液晶显示器 及其薄膜晶体管阵列面板 【技术领域】
本发明涉及一种液晶显示器以及用于该液晶显示器的薄膜晶体管阵列面板。
背景技术
液晶显示器(LCD)是最广泛使用的平板显示器之一。LCD用在笔记本电脑或膝上电脑、台式电脑的监视器和电视当中。与传统的阴极射线管(CRT)显示器相比,LCD质轻且占据更少的空间。
LCD的通常结构是由一个位于一对包含场发生电极和偏振片的面板之间的液晶(LC)层组成。LC层经受电极产生的电场,并且电场强度的变化改变了LC层的分子取向。例如,在施加电场时,LC层的分子改变其取向并偏振通过LC层的光。适当定位的偏振滤光片阻挡被偏振的光,产生能够表示所需图像的暗区。
衡量LCD质量的一项指标是视角(即,以最小对比度观察LCD时的可见区域)。已经提出了扩大视角的各种技术,包括利用垂直排列的LC层并在像素电极处设置切口和凸起的技术。但切口和凸起减小了孔径比(即,子像素的实际尺寸与可以透过光的子像素面积之比)。为了增大孔径比,提出了将像素电极的尺寸最大化。但像素电极的尺寸最大化导致像素电极之间地距离很密集,造成像素电极之间很强的横向电场。这种强电场造成LC分子取向的不希望变化,产生纹路和光泄漏并劣化显示特性。
【发明内容】
本发明提供了一种薄膜晶体管阵列面板,其包括:一基底;多条形成在基底上的第一信号线,该第一信号线在第一方向上延伸并以预定的间隔彼此分开;多条形成在基底上的第二信号线,第二信号线与第一信号线交叉,并包含多个在第二方向延伸并以预定间隔交替分布的弯曲部分和中间部分;多个像素电极,这些像素电极基本上位于由第一和第二信号线限定的区域中;和多个薄膜晶体管,这些薄膜晶体管连接到第一和第二信号线以及像素电极上。
数据线的每个弯曲部分可以包括一对彼此连接并成大约45°角的直线部分。
薄膜晶体管阵列面板还可以包括多条形成在基底上的第三信号线,这些信号线基本上在第一方向上延伸并与像素电极重叠以形成存储电容。
薄膜晶体管可以包括连接到像素电极并利用插入绝缘体来覆盖第三信号线之一的端电极。
薄膜晶体管可以包括连接到第二信号线的中间部分的端电极。
第一信号线可以与第二信号线的中间部分交叉。
本发明还提供了一种薄膜晶体管阵列面板,其包括:一基底;一形成在基底上并包含栅电极的栅极线;一形成在栅极线上的栅极绝缘层;一形成在栅极绝缘层上的半导体层;一数据线,该数据线至少部分地形成在半导体层上,并包含弯曲部分和与栅极线基本上直角相交的中间部分,弯曲部分和中间部分中的至少一个具有源电极;一漏电极,其至少部分地形成在半导体层上并与数据线分开;形成在数据线和漏电极上的第一钝化层;以及一像素电极,该像素电极形成在第一钝化层上,且连接到漏电极,并具有基本上平行于数据线的弯曲部分延伸的一个边缘。
数据线的弯曲部分可以包括一对分别成大约45°的顺时针角和成大约45°的逆时针角的部分。
薄膜晶体管阵列面板还可以包括形成在基底上的存储电极线,该电极线基本上平行于栅极线延伸且包含一个具有增大宽度的存储电极,其中漏电极具有一个连接到像素电极并与存储电极重叠的扩展部。
第一钝化层可以包含有机绝缘材料,并且优选地由光敏材料制成。
第一钝化层可以包含无机绝缘材料。
薄膜晶体管阵列面板还可以包括一个形成在第一钝化层上的彩色滤光片。
彩色滤光片可以基本上平行于数据线延伸。
彩色滤光片可以在漏电极上有一个开口,第一钝化层可以具有一个暴露至少一部分漏电极的接触孔,并且像素电极优选地经开口和接触孔连接到漏电极。
开口可以暴露第一钝化层的上表面。
薄膜晶体管阵列面板还可以包括一个形成在部分栅极线或部分数据线上的、并由与像素电极相同的材料制成的接触辅助件。彩色滤光片可以包括形成在接触辅助件之下的一部分。
薄膜晶体管阵列面板还可以包括一个形成在彩色滤光片上并由光敏有机材料制成的第二钝化层。
第一和第二钝化层可以有一个暴露至少一部分漏电极的接触孔,并可以具有一个与基底的表面成大约30~85°角的侧壁。
第一和第二钝化层可以有一个暴露至少一部分漏电极的接触孔,并可以有一个台阶状的侧壁。
像素电极可以经接触孔连接到漏电极。
数据线和漏电极的整个下表面基本上可以设置在半导体层上,数据线和漏电极可以具有与半导体层基本上相同的平面形状,并且半导体层可以包括一个不被数据线和漏电极覆盖并设置在源电极和漏电极之间的部分。
数据线弯曲部分的长度可以约为数据线中间部分长度的1~9倍。
薄膜晶体管阵列面板还可以包括一对彩色滤光片,它们形成在第一钝化层上并且彼此部分重叠以形成一个隆起。
薄膜晶体管阵列面板还可以包括一个形成在彩色滤光片上并在彩色滤光片的隆起上形成突起的第二钝化层。
本发明还提供了一种液晶显示器,其包括:一第一基底;多条形成在该基底上的第一信号线;多条形成在该基底上、与第一信号线相交、并包含多个弯曲部分的第二信号线;多个基本上位于由第一和第二信号线限定的区域中的像素电极;多个连接到第一和第二信号线以及像素电极上的薄膜晶体管;面对第一基底的第二基底;形成在第二基底上的公共电极;形成在第一和第二基底中至少一个上的分区件;和设置在第一基底和第二基底之间并被分区件分隔成多个倾斜区的液晶层,每个倾斜区包含一对平行于第二信号线的弯曲部分的主边缘。
液晶层可以具有负介电各向异性并经过垂直排列。
分区件可以包含多个形成在公共电极中的切口。该切口可以具有大约9~12μm范围的宽度。
每个区域的主边缘之间的距离可以在大约10~30μm的范围内。
优选地,依据倾斜区中包含的液晶分子在施加电场时的倾斜方向将倾斜区分为四个畴。
如果像素区的平面面积小于约100×300μm2,则由第一信号线和第二信号线限定的像素区中倾斜区的数量可以为四个,且如果像素区的平面面积等于或大于约100×300μm2,则由第一信号线和第二信号线限定的像素区中倾斜区的数量可以为四个或八个。
可以分别在第一和第二基底的外表面上设置一对交叉的偏振片,并且第一和第二偏振片优选地排列成各偏振片的透射轴之一平行于第一信号线。
分区件包括一个形成在公共电极上的并具有大约5~10μm范围内的宽度的凸起。
本发明还提供了一种液晶显示器,其包括:一第一基底;多条形成在该基底上的第一信号线;多条形成在该基底上、与第一信号线相交、并包含多个弯曲部分的第二信号线;多个基本上位于由第一和第二信号线限定的区域中的像素电极;多个连接到第一和第二信号线以及像素电极上的薄膜晶体管;面对第一基底的第二基底;形成在第二基底上的公共电极;形成在第一和第二基底中至少一个上的分区件;和设置在第一基底和第二基底之间并被分区件分隔成多个倾斜区的液晶层,其中包含在每个倾斜区中的液晶分子趋于在平行于相邻像素电极之间产生的电场的方向上倾斜。
