一种个性化推荐系统及其推荐方法.pdf

上传人:Y94****206 文档编号:2237793 上传时间:2018-08-03 格式:PDF 页数:9 大小:1.11MB
返回 下载 相关 举报
摘要
申请专利号:

CN201410831549.5

申请日:

2014.12.25

公开号:

CN104462560A

公开日:

2015.03.25

当前法律状态:

实审

有效性:

审中

法律详情:

授权|||实质审查的生效IPC(主分类):G06F17/30申请日:20141225|||公开

IPC分类号:

G06F17/30

主分类号:

G06F17/30

申请人:

广东电子工业研究院有限公司

发明人:

肖翱; 施魏松

地址:

523808广东省东莞市松山湖科技产业园区松科苑10号楼

优先权:

专利代理机构:

广东莞信律师事务所44332

代理人:

余伦

PDF下载: PDF下载
内容摘要

本发明涉及基于大数据和数据挖掘推荐系统技术领域,尤其是一种个性化推荐系统及其推荐方法。本发明系统包括:数据接口层、用户日志系统、知识库、实体关系图库、推荐运算系统。数据接口层用于与上层业务系统进行通信;用户日志系统包含用户在应用系统里的所有操作记录;知识库是应用系统里所有数据的集合和推荐系统的学习集;实体关系图库用于存储用户、数据实体、属性等相互之间的关联关系;推荐运算系统是综合用户偏好和用户权值根据特定的算法自动向用户推荐其感兴趣的话题数据。本发明解决推荐系统的冷启动问题以及用户的兴趣不断变化带来的推荐运算复杂度增长的问题;可以用于大数据的处理。

权利要求书

权利要求书
1.  一种基于用户日志和实体关联图库的个性化推荐系统,其特征在于:所述的系统主要包括有以下模块:
数据接口层,主要负责与业务层的数据通信,接收数据请求以及发送推荐结果;
知识库,作为系统的数据源和推荐运算系统的学习集;
用户日志系统,记录用户在业务层的所有操作记录;
实体关联图库,分析知识库的数据,剖析并存储用户、实体数据、属性相互之间的关联关系;
推荐运算系统,接收数据接口层的输入,根据用户日志系统计算其最近偏好值,综合最邻近用户的偏好数据,得出用户可能最感兴趣的一个数据实体序列。

2.  根据权利要求1所述的个性化推荐系统,其特征在于:所述的知识库的数据实体主要为新闻、文献等文字性内容,且数据量随时间推移而不断增长。

3.  根据权利要求1所述的个性化推荐系统,其特征在于:所述实体关系图库是通过分析所述知识库的每一项实体数据以及用户配置文件,分解其属性,通过TF-IDF等相关算法计算各自的权值(范围为[0,1]),并以多维图形式记录实体-属性、属性-属性、实体-实体、用户-用户、用户-实体、用户-属性等相互之间的关联关系。

4.  根据权利要求2所述的个性化推荐系统,其特征在于:所述实体关系图库是通过分析所述知识库的每一项实体数据以及用户配置文件,分解其属性, 通过TF-IDF等相关算法计算各自的权值(范围为[0,1]),并以多维图形式记录实体-属性、属性-属性、实体-实体、用户-用户、用户-实体、用户-属性等相互之间的关联关系。

5.  根据权利要求1至4任一项所述的个性化推荐系统,其特征在于:所述用户日志系统记录了业务层用户所有的操作,但在应用到推荐运算系统时,主要是提取用户对实体数据的点击操作日志,并且根据不同时间段之间实体数据的关联关系计算用户在某个时间点相对稳定的偏好值以作为个性化推荐的输入。

6.  根据权利要求1至4任一项所述的个性化推荐系统,其特征在于:所述推荐运算系统中,用户第一次在业务层获取推荐数据时是用户本身的配置文件,此时主要采取基于用户的协同过滤方法获取该用户的最邻近用户之最热实体数据为推荐结果;正常情况下还需综合考虑用户以往的历史点击记录(相对偏好值),减少实体数据的稀疏性问题对结果的影响。

