涂层的作用如下:在炉中加热期间,钢基材和预涂层之间发生合金化反应并且在坯件的表面上形成合金化层。该合金化发生在预涂层的整个厚度中。取决于预涂层的组成,在该合金化层中形成一种或多种金属间相。因为这些相的熔点高于零件被加热达到的温度,因此涂层在高温下不熔化。术语“预涂层”应理解为意指加热之前的合金,术语“涂层”应理解为意指热处理期间形成的合金化层。由于涂层的厚度大于预涂层的厚度(因为发生与钢基材的扩散反应),因此热处理改变了预涂层的性质和其几何形状。正如所述,该热处理形成耐热层。该层通过防止基材与炉气氛接触而保护该基材。因此,避免了如果对无预涂层的零件进行加热将发生的脱碳和氧化的问题。形成的涂层还具有如下优点:具有附着性和适合于随后的热成形操作。
在高于Ac3的温度TR进行加热,Ac3温度代表加热期间钢的奥氏体转变终止温度。温度TR优选为880-950℃。可在TR进行3-10分钟的保温时间tR以便使坯件的温度均匀。在这些条件下,在略微高于Ac3的该温度范围内形成细奥氏体晶粒。缓和了来自于这种组织的淬硬性,从而防止形成具有低延展性的显微组织成分。在该范围内的温度变化不会引起最终机械性能的大的可变性。
然后从炉中取出加热的坯件并转移到工具中,在该工具中,要么使零件经受热变形以便获得期望的零件几何形状,要么使其经受如上所述的简单保形操作。当然如果未预先使坯件变形,则完全在热变形阶段进行变形。在这两种情形中,零件在工具中的存在导致冷却,这基本通过热传导发生。冷却速率取决于如下参数:例如在炉和工具之间的转移时间、零件的厚度和温度,冷却剂对工具本身的任何冷却,和零件在工具中保持多长时间。根据一种变体,可将零件转移到称为“第二”工具的另一工具中,其允许控制冷却循环的终点。
本发明人已证实,获得所需机械性能取决于控制特定的参数即VR:该参数是指零件在离开炉子时的温度TR和400℃温度之间的平均冷却速率。TR与400℃之间的这个温度范围涵盖了特定的区间,在该区间中发生同素异形转变,该转变产生本发明钢组成的期望显微组织。
速率VR为30-80℃/s:当VR低于30℃/s时,零件的组织主要是铁素体并且不一定获得大于500MPa的强度水平。当速率VR为35-60℃/s时,所获得的机械性能的可变性特别小。
当该速率大于80℃/s时,在显微组织内发现过量的贝氏体:这种成分的性能对VR的微小变化敏感。因此,零件和工具之间接触状态的局部变化或者处理条件相对于标称参数的非有意变化可导致机械性能的可变性,在给定的零件中或者从一个零件到另一个零件。
根据本发明的显微组织包括至少75%的细等轴铁素体,该百分比含量对应于可例如在抛光并蚀刻的截面上测得的表面分数。术语“等轴”是指其中铁素体晶粒的最大长度与它们的最短长度的平均比率不超过1.2的结构。优选地,平均铁素体晶粒尺寸小于6微米以便同时获得高强度和显著大于15%的断裂伸长率。
该组织还含有马氏体,其表面分数为5-20%。该成分呈分散在铁素体基质内的岛状物形式,这些岛状物的尺寸通常等于或小于铁素体晶粒的尺寸。在这种细分散的形式中,存在5-20%马氏体使得抗拉强度得到提高而不会显著降低延展性。
该组织还可含有限于10%的量的贝氏体。这是因为已显示,该成分的存在对于制造必须表现出非常均匀机械性能的零件是不希望的。
然后任选地可通过将如此获得的成形零件焊接到具有相同或不同厚度或组成的其它零件对它们进行组装,以便构成例如较复杂的结构。
如果初始片材或坯件没有预涂层,若它们需要腐蚀防护,当然可以在热处理后通过合适的涂覆操作对成形零件进行涂覆。
为给出实施例,下面的实施方案说明了本发明带来的其它优点。
实施例1:
考虑厚度为1.2-2mm的热轧或冷轧钢片材,所述片材具有以重量计的下面组成:
表1:钢的组成(以重量%计):
(下划线值表示在本发明范围之外的特征)
钢 C Mn Si S P Al Nb Ti N 其它 A 0,059 1,646 0,022 0,004 0,016 0,024 0,048 0,067 0,005 Cu:0,009 Mo:0,003 Ni:0,016 Cr:0,027 Ca:0,003 B 0,063 1,677 0,018 0,003 0,018 0,030 0,050 0,071 0,005 Cr:0,023 C 0,125 1,444 0,384 0,002 0,020 0,030 0,003 0,011 0,005 Cr:0,189 D 0,057 0,626 0,074 0,008 0,018 0,030 0,066 0,001 0,005 Cr:0,021