可以分别在第一和第二基底的外表面上设置一对交叉的偏振片,并且第一和第二偏振片排列成各偏振片的透射轴之一平行于第一信号线。
【附图说明】
通过下面参考附图对优选实施例的详细描述,本发明将变得更加清晰,其中:
图1是根据本发明实施例的LCD的TFT阵列面板的简图;
图2是根据本发明实施例的LCD的公共电极面板的简图;
图3是包含图1所示TFT阵列面板和图2所示公共电极面板的LCD的简图;
图4是图3所示的LCD沿IV-IV′线截取的截面图;
图5是图3所示的LCD沿V-V′和V′-V″线截取的截面图;
图6A和6B是在根据本发明实施例的制造方法的中间步骤中,图1、4和5所示的TFT阵列面板分别沿IV-IV′和V-V′和V′-V″线截取的截面图;
图7A和7B是在图4A和4B所示步骤之后的制造方法步骤中,图1、4和5所示的TFT阵列面板分别沿IV-IV′和V-V′和V′-V″线截取的截面图;
图8是根据本发明另一实施例的LCD的简图;
图9是图8所示LCD沿IX-IX′线截取的截面图;
图10是图8所示LCD沿X-X′和X′-X″线截取的截面图;
图11A和11B是在根据本发明实施例的制造方法的中间步骤中,图8-10所示的TFT阵列面板分别沿IX-IX′以及X-X′和X′-X″线截取的截面图;
图12A和12B是在图11A和11B所示步骤之后的制造方法步骤中,图8-10所示的TFT阵列面板分别沿IX-IX′以及X-X′和X′-X″线的截面图;
图13A和13B是在图12A和12B所示步骤之后的制造方法步骤中,图8-10所示的TFT阵列面板分别沿IX-IX′以及X-X′和X′-X″线的截面图;
图14是根据本发明另一实施例的LCD的简图;
图15是图14所示的LCD沿XV-XV′线截取的截面图;
图16是图14所示的LCD沿XVI-XVI′和XVI′-XVI″线截取的截面图;
图17是根据本发明另一实施例的LCD的简图;
图18是图17所示LCD沿XVIII-XVIII′线截取的截面图;
图19是图17所示LCD沿XIX-XIX′和XIX′-XIX″线截取的截面图;
图20和21是根据本发明另一实施例的LCD的截面图;
图22和23是根据本发明另一实施例的LCD的截面图;
图24和25是根据本发明另一实施例的LCD的截面图;
图26和27是根据本发明另一实施例的LCD的截面图;
图28是相据本发明另一实施例的LCD的简图;以及
图29是根据本发明另一实施例的LCD的简图。
【具体实施方式】
下面参考附图对本发明做更全面的描述,附图中展示了本发明的优选实施例。但本发明可以以不同的形式实施,不应局限于在此给出的实施例。
附图中为了清楚起见夸大了层、膜和区域的厚度。遍及附图相同的附图标记表示相同的元件。应该知道,当如层、膜、区或基底等一类的元件被称为在另一元件“上”时,可以是直接在该另一元件上,也可以存在插入件。相反,当一个元件被成为“直接在”另一个上时,则不存在插入件。
下面将参考附图描述根据本发明实施例的液晶显示器以及用于LCD的薄膜晶体管阵列面板。
图1是根据本发明实施例的LCD的TFT阵列面板的简图,图2是根据本发明实施例的LCD的公共电极面板的简图,图3是包含图1所示TFT阵列面板和图2所示公共电极面板的LCD简图,图4是图3所示的LCD沿IV-IV′线截取的截面图,而图5是图3所示的LCD沿V-V′和V′-V″线截取的截面图。
根据本发明实施例的LCD包括一个TFT阵列面板,一个面对TFT阵列面板的公共电极面板,和一个夹置在TFT阵列面板与公共电极面板之间的LC层3。
下面参考图1、4和5详细描述TFT阵列面板。
在绝缘基底110上形成多条栅极线121和多条存储电极线131。
栅极线121基本上在横向上延伸、彼此分隔开并传递栅极信号。每条栅极线121包括多个形成多个栅电极123的凸起和具有较大的面积以用来与另一层或外部装置接触的端部125。
每条存储电极线131基本上在横向延伸并包括多个形成存储电极133的凸起。每个存储电极133具有钻石形状或是转动45°角的矩形,并且它们靠近栅极线121定位。存储电极线131被提供预定的电压如公共电压,该电压施加到LCD的公共电极面板上的公共电极270上。
栅极线121和存储电极线131具有多层结构,包括两个具有不同物理特性的膜,上膜和下膜。上膜最好由低电阻金属制成,这种金属包括含Al的金属如Al和Al合金、含Ag的金属如Ag和Ag合金、含Cu的金属如Cu和Cu合金,用于减小栅极线121和存储电极线131中的信号延迟或电压降。另一方面,下膜最好由诸如Cr、Mo、Mo合金、Ta或Ti等具有良好的物理、化学特性以及与其它材料如氧化铟锡(ITO)或氧化铟锌(IZO)有良好的电接触特性的材料制成。下膜材料和上膜材料很好组合的一个例子是Cr与Al-Nd合金。在图4中,栅电极123的下膜和上膜分别由附图标记231和232表示,端部125的下膜和上膜分别由附图标记251和252表示,存储电极133的下膜和上膜分别由附图标记331和332表示。除去栅极线121端部125的部分上膜252以暴露下膜251的底部。
栅极线121和存储电极线131可以有单层结构或可以包括三层或多层。
另外,栅极线121和存储电极线131的横侧相对于基底110的一个表面倾斜,并且其倾角范围约为30-80°。
在栅极线121和存储电极线131上形成一个优选由氮化硅(SiNx)制成的栅极绝缘层140。
在栅极绝缘层140上形成多条优选由氢化非晶硅(简称为“a-Si”)或多晶硅制成的半导体带151。每条半导体带151在周期性弯曲的同时基本上沿纵向延伸。每条半导体带151有多个朝向栅电极123分叉的凸起154。每个半导体岛150的位置与栅电极123相对。
在半导体带151上形成多个欧姆接触带和岛161和165,它们优选由硅或重掺杂n型杂质的n+氢化a-Si制成。每个欧姆接触带161有多个凸起163,凸起163和欧姆接触岛165成对地位于半导体带151的凸起154上。