7.  根据权利要求5所述的个性化推荐系统,其特征在于:所述推荐运算系统中,用户第一次在业务层获取推荐数据时是用户本身的配置文件,此时主要采取基于用户的协同过滤方法获取该用户的最邻近用户之最热实体数据为推荐结果;正常情况下还需综合考虑用户以往的历史点击记录(相对偏好值),减少实体数据的稀疏性问题对结果的影响。

8.  一种权利要求1所述的个性化推荐系统的推荐方法,其特征在于:主要包括如下步骤,
步骤一,用户点击查看一条实体数据时,实体关联图库中相应属性的关联权值也会动态变化并重新被计算;
步骤二,分析用户当前点击实体数据的时间点和一个较早的时间点之间的实体数据的相关性,通过不断迭代收敛找出相关值最高的一个最近时间点,取这两个时间点之间的实体数据作为用户的最近偏好值数据源;
步骤三,根据用户的最近偏好值和动态变化的实体关联图库,综合处理后得出与用户当前偏好最接近的推荐结果。

9.  根据权利要求8所述的推荐方法,其特征在于:所述的步骤二中计算两个指定时间点范围内实体数据的相关性时采取基于局部敏感哈希的随机投影方法,时间复杂度从传统的K-NN方法的O(N2)变为O(N)。