钢A和B是具有根据本发明的组成的钢。钢C和D是对照钢。钢A的热轧片材具有2mm的厚度。对2mm厚的热轧片材形式以及1.5mm和1.2mm厚的冷轧并退火片材形式的钢B进行试验。
钢C和D是厚度为1.2mm的对照钢,这些钢经过冷轧并退火。
在熔融铝合金的浴液中对这些不同钢的片材进行热浸预涂覆,所述浴液含有9.3%硅和2.8%铁,余量由铝和不可避免的杂质构成。预涂层的厚度为每侧约25微米。然后将片材切割成坯件形式。
然后按表2中所示将坯件加热到温度TR并且持续均热时间tR。使这些钢中的一些经受若干不同的试验条件,例如钢B在B1至B3标示的条件下。加热条件均导致钢的完全奥氏体化。在该加热和均热阶段期间,预涂层在其整个厚度中转变为合金化层。这种具有高熔点和高硬度的合金化涂层非常耐腐蚀并且防止下方的基础钢在加热阶段期间或之后被氧化和脱碳。
在奥氏体化后,将坯件从处于温度TR的炉中取出并然后将其热变形。根据表2中所示的条件改变平均冷却速率VR。在表2中还显示了对零件测得的机械性能(屈服强度Re,抗拉强度Rm和断裂伸长率A)。
表2:奥氏体化和冷却条件:所获得的机械性能
(下划线值表示在本发明之外的性能)
钢:条件 TR(℃) tR (分钟) VR (℃/s) Re (MPa) Rm (MPa) Re/Rm A(%) A1 900 6 45 380 600 0,63 22 A2 950 6 45 370 597 0,62 22 B1 920 7 30 366 562 0,65 22,5 B2 930 10 45 409 618 0,66 21,5 B3 920 7 100 470 703 0,67 13 C1 920 5 35 499 819 0,61 14,5 C2 920 5 50 543 831 0,65 10 C3 920 5 90 1069 1358 0,78 5,5 D1 920 6 35 410 455 0,90 23,5
在抛光并蚀刻的截面上检查热处理后获得的显微组织。通过图像分析测定平均铁素体晶粒尺寸。
对钢A进行的试验显示,机械性能几乎不取决于在本发明方法的范围内的奥氏体化温度。因此工业生产将对这种参数的意外改变几乎不敏感。在图1中给出了显微组织的例子。相对于试验B1,该组织由93%平均尺寸为5微米的等轴铁素体和7%马氏体构成。
试验A1、A2、B1和B2均产生由大于75%的等轴铁素体、5%-20%的马氏体和小于10%的贝氏体构成的组织。
过高的冷却速率(100℃/s,试验B3)导致马氏体含量稍微大于20%。马氏体以尺寸可超过5微米的岛状物形式存在。这时伸长率小于15%。
钢C具有过高的碳含量和过高的硅含量,并且不含有足够的用于有效晶粒控制的微合金化元素。如在关于试验C1的图2中所示,甚至对于35℃/s的冷却条件,组织也不是铁素体,而主要是贝氏体。这时伸长率小于15%。当冷却速率提高时(试验C2和C3),该组织变为主要是马氏体,具有痕量的贝氏体。伸长率遭受到明显减小。
钢D具有不足的锰和钛含量,并且含有过量的硫。因此,强度是不足的,在试验D1的条件下小于500MPa。
实施例2:
考虑钢B的片材,所述钢具有表1中详述的根据本发明的组成。对厚度为2mm的该片材用表1中所说明的铝基合金进行预涂覆。将该片材在900℃下加热8分钟并然后热冲压以便制造零件。冷却速率VR为60℃/s。在该零件的形貌内,等效变形ε根据不同的区域发生变化:某些部分实际上局部未变形(ε=0%),而其它部分经受了20%的变形。在这些不同变形区域中进行显微观测、硬度测量并且选取拉伸试样。屈服强度为430-475MPa不等、抗拉强度为580-650MPa以及断裂伸长率为17-22%。因此,虽然奥氏体晶粒根据所考虑的位置会较大或较小程度地热变形,但根据本发明的钢和方法的特征在于在相同零件内的性能保持非常均匀。特别地,抗拉强度和断裂伸长率分别保持大于500MPa和15%,而无论所考虑的变形程度为多少。
因此本发明使得能够制造具有高的强度和延展性的带涂层零件,这些性能在全部零件中是均匀的。根据本发明的钢对于制造参数的改变非常不敏感,这在生产线上的不定期延迟的情形中或者在制造改变的情形中(例如不同厚度的零件相继通入到相同的炉内)是有利的。
这些零件将有利地用于制造机动车辆构造用的或者农业机械或造船领域中的安全零件,特别是结构零件或加强零件。