半导体带151和欧姆接触部161及165的横侧相对于基底110的一个表面倾斜,并且倾角最好在大约30-80°的范围内。
在欧姆接触部161和165以及栅极绝缘层140上形成彼此分开的多条数据线171和多个漏电极175。
用于传递数据电压的数据线171基本上沿纵向延伸并与栅极线121和存储电极线131交叉。每条数据线171具有一个用于与另一层或外部装置接触的较大面积的端部179,并包括多对倾斜部分和多个纵向部分,以使其周期性弯曲。一对倾斜部分彼此连接以形成V形,并且该对倾斜部分的相对端连接到各自的纵向部分。数据线171的倾斜部分与栅极线121形成大约45°角,纵向部分跨过栅电极123。一对倾斜部分的长度大约是纵向部分长度的1~9倍,即,占据该对倾斜部分和纵向部分总长度的50-90%。
每个漏电极175包括一个与存储电极133重叠的矩形扩展部。漏电极175扩展部的边缘基本上平行于存储电极133的边缘。数据线171的每个纵向部分包括多个凸起,使得包含该凸起的纵向部分形成一个部分包围漏电极175端部的源电极173。每组栅电极123、源电极173和漏电极175与半导体带151的凸起154一起形成一个TFT,该TFT有一个形成在置于源电极173和漏电极175之间的半导体凸起154中的通道。
数据线171和漏电极175还包括优选由Mo、Mo合金或Cr制成的下膜711和751以及位于其上并优选由含Al的金属制成的上膜712和752。在图4和图5中,源电极173的下膜和上膜分别由附图标记731和732表示,并且数据线171端部179的下膜和上膜分别由附图标记791和792表示。除去数据线171的扩展部179的和漏电极175的上膜792、752的一部分以暴露下膜791和751的底部。
与栅极线121和存储电极线131一样,数据线171和漏电极175有倾斜的横侧,并且倾角范围约为30-80°。
只在底层的半导体带151和顶层数据线171以及它们之上的顶层漏电极175之间夹置欧姆接触部161和165并减小其间的接触电阻。
在数据线171和漏电极175以及半导体带151的不被数据线171和漏电极175覆盖的暴露部分上形成一个钝化层180。钝化层180优选由具有良好的平坦特性的光敏有机材料、通过等离子增强的化学气相沉积(PECVD)形成的低介电绝缘材料如a-Si:C:O和a-Si:O:F或无机材料如氮化硅和氧化硅制成。钝化层180可以具有包括下层无机膜和上层有机膜的双层结构。
钝化层180具有多个分别暴露漏电极175和数据线171的端部179的接触孔181b和183b。钝化层180和栅极绝缘层140有多个暴露栅极线121的端部125的接触孔182b。接触孔181b、182b和183b可以有各种形状,如多边形或圆形。每个接触孔182b或183b的面积优选等于或大于0.5mm×15μm且不大于2mm×60μm。接触孔181b、182b和183b的侧壁181a、182a和183a以大约30-85°的角度倾斜或具有台阶状轮廓。
在钝化层180上形成多个优选由ITO或IZO制成的像素电极190和接触辅助件95及97。
每个像素电极190基本上位于由数据线171和栅极线121包围的区域中,并且因而也形成V形。像素电极190覆盖包括存储电极133的存储电极线131和漏电极175的扩展部,并具有一倒角边缘,该倒角边缘基本上平行于与其靠近的存储电极133边缘。
像素电极190经接触孔181物理和电学连接到漏电极175,使得像素电极190从漏电极175接收数据电压。被提供数据电压的像素电极190与公共电极270合作产生电场,对设置其间的液晶分子重新取向。
像素电极190和公共电极形成一个被称作“液晶电容器”的电容器,在TFT截止之后储存施加的电压。为了增大电压存储容量,设置一个称作“存储电容器”的附加电容器,该电容器与液晶电容器并联。存储电容器通过像素电极190与存储电极线131重叠而形成。存储电容器的电容量、即存储容量通过在存储电极线131处设置凸起(即,存储电极)133、延长连接到像素电极190的漏电极175、以及在与存储电极线131的存储电极133重叠的漏电极175处提供扩展部以减小端子之间的距离并增大重叠面积来得以增大。
像素电极190与数据线171以及栅极线121重叠以增大孔径比。
接触辅助件95和97分别经接触孔181和182连接到栅极线121的暴露的端部125以及数据线171的暴露的端部179。接触辅助件95和97保护暴露部分125和179并补充暴露部分125和179与外部装置的粘结性。
最后,在像素电极190、接触辅助件95和97以及钝化层180上形成一个校准层(alignment layer)(未示出)。
下面参考图2、4和5描述公共电极面板。
在绝缘基底210如透明玻璃上形成一个被称作光遮挡件220的光遮挡件,并且该光遮挡件包括多个面对数据线171倾斜部分的倾斜部分和多个面对TFT以及数据线171的纵向部分的直角三角部分,使得光遮挡件220防止像素电极190之间的光泄漏并限定面对像素电极190的开口区。光遮挡件220的每个三角部分有一个平行于像素电极190的倒角边缘的斜边。
在基底210和光遮挡件220上形成多个彩色滤光片230,并将彩色滤光片230基本上设置在由光遮挡件220限定的开口区中。设置在相邻的两条数据线171中并在纵向分布的彩色滤光片230可以彼此连接成带。每个彩色滤光片230可以代表三基色如红、绿、蓝中的一种。
在彩色滤光片230和光遮挡件220上形成一个优选由有机材料形成的外涂层250。外涂层250保护彩色滤光片230并其有一个平坦的上表面。
在外涂层250上形成一个优选由透明导电材料如ITO和IZO制成的公共电极270。公共电极270被提供公共电压并具有多个V形切口271。每个切口271包括一对彼此连接的倾斜部分、连接到其中一个倾斜部分的横向部分以及连接到另一个倾斜部分的纵向部分。切口271的倾斜部分基本上平行于数据线171的倾斜部分延伸并面对像素电极190,使得它们可以将像素电极190平分为左右两半。切口271的横向部分和纵向部分分别与像素电极190的横向及纵向边缘对齐,并且它们与切口190的倾斜部分形成钝角。切口271设置成用以控制LC层3中LC分子的倾斜方向,并且优选具有约9-12μm的宽度。切口271可以由宽度最好在5~10μm范围的凸起代替,该突起优选由有机材料制成。