说明书

说明书一种个性化推荐系统及其推荐方法
技术领域
本发明涉及基于大数据和数据挖掘推荐系统技术领域,尤其是一种基于用户日志和实体关联图库的个性化推荐系统及其推荐方法。
背景技术
近年来,随着信息技术的日益发展以及连入互联网用户数量的不断增长,互联网中时时刻刻都会产生数量巨大的比特数据。如何有效利用这些信息已经成为一个世界性关注的问题。在经过学术界和工业界多年的研究和应用,对于这些数据附加价值的挖掘和利用技术也逐渐成熟,最主要的就是在电子商务、在线信息应用(如在线新闻、在线音乐、在线影视)等领域的关联信息推荐系统。
推荐系统里应用最广泛的是协同过滤技术,包括基于邻居和基于模型的方法。基于邻居的方法通常用于研究用户或物品之间的相似度计算问题:基于用户的协同过滤方法首先查找主要属性相似的用户(即邻居),然后收集和分析邻居的数据以进一步为目标用户推荐其感兴趣的物品。相似的,基于物品的协同过滤方法利用了相似物品的信息评级的优势。基于模型的方法试图将用户-物品的关系评估数据转化为不同的模型(如贝叶斯网络、因式分解或者集群模型等)并使用这些模型在未知场景中向用户推荐物品(因式分解技术在具有显式或隐式反馈的应用系统中获得了越来越高的关注)。
然而目前主流的推荐系统在面对新用户时,由于没有历史数据作为推荐依据而带来的“冷启动”问题也让用户体验比较差,而且用户的数据阅读兴趣或偏好也是随时间而不断变化,如何比较好的解决推荐系统的冷启动问题并且随 时根据用户的偏好变化而调整推荐结果也是一个研究和应用的热点话题。
发明内容
本发明提供了一种基于用户日志和实体关联图库的个性化推荐系统;可以有效解决推荐系统的冷启动问题,并且使推荐结果随用户偏好的转换而动态变化,增强用户对推荐系统的使用体验性和个性化需求。
本发明解决的另一技术问题在于提供一种基于用户日志和实体关联图库的个性化推荐系统的推荐方法,有效解决推荐系统的冷启动问题,并且使推荐结果随用户偏好的转换而动态变化,增强用户对推荐系统的使用体验性和个性化需求。
本发明解决上述技术问题之一的技术方案是:
所述的系统主要包括有以下模块:
数据接口层,主要负责与业务层的数据通信,接收数据请求以及发送推荐结果;
知识库,作为系统的数据源和推荐运算系统的学习集;
用户日志系统,记录用户在业务层的所有操作记录;
实体关联图库,分析知识库的数据,剖析并存储用户、实体数据、属性相互之间的关联关系;
推荐运算系统,接收数据接口层的输入,根据用户日志系统计算其最近偏好值,综合最邻近用户的偏好数据,得出用户可能最感兴趣的一个数据实体序列;
所述的知识库的数据实体主要为新闻、文献等文字性内容,且数据量随时间推移而不断增长。
所述实体关系图库是通过分析所述知识库的每一项实体数据以及用户配置 文件,分解其属性,通过TF-IDF等相关算法计算各自的权值(范围为[0,1]),并以多维图形式记录实体-属性、属性-属性、实体-实体、用户-用户、用户-实体、用户-属性等相互之间的关联关系。
所述用户日志系统记录了业务层用户所有的操作,但在应用到推荐运算系统时,主要是提取用户对实体数据的点击操作日志,并且根据不同时间段之间实体数据的关联关系计算用户在某个时间点相对稳定的偏好值以作为个性化推荐的输入。
本发明解决上述技术问题之二的技术方案是:
主要包括如下步骤,
步骤一,用户点击查看一条实体数据时,实体关联图库中相应属性的关联权值也会动态变化并重新被计算;
步骤二,分析用户当前点击实体数据的时间点和一个较早的时间点之间的实体数据的相关性,通过不断迭代收敛找出相关值最高的一个最近时间点,取这两个时间点之间的实体数据作为用户的最近偏好值数据源;
步骤三,根据用户的最近偏好值和动态变化的实体关联图库,综合处理后得出与用户当前偏好最接近的推荐结果。
所述的步骤二中计算两个指定时间点范围内实体数据的相关性时采取基于局部敏感哈希的随机投影方法,时间复杂度从传统的K-NN方法的O(N2)变为O(N)。
附图说明
下面结合附图对本发明进一步说明:
图1是本发明个性化推荐系统的框架结构;
图2是本发明个性化推荐系统的实体关系图库示意图;
图3是本发明推荐方法的流程图。
具体实施方式
如附图1所示,本发明一种基于基于用户日志和实体关联图库的个性化推荐系统主要包括但不限于5个部分:数据接口层、知识库、用户日志系统、实体关系图库、推荐运算系统。
其中数据接口层主要负责与业务层的数据通信,接收数据请求以及发送实体数据推荐结果;知识库,是应用系统的数据源和推荐运算系统的学习集;用户日志系统,记录用户在业务层的所有操作记录;实体关系图库,将知识库的数据实体属性和用户属性分离并计算、存储相互之间的关联关系;推荐运算系统,接收数据接口层的输入,根据用户日志系统计算其偏好,在实体关系数据库查找或分析其实体属性关系,得出相关性最强的一个数据实体序列。
如附图2所示,本发明一种基于用户日志和实体关联图库的个性化推荐系统的实体关系图库示意图是同时从横向和纵向的角度剖析知识库中数据的相互关联性。
实体数据和用户的每个属性都有其在全局的一个权值ω(主要是通过TF-IDF等相关算法计算其全局词频),同时实体数据和用户的不同属性又根据属性重要程度有一个比重参数θ,由此可分别计算出实体数据或者用户之间的权值ω;同时根据用户日志记录计算出用户的最近偏好值参数λ,可以以λ参数为依据寻找最邻近用户,获取其偏好数据作为推荐结果。
如附图3所示,本发明一种基于用户日志和实体关联图库的个性化方法的步骤流程图,可以有效解决推荐系统的冷启动和用户偏好漂移问题。该方法包括以下步骤:
1、用户查看某个实体数据的详细信息,此时需判断用户是否为新用户;
2、若用户为新用户,通过实体关联图查找该用户的最邻近用户,以最邻近用户的偏好数据作为推荐结果;
3、若用户为老用户,首先在日志系统中以当前的日志记录为终点分析并计算用户的最近稳定偏好区间数据,得出偏好值,然后综合该偏好值以及最邻近用户权值得出关联度最高的实体数据作为推荐结果。