在公共电极270上涂覆一个同性或匀质(homeotropic)的校准层(未示出)。
在面板的外表面上设置一对偏振片12和22,使得它们的透射轴交叉并且其中一个透射轴平行于栅极线121。
LCD还可以包括至少一个用于补偿LC层3的延迟的延迟膜和用于为LCD提供光线的背光单元。
LC层3具有负的介电各向异性,并且LC层3中的LC分子排列成当没有电场时它们的长轴垂直于面板的表面。
在对公共电极270施加公共电压并对像素电极190施加数据电压时,产生一个基本上垂直于面板表面的主电场。LC分子响应于该电场趋于改变其取向,使得其长轴垂直于场的方向。同时,公共电极270的切口271和像素电极190的边缘使主电场发生变形,从而具有决定LC分子的倾斜方向的水平分量。主电场的水平分量垂直于切口271的边缘以及像素电极190的边缘。
因此,在LC层3的位于像素电极190上的像素区中形成四个具有不同倾斜方向的子区,这些子区由像素电极190的边缘,平分像素电极190的切口271以及穿过切口271的倾斜部分的交点的假想横向中心线分隔。每个子区分别有两个由切口271以及像素电极190的斜边限定的主边缘,它们最好分隔开10μm~30μm。如果像素区的平面面积小于大约100×300μm2,则像素区中子区的数量最好是四个,而如果不是这样,则最好是四或八个。子区的数量可以通过改变公共电极270的切口271数量、通过在像素电极190处提供切口、或者通过改变像素电极190边缘的弯点数量来改变。子区根据倾斜方向被分为多个畴,优选分为四个畴。
同时,由像素电极190之间的压差所致的次电场的方向垂直于切口271的边缘。因此次电场的场方向与主电场的水平分量重合。因此,像素电极190之间的次电场加强了LC分子倾斜方向的确定。
因为LCD执行如点反演(inversion)、列反演等的反演,所以相邻的像素电极被提供具有与公共电压相反极性的数据电压,并因而几乎总是产生相邻像素电极之间的次电场来增强畴的稳定性。
因为所有畴的倾斜方向都与栅极线121成大约45°角,平行于或垂直于面板的边缘,并且该倾斜方向与偏振片透射轴的45°相交给出了最大透射率,所以可以将偏振片附着成其透射轴平行于或垂直于面板的边缘,并降低了生产成本。
数据线171由于弯曲所致的电阻增大可以通过加宽数据线171来补偿,因为电场的变形以及由于数据线171宽度的增加所致的寄生电容的增大可以通过使像素电极190的尺寸最大并通过采用厚的有机钝化层来补偿。
下面通过参考图6A、6B、7A和7B以及图1-5详细描述根据本发明实施例的图1-5所示TFT阵列面板的制造方法。
图6A和6B是在根据本发明实施例的制造方法的中间步骤中,图1、4和5所示的TFT阵列面板分别沿线IV-IV′和线V-V′和V′-V″线截取的截面图,图7A和7B是在图6A和6B所示步骤之后的制造方法步骤中,图1、4和5所示的TFT阵列面板分别沿线IV-IV′和线V-V′和V′-V″截取的截面图。
参见图1、6A和6B,在绝缘基底110上依次溅射优选由Cr、Mo或Mo合金制成的下导电膜和优选由含Al金属或含Ag金属制成的上导电膜,并且它们依次进行干或湿蚀刻以形成多条栅极线121和多条存储电极线131,其中每条栅极线包括多个栅电极123和扩展部125,而多条存储电极线包括多个存储电极133。在图6A和6B中,栅电极123的上膜和下膜分别由附图标记231和232表示,扩展部125的下膜和上膜分别由附图标记251和252表示,而存储电极133的下膜和上膜分别由附图标记331和332表示。
依次沉积厚度约为1,500-5,000的栅极绝缘层140、厚度约为500-2,000的本征a-Si层和厚度约为300-600的非本征a-Si层之后,光刻非本征a-Si层和本征a-Si层以栅极绝缘层140上形成多条非本征半导体带和多条包括多个凸起154的本征半导体带151。
随后,依次溅射包含下导电膜和上导电膜并具有厚度1,500-3,000的两个导电膜并对其构图以形成多条数据线171和多个漏电极175,其中每条数据线包括多个源电极173和扩展部179。下导电膜优选由Cr、Mo或Mo合金制成,上导电膜优选由含Al金属或含Ag金属制成。在图6A和6B中,漏电极171的下膜和上膜分别由附图标记711和712表示,源电极173的下膜和上膜分别由附图标记731和732表示,漏电极175的下膜和上膜分别由附图标记751和752表示,而数据线171端部179的下膜和上膜分别由附图标记791和792表示。
之后,除去非本征半导体带中不被数据线171和漏电极175覆盖的部分以完成多条包括多个凸起163和多个欧姆接触岛165的欧姆接触带161,并暴露部分本征半导体带151。优选地接着进行氧等离子处理,以便稳定半导体带151的暴露表面。
参见图1、7A和7B,涂覆由光敏有机绝缘体制成的钝化层180并经设置在透射区502周围的具有多个透射区502和多个狭缝区501的光掩模500暴露该钝化层180。于是,钝化层180面对透射区502的部分吸收光的全部能量,而钝化层180面对狭缝区501的部分部分地吸收光能。然后对该钝化层180显影以形成分别暴露部分漏电极175和部分数据线171的扩展部179的多个接触孔181b和183b,并且形成暴露设置在栅极线121扩展部125上的栅极绝缘层140一部分的多个接触孔182b的上部。因为钝化层180面对透射区502的部分被去除到它整个厚度,而它面对狭缝区501的部分保持具有减小的厚度,所以接触孔181b、182b和183b的侧壁181a、182a和183a具有台阶状轮廓。
除去栅极绝缘层140的暴露部分以暴露栅极绝缘层140的扩展部125的底部之后,去除漏电极175、数据线171的扩展部179和栅极线121的扩展部125的上导电膜752、792和252的暴露部分,从而暴露漏电极175、数据线171的扩展部179以及栅极线121的扩展部125的下导电膜751、791和251的底部。
最后,如图1、4和5所示,通过溅射和光蚀刻厚度约为400-500的IZO或ITO,在钝化层180上并在漏电极175、栅极线121的扩展部125和数据线171的扩展部179的下导电膜751、791和251的暴露部分上形成多个像素电极190和多个接触辅助件92及97。
下面参考图8-10描述根据本发明另一实施例的LCD。
图8是根据本发明另一实施例的LCD的简图,图9是图8所示LCD沿IX-IX′线截取的截面图,以及图10是图8所示LCD沿X-X′和X′-X″线截取的截面图。
参见图8-10,根据本实施例的LCD也包括一个TFT阵列面板,一个公共电极面板和一个夹置其间的LC层3。
根据本发明实施例的面板的层状结构几乎具有与图1-5相同的结构。
关于TFT阵列面板,在基底110上形成包括多个栅电极123的多条栅极线121和包括多个存储电极133的多条存储电极线131,并在其上依次形成栅极绝缘层140、包括多个凸起154的多条半导体带151以及包括多个凸起163和多个欧姆接触岛165的多个欧姆接触带161。在欧姆接触部161和165上形成包括多个源电极173的多条数据线171和多个漏电极175,并在其上形成一个钝化层180。在钝化层180和栅极绝缘层140处设置多个接触孔181b、182b和183b,并在钝化层180上形成多个像素电极190和多个接触辅助件95和97。
关于公共电极面板,在绝缘基底210上形成光遮挡件220、多个彩色滤光片230、外涂层250和公共电极270。
与图1-5所示的LCD不同,半导体带151具有几乎与数据线171和漏电极175以及底部的欧姆接触部161和165相同的平面形状。但半导体带151的凸起154包括一些暴露部分,这些部分不被数据线171和漏电极175覆盖,如位于源电极173和漏电极175之间的部分。
图1-5所示LCD的上述许多上述特征可以适合于图8-10所示LCD。
下面详细描述根据本发明实施例的图8-10所示TFT阵列面板的制造方法。
图11A和11B是在根据本发明实施例的制造方法的中间步骤中,图8-10所示的TFT阵列面板分别沿线IX-IX′以及X-X′和X′-X″线截取的截面图;图12A和12B是在图11A和11B所示步骤之后的制造方法步骤中,图8-10所示的TFT阵列面板分别沿IX-IX′以及X-X′和X′-X″线截取的截面图;图13A和13B是在图12A和12B所示步骤之后的制造方法步骤中,图8-10所示的TFT阵列面板分别沿IX-IX′以及X-X′和X′-X″线截取的截面图。
参见图11A和11B,在绝缘基底110上依次溅射两个导电膜、下导电膜和上导电膜,并依次对其湿或干蚀刻以形成多条栅极线121和多条存储电极线131,其中每条栅极线121包括多个栅电极123和扩展部125,而存储电极线131包括多个存储电极133。在图11A和11B中,栅电极123的下膜和上膜分别由附图标记231和232表示,扩展部125的下膜和上膜分别由附图标记251和252表示,而存储电极133的下膜和上膜分别由附图标记331和332表示。
接下来,通过CVD法依次沉积栅极绝缘层140、本征a-Si层150和非本征a-Si层160,使得各层140、150和160的厚度分别约为1,500-5,000、500-2,000以及300-600。通过溅射沉积包括下膜701和上膜702的导体层170并在导体层170上涂覆厚度约为1-2μm的光致抗蚀剂膜。
光致抗蚀剂膜由经过包含狭缝区601的曝光掩膜600的光线曝光并显影,使得显影的光致抗蚀剂PR具有与位置有关的厚度。图11A和11B所示的光致抗蚀剂包括多个厚度减小的第一至第三部分。第一部分位于第一区(以下称作“导线区”)上,第二部分位于第二区(以下称作“通道区”)上,而图中没有示出位于剩余的第三区上的第三部分,因为它们实际上是零厚度以便暴露出导体层170的底部。
光致抗蚀剂PR的不同厚度使得能够在利用合适的处理条件时选择性地蚀刻底层。因此,通过图12A和12B所示的一系列蚀刻步骤获得包括多个源电极173和多个漏电极1 75的多条数据线171、以及包括多个凸起163、多个欧姆接触岛165以及包括多个凸起154的多条半导体带151的多个欧姆接触带161。在图12A和12B中,漏电极171的下膜和上膜分别用附图标记711和712表示,源电极173的下膜和上膜分别由附图标记731和732表示,漏电极175的下膜和上膜分别由附图标记751和752表示,并且数据线171的端部179的下膜和上膜分别由附图标记791和792表示。
出于说明的目的,导线区上的导体层170、非本征a-Si层160和本征a-Si层150的各部分被称作第一部分,通道区上的导体层170、非本征a-Si层160和本征a-Si层150的各部分被称作第二部分,而第三区上的导体层170、非本征a-Si层160和本征a-Si层150的各部分被称作第三部分。
形成这种结构的顺序的一个例子如下:
(1)去除导线区上的导体层170、非本征a-Si层160和本征a-Si层150的第三部分;
(2)去除光致抗蚀剂的第二部分;
(3)去除通道区上的导体层170和非本征a-Si层160的第二部分;和
(4)去除光致抗蚀剂的第一部分。
形成这种结构的顺序的另一个例子如下:
(1)去除导体层170的第三部分;
(2)去除光致抗蚀剂的第二部分;
(3)去除非本征a-Si层160和本征a-Si层150的第三部分;
(4)去除导体层170的第二部分;
(5)去除光致抗蚀剂的第一部分;和
(6)去除非本征a-Si层160的第二部分。
下面详细说明第一实例。
首先,通过湿或干蚀刻去除第三区域上导体层170的暴露的第三部分,从而暴露非本征a-Si层160的底部第三部分。干蚀刻可以蚀刻掉光致抗蚀剂PR的顶部。
接下来,优选通过干蚀刻去除第三区上非本征a-Si层160以及本征a-Si层150的第三部分,并去除光致抗蚀剂PR的第二部分以暴露导体170的第二部分。光致抗蚀剂PR第二部分的去除或是与非本征a-Si层160和本征a-Si层150的第三部分的去除同时进行,或是与后者单独进行。SF6与HCl的气体混合物或SF6与O2的气体混合物可以以几乎相同的蚀刻率蚀刻a-Si层150和160以及光致抗蚀剂PR。通过灰化(ashing)去除剩余在通道区上的光致抗蚀剂PR的第二部分的残留。
接下来,优选通过干蚀刻去除第三区上的非本征a-Si层160以及本征a-Si层150的第三部分,并且去除光致抗蚀剂PR的第二部分以暴露导体170的第二部分。光致抗蚀剂PR第二部分的去除可以与非本征a-Si层160和本征a-Si层150的第三部分的去除同时进行或与后者单独进行。SF6与HCl的气体混合物或SF6与O2的气体混合物可以以几乎相同的蚀刻率蚀刻a-Si层150和160以及光致抗蚀剂PR。通过灰化去除剩余在通道区上的光致抗蚀剂PR的第二部分的残留。