一种个性化推荐系统及其推荐方法.pdf_第1页
第1页 / 共9页
一种个性化推荐系统及其推荐方法.pdf_第2页
第2页 / 共9页
一种个性化推荐系统及其推荐方法.pdf_第3页
第3页 / 共9页
点击查看更多>>
资源描述

《一种个性化推荐系统及其推荐方法.pdf》由会员分享,可在线阅读,更多相关《一种个性化推荐系统及其推荐方法.pdf(9页珍藏版)》请在专利查询网上搜索。

1、(10)申请公布号 (43)申请公布日 (21)申请号 201410831549.5(22)申请日 2014.12.25G06F 17/30(2006.01)(71)申请人 广东电子工业研究院有限公司地址 523808 广东省东莞市松山湖科技产业园区松科苑 10 号楼(72)发明人 肖翱 施魏松(74)专利代理机构 广东莞信律师事务所 44332代理人 余伦(54) 发明名称一种个性化推荐系统及其推荐方法(57) 摘要本发明涉及基于大数据和数据挖掘推荐系统技术领域,尤其是一种个性化推荐系统及其推荐方法。本发明系统包括 :数据接口层、用户日志系统、知识库、实体关系图库、推荐运算系统。数据接口层用。

2、于与上层业务系统进行通信 ;用户日志系统包含用户在应用系统里的所有操作记录 ;知识库是应用系统里所有数据的集合和推荐系统的学习集 ;实体关系图库用于存储用户、数据实体、属性等相互之间的关联关系 ;推荐运算系统是综合用户偏好和用户权值根据特定的算法自动向用户推荐其感兴趣的话题数据。本发明解决推荐系统的冷启动问题以及用户的兴趣不断变化带来的推荐运算复杂度增长的问题 ;可以用于大数据的处理。(51)Int.Cl.(19)中华人民共和国国家知识产权局(12)发明专利申请权利要求书2页 说明书3页 附图3页(10)申请公布号 CN 104462560 A(43)申请公布日 2015.03.25CN 10。

3、4462560 A1/2 页21.一种基于用户日志和实体关联图库的个性化推荐系统,其特征在于 :所述的系统主要包括有以下模块 :数据接口层,主要负责与业务层的数据通信,接收数据请求以及发送推荐结果 ;知识库,作为系统的数据源和推荐运算系统的学习集 ;用户日志系统,记录用户在业务层的所有操作记录 ;实体关联图库,分析知识库的数据,剖析并存储用户、实体数据、属性相互之间的关联关系 ;推荐运算系统,接收数据接口层的输入,根据用户日志系统计算其最近偏好值,综合最邻近用户的偏好数据,得出用户可能最感兴趣的一个数据实体序列。2.根据权利要求 1 所述的个性化推荐系统,其特征在于 :所述的知识库的数据实体主。

4、要为新闻、文献等文字性内容,且数据量随时间推移而不断增长。3.根据权利要求 1 所述的个性化推荐系统,其特征在于 :所述实体关系图库是通过分析所述知识库的每一项实体数据以及用户配置文件,分解其属性,通过 TF-IDF 等相关算法计算各自的权值 ( 范围为 0,1),并以多维图形式记录实体 - 属性、属性 - 属性、实体 - 实体、用户 - 用户、用户 - 实体、用户 - 属性等相互之间的关联关系。4.根据权利要求 2 所述的个性化推荐系统,其特征在于 :所述实体关系图库是通过分析所述知识库的每一项实体数据以及用户配置文件,分解其属性, 通过 TF-IDF 等相关算法计算各自的权值(范围为0,1。

5、),并以多维图形式记录实体-属性、属性-属性、实体-实体、用户 - 用户、用户 - 实体、用户 - 属性等相互之间的关联关系。5.根据权利要求 1 至 4 任一项所述的个性化推荐系统,其特征在于 :所述用户日志系统记录了业务层用户所有的操作,但在应用到推荐运算系统时,主要是提取用户对实体数据的点击操作日志,并且根据不同时间段之间实体数据的关联关系计算用户在某个时间点相对稳定的偏好值以作为个性化推荐的输入。6.根据权利要求 1 至 4 任一项所述的个性化推荐系统,其特征在于 :所述推荐运算系统中,用户第一次在业务层获取推荐数据时是用户本身的配置文件,此时主要采取基于用户的协同过滤方法获取该用户的。