在此步骤中完成半导体带151。
接下来,去除通道区上的导体170和非本征a-Si层160的第二部分以及光致抗蚀剂PR的第一部分。
可以干蚀刻导体170和非本征a-Si层160。
另外,在干蚀刻非本征a-Si层160的同时湿蚀刻导体170。因为湿蚀刻可以蚀刻掉导体170的横侧而干蚀刻几乎不蚀刻非本征a-Si层160的横侧,所以获得台阶状横向轮廓。气体混合物的例子如上所述为CF4与HCl以及CF4与O2。后一种气体混合物留下均匀厚度的本征半导体带151。
通过这种方式,每个导体170被分成要完成的数据线171和多个漏电极175,并且非本征a-Si层160被分成要完成的欧姆接触带161和多个欧姆接触岛165。
参见图13A和13B,涂覆由光敏有机绝缘体制成的钝化层180并经光掩膜900曝光,其中光掩膜900具有多个透射区902和多个设置在透射区902周围的狭缝区901。因此,钝化层180面对透射区902的部分吸收光的全部能量,而钝化层180面向狭缝区901的部分部分地吸收光能。然后对钝化层180显影以分别形成多个暴露部分漏电极175和部分数据线171的扩展部179的接触孔181b和183b,并且形成多个接触孔182b的上部,其中该接触孔182b暴露出设置在栅极线121的扩展部125上的栅极绝缘层140的各部分。因为钝化层180的面对透射区902的部分被去除到全部厚度,而面对狭缝区901的部分保持具有减小的厚度,所以接触孔181b、182b和183b的侧壁181a、182a、和183a具有台阶状轮廓。
在去除栅极绝缘层140的曝光部分以暴露栅极绝缘层140的扩展部125的底部之后,去除漏电极175、数据线171的扩展部179以及栅极线121的扩展部125的上导电膜752、792和252的暴露部分,从而暴露漏电极175、数据线171的扩展部179以及栅极线121的扩展部125的下导电膜751、791和251的底部。
钝化层180可以由对光不敏感的有机绝缘体或具有小于4的低介电常数的无机绝缘体制成。在此情况下,需要一个用于形成接触孔181b、182b和183b的附加蚀刻步骤。
最后,通过溅射和光蚀刻如图8-10所示的厚度约为400-500的IZO或ITO,在钝化层180上以及在漏电极175、栅极线121的扩展部125和数据线171的扩展部179的下导电膜751、791和251的暴露部分上形成多个像素电极190和多个接触辅助件92及97。
IZO膜的蚀刻可以包括利用Cr蚀刻剂、如HNO3/(NH4)2Ce(NO3)6H2O湿蚀刻,这种湿蚀刻不会腐蚀经接触孔181b、182b和183b暴露的漏电极175、栅极线121和数据线171的暴露的Al部分。使接触电阻最小化的优选沉积温度的范围为室温~约200℃。用于沉积IZO的溅射靶优选包括In2O3和ZnO,而ZnO的浓度优选处在原子数15-20%范围内。
在沉积ITO膜或IZO膜之前,最好在预加热过程中使用氮气,该气体可以防止在漏电极175、栅极线121和数据线171的经接触孔181b、182b和183b暴露的部分上形成金属氧化物。
下面参考图14-16详细描述本发明另一实施例的LCD。
图14是根据本发明另一实施例的LCD的简图,图15是图14所示的LCD沿XV-XV′线截取的截面图,图16是图14所示的LCD沿XVI-XVI′线和XVI′-XVI″截取的截面图。
参见图14-16,根据本实施例的LCD也包括TFT阵列面板、公共电极面板和夹置其间的LC层3。
关于TFT阵列面板,在基底110上形成包括多个栅电极123的多条栅极线121和包括多个存储电极133的多条存储电极线131,并在其上依次形成栅极绝缘层140、包括多个凸起154的多条半导体带151以及包括多个凸起163和多个欧姆接触岛165的多个欧姆接触带161。在欧姆接触部161和165以及栅极绝缘层140上形成包括多个源电极173的多条数据线171和多个漏电极175。
在数据线171和漏电极175上形成一个最好由无机绝缘体如SiNx制成的第一钝化层801。
在第一钝化层801上形成多个红、绿、蓝彩色滤光片230R、230G和230B,并将它们基本上设置在数据线171之间。在两条相邻数据线171内并沿纵向布置的彩色滤光片230R、230G或230B可以彼此连接以形成周期性弯曲的带。相邻的彩色滤光片230R、230G和230B在数据线171上彼此重叠以形成隆起。彩色滤光片230R、230G和230B具有多个设置在漏电极175上的开口并且不设置在设置有栅极线121和数据线179的扩展部125和179的周围区域上。
在彩色滤光片230R、230G和230B上形成优选由光敏有机材料制成的第二钝化层802。当第二钝化层802在越过由彩色滤光片230R、230G和230B形成的隆起上时也形成隆起,并且第二钝化层802的隆起增强了对LC层3中LC分子倾斜的控制。第二钝化层802或外涂层250防止彩色滤光片230经公共电极270的切口271暴露、从而污染LC层3,并且其可以由无机绝缘材料如SiNx和SiO2制成。
钝化层801和802具有多个接触孔181b和183b,并且钝化层801和802以及栅极绝缘层140具有多个接触孔182b。彩色滤光片230R、230G和230B的开口暴露接触孔181b以及第一钝化层801的上表面。
在第二钝化层802上形成多个像素电极190和多个接触辅助件95和97。
公共电极面板包括形成在绝缘基底210上的光遮挡件220和公共电极270。与图2、4和5所示的公共电极面板相比,图14-16所示的公共电极面板没有彩色滤光片和外涂层。
因为彩色滤光片230R、230G和230B和像素电极190设置在TFT阵列面板上,所以图14-16所示的LCD有一个很大的校准余量,以用于校准TFT阵列面板和公共电极面板。
图14-16所示的TFT阵列面板可以通过如下步骤形成,即在形成如上面参见图6A-7B所述的栅极线121、存储电极线131、栅极绝缘层140、半导体带151、欧姆接触部161和165、数据线171和漏电极175之后,沉积第一钝化层801,形成多个红、绿、蓝色彩色滤光片230R、230G、230B,涂覆由光敏有机层制成的第二钝化层802,曝光并显影钝化层802以形成多个接触孔181b、182b和183b的上部,去除第一钝化层801和栅极绝缘层140的曝光部分以形成接触孔181b、182b和183b的下部,并形成多个像素电极190和多个接触辅助件95和97。彩色滤光片230R、230G、230B的形成包括三次重复对包含色素的光敏膜的涂覆、曝光和显影。
图1-5所示LCD的许多上述特征可适于图14-16所示的LCD。
下面参考图17-19详细描述根据本发明另一实施例的LCD。
图17是根据本发明另一实施例的LCD的简图,图18是图17所示LCD沿XVIII-XVIII′线截取的截面图,图19是图17所示LCD沿XIX-XIX′和XIX′-XIX″线截取的截面图。
参见图17-19,根据本实施例的LCD也包括TFT阵列面板、公共电极面板和夹置其间的LC层3。
根据本实施例的板的层状结构几乎与图14-16所示的相同。
关于TFT阵列面板,在基底110上形成多条栅极线121和多条存储电极线131,并在其上依次形成栅极绝缘层140、包括多个凸起154的多条半导体带151以及包括多个凸起163和多个欧姆接触岛165的多个欧姆接触带161。在欧姆接触部161和165上形成多条数据线171和多个漏电极175,并在其上形成一个第一钝化层801。在第一钝化层801上形成多个红、绿、蓝彩色滤光片230,并在其上形成第二钝化层802。在第一和第二钝化层801和802以及栅极绝缘层140处设置多个接触孔181b、182b和183b,并在第二钝化层802上形成多个像素电极190和多个接触辅助件95和97。
关于公共电极面板,在绝缘基底210上依次形成光遮挡件220和公共电极270。
与图14-16所示的LCD不同,半导体带151具有几乎与数据线171和漏电极175以及底部欧姆接触部161和165相同的平面形状。但半导体带151的凸起154包括一些暴露部分,这些部分不被数据线171和漏电极175覆盖,如位于源电极173和漏电极175之间的部分。
图17-19所示的TFT阵列面板可以通过如下步骤形成,即:在根据上面参考图11A-13B所述的步骤形成栅极线121、存储电极线131、栅极绝缘层140、半导体带151、欧姆接触部161和165、数据线171和漏电极175之后,基于参考图14-16所述的步骤,形成第一钝化层801、多个红、绿、蓝彩色滤光片230R、230G和230B、第二钝化层802、多个像素电极190和多个接触辅助件95和97。
图14-16所示LCD的许多上述特征可覆盖图17-19所示LCD。
参见图20和21,详细描述根据本发明的另一实施例的LCD
图20和21是根据本发明另一实施例的LCD的截面图,其具有与图14所示LCD类似的结构。
参见图20和21,根据本实施例的LCD也包括TFT阵列面板、公共电极面板和夹置其间的LC层3。
根据本实施例的面板的层状结构几乎与图15和16所示的层状结构相同。
关于TFT阵列面板,在基底110上形成多条栅极线121和多条存储电极线131,并在其上依次形成栅极绝缘层140、包括多个凸起154的多条半导体带151以及包括多个凸起163和多个欧姆接触岛165的多个欧姆接触带161。在欧姆接触部161和165上形成多条数据线171和多个漏电极175,并在其上形成一个钝化层801。在钝化层801上形成多个红、绿和蓝彩色滤光片230R、230G和230B,并在第二钝化层802上形成多个像素电极190和多个接触辅助件95和97。在钝化层180和栅极绝缘层140处设置多个接触孔181b、182b和183b。
关于公共电极面板,在绝缘基底210上依次形成光遮挡件220和公共电极270。
与图14-16所示的LCD不同,在彩色滤光片230R、230G和230B上没有附加的钝化层。因此暴露接触孔181b的彩色滤光片230R、230G和230B的开口的横向表面作用为接触孔181b的侧壁181a的上部以使其轮廓平滑,如图20所示。当彩色滤光片R230R、230G和230B不排出如色素的杂质时最好采用这种结构。
图14-16所示LCD的许多上述特征可覆盖图20-21所示的LCD。
下面参考图22和23详细描述根据本发明另一实施例的LCD。
图22和23是根据本发明另一实施例的LCD的截面图,其具有与图17所示LCD类似的结构。
参见图22和23,根据本实施例的LCD也包括TFT阵列面板、公共电极面板和夹置其间的LC层3。
根据本实施例的面板的层状结构几乎与图20和21所示的相同。
关于TFT阵列面板,在基底110上形成多条栅极线121和多条存储电极线131,并在其上依次形成栅极绝缘层140、包括多个凸起154的多条半导体带151以及包括多个凸起163和多个欧姆接触岛165的多个欧姆接触带161。在欧姆接触部161和165上形成多条数据线171和多个漏电极175,并在其上形成一个钝化层180。在钝化层180上形成多个红、绿、蓝彩色滤光片230。在钝化层180和栅极绝缘层140处设置多个接触孔181b、182b和183b,并在钝化层180上形成多个像素电极190和多个接触辅助件95和97。
关于公共电极面板,在绝缘基底210上依次形成光遮挡件220和公共电极270。
与图20和21所示的LCD不同,半导体带151具有几乎与数据线171和漏电极175以及底部欧姆接触部161和165相同的平面形状。但半导体带151的凸起154包括一些暴露部分,该部分不被数据线171和漏电极175覆盖,如位于源电极173和漏电极175之间的部分。
图20和21所示LCD的许多上述特征可覆盖图22和23所示LCD。
下面参考图24和25详细描述根据本发明另一实施例的LCD。
图24和25是根据本发明另一实施例的LCD的截面图,其具有与图14所示LCD类似的结构。
参见图24和25,根据本实施例的LCD也包括TFT阵列面板、公共电极面板和夹置其间的LC层3。
根据本实施例的面板的层状结构几乎与图20和21所示的层状结构相同。
关于TFT阵列面板,在基底110上形成多条栅极线121和多条存储电极线131,并在其上依次形成栅极绝缘层140、包括多个凸起154的多条半导体带151以及包括多个凸起163和多个欧姆接触岛165的多个欧姆接触带161。在欧姆接触部161和165上形成多条数据线171和多个漏电极175,并在其上形成一个钝化层180。在钝化层801上形成多个红、绿和蓝彩色滤光片230R、230G和230B,并在第二钝化层802上形成多个像素电极190和多个接触辅助件95和97。在钝化层180和栅极绝缘层140处设置多个接触孔181b、182b和183b。
关于公共电极面板,在绝缘基底210上依次形成光遮挡件220和公共电极270。
与图20和21所示的LCD不同,在设置有栅极线121和数据线179的扩展部125和179的周边区上也设置彩色滤光片230R、230G和230B。虽然图25表示在周边区上设置红色滤光片230R,但可以在周边区上设置红、绿、蓝彩色滤光片230R和230B中的一个或多个。另外,彩色滤光片230R、230G和230B有多个开口,该开口形成接触孔181b、182b和183b的侧壁181a、182a和183a的上部。于是,彩色滤光片230R、230G和230B的开口的横向表面平滑地连接到钝化层180处的接触孔181b、182b和183b的横向表面。
图14-16所示的TFT阵列面板可以通过如下的步骤制造,即:在形成如参考图6A-7B所述的栅极线121、存储电极线131、栅极绝缘层140、半导体带151、欧姆接触部161和165、数据线171和漏电极175之后,沉积钝化层180;形成多个具有开口的红、绿、蓝彩色滤光片230R、230G、230B,该开口形成暴露出部分钝化层180的多个接触孔181b、182b和183b的上部;去除钝化层180和栅极绝缘层140的暴露部分以形成接触孔181b、182b和183b的下部;和形成多个像素电极190和多个接触辅助件95和97。
图20和21所示LCD的上述许多特征可覆盖图24和25所示LCD。
下面参考图26和27详细描述根据本发明另一实施例的LCD。
图26和27是根据本发明另一实施例的LCD的截面图,其具有与图17所示LCD类似的结构。
参见图26和27,根据本实施例的LCD也包括TFT阵列面板、公共电极面板和夹置其间的LC层3。
根据本实施例的面板的层状结构几乎与图24和25所示的层状结构相同。
关于TFT阵列面板,在基底110上形成多条栅极线121和多条存储电极线131,并在其上依次形成栅极绝缘层140、包括多个凸起154的多条半导体带151以及包括多个凸起163和多个欧姆接触岛165的多个欧姆接触带161。在欧姆接触部161和165上形成多条数据线171和多个漏电极175,并在其上形成一个钝化层180。在钝化层180上形成多个红、绿和蓝彩色滤光片230。在彩色滤光片230R、230G、230B、钝化层180和栅极绝缘层140上设置多个接触孔181b、182b和183b,并在钝化层180上形成多个像素电极190和多个接触辅助件95和97。
关于公共电极面板,在绝缘基底210上依次形成光遮挡件220和公共电极270。
与图24和25所示的LCD不同,半导体带151具有几乎与数据线171和漏电极175以及底部欧姆接触部161和165相同的平面形状。但半导体带151的凸起154包括一些暴露部分,该部分不被数据线171和漏电极175覆盖,如位于源电极173和漏电极175之间的部分。
图24-25所示LCD的许多上述特征可覆盖图26和27所示LCD。
下面参考图28详细描述本发明另一实施例的LCD。
图28是根据本发明另一实施例的LCD的简图。
根据本实施例的LCD的结构几乎与图1-5所示的结构相同。参见图28以及图4和图5,根据本实施例的LCD也包括TFT阵列面板、公共电极面板和夹置其间的LC层3。
关于TFT阵列面板,在基底110上形成多条包括多个栅电极123的栅极线121和包括多个存储电极133的多条存储电极线131,并在其上依次形成栅极绝缘层140、包括多个凸起154的多条半导体带151以及包括多个凸起163和多个欧姆接触岛165的多个欧姆接触带161。在欧姆接触部161和165上形成包括多个源电极173的多条数据线171和多个漏电极175,并在其上形成一个钝化层180。在钝化层180和栅极绝缘层140处设置多个接触孔181b、182b和183b,并在钝化层180上形成多个像素电极190和多个接触辅助件95和97。
关于公共电极面板,在绝缘基底210上形成光遮挡件220、多个彩色滤光片230、外涂层250和具有多个切口217的公共电极270。每个切口271包括一对彼此连接的倾斜部分和连接到一个倾斜部分上的纵向部分。
与图3所示的LCD不同,公共电极270的切口271没有横向部分。
图1-5所示LCD的上述许多特征可适于图28所示LCD。
下面将参考图29描述根据本发明另一实施例的LCD。
图29是根据本发明另一实施例的LCD的简图。
根据本实施例的LCD的结构几乎与图1-5所示的相同。参见图29以及图4和5,根据本实施例的LCD也包括TFT阵列面板、公共电极面板和夹置其间的LC层3。
关于TFT阵列面板,在基底110上形成多条包括多个栅电极123的栅极线121和多条包括多个存储电极133的存储电极线131,并在其上依次形成栅极绝缘层140、包括多个凸起154的多条半导体带151以及包括多个凸起163和多个欧姆接触岛165的多个欧姆接触带161。在欧姆接触部161和165上形成包括多个源电极173的多条数据线171和多个漏电极175,并在其上形成一个钝化层180。在钝化层180和栅极绝缘层140处设置多个接触孔181b、182b和183b,并在钝化层180上形成多个像素电极190和多个接触辅助件95和97。
关于公共电极面板,在绝缘基底210上形成光遮挡件220、多个彩色滤光片230、外涂层250和具有多个切口217的公共电极270。每个切口271包括一对彼此连接的倾斜部分、连接到其中一个倾斜部分上的横向边缘部分和连接到另一个倾斜部分的纵向边缘。
与图3所示的LCD不同,公共电极270的每个切口271有一个连接到倾斜部分交点的横向中心部分并与倾斜部分形成钝角。另外,每个像素电极190有一个与公共电极270的横向中心部分重合的横向切口。像素电极190和公共电极270的横向部分有助于畴分隔。
图1-5所示LCD的许多上述特征可适于图29所示的LCD。
虽然以上已参考优选实施例详细描述了本发明,但本领域的技术人员将会知道,在不脱离本发明由权利要求限定的实质和范围的前提下可以对它进行各种改型和替换。