6、最邻近用户之最热实体数据为推荐结果 ;正常情况下还需综合考虑用户以往的历史点击记录 ( 相对偏好值 ),减少实体数据的稀疏性问题对结果的影响。7.根据权利要求 5 所述的个性化推荐系统,其特征在于 :所述推荐运算系统中,用户第一次在业务层获取推荐数据时是用户本身的配置文件,此时主要采取基于用户的协同过滤方法获取该用户的最邻近用户之最热实体数据为推荐结果 ;正常情况下还需综合考虑用户以往的历史点击记录 ( 相对偏好值 ),减少实体数据的稀疏性问题对结果的影响。8.一种权利要求 1 所述的个性化推荐系统的推荐方法,其特征在于 :主要包括如下步骤,步骤一,用户点击查看一条实体数据时,实体关联图库中相。

7、应属性的关联权值也会动态变化并重新被计算 ;步骤二,分析用户当前点击实体数据的时间点和一个较早的时间点之间的实体数据的相关性,通过不断迭代收敛找出相关值最高的一个最近时间点,取这两个时间点之间的实体数据作为用户的最近偏好值数据源 ;权 利 要 求 书CN 104462560 A2/2 页3步骤三,根据用户的最近偏好值和动态变化的实体关联图库,综合处理后得出与用户当前偏好最接近的推荐结果。9.根据权利要求 8 所述的推荐方法,其特征在于 :所述的步骤二中计算两个指定时间点范围内实体数据的相关性时采取基于局部敏感哈希的随机投影方法,时间复杂度从传统的 K-NN 方法的 O(N2) 变为 O(N)。。

8、权 利 要 求 书CN 104462560 A1/3 页4一种个性化推荐系统及其推荐方法技术领域0001 本发明涉及基于大数据和数据挖掘推荐系统技术领域,尤其是一种基于用户日志和实体关联图库的个性化推荐系统及其推荐方法。背景技术0002 近年来,随着信息技术的日益发展以及连入互联网用户数量的不断增长,互联网中时时刻刻都会产生数量巨大的比特数据。如何有效利用这些信息已经成为一个世界性关注的问题。在经过学术界和工业界多年的研究和应用,对于这些数据附加价值的挖掘和利用技术也逐渐成熟,最主要的就是在电子商务、在线信息应用 ( 如在线新闻、在线音乐、在线影视 ) 等领域的关联信息推荐系统。0003 推荐。

9、系统里应用最广泛的是协同过滤技术,包括基于邻居和基于模型的方法。基于邻居的方法通常用于研究用户或物品之间的相似度计算问题 :基于用户的协同过滤方法首先查找主要属性相似的用户 ( 即邻居 ),然后收集和分析邻居的数据以进一步为目标用户推荐其感兴趣的物品。相似的,基于物品的协同过滤方法利用了相似物品的信息评级的优势。基于模型的方法试图将用户 - 物品的关系评估数据转化为不同的模型 ( 如贝叶斯网络、因式分解或者集群模型等 ) 并使用这些模型在未知场景中向用户推荐物品 ( 因式分解技术在具有显式或隐式反馈的应用系统中获得了越来越高的关注 )。0004 然而目前主流的推荐系统在面对新用户时,由于没有历。

10、史数据作为推荐依据而带来的“冷启动”问题也让用户体验比较差,而且用户的数据阅读兴趣或偏好也是随时间而不断变化,如何比较好的解决推荐系统的冷启动问题并且随时根据用户的偏好变化而调整推荐结果也是一个研究和应用的热点话题。发明内容0005 本发明提供了一种基于用户日志和实体关联图库的个性化推荐系统 ;可以有效解决推荐系统的冷启动问题,并且使推荐结果随用户偏好的转换而动态变化,增强用户对推荐系统的使用体验性和个性化需求。0006 本发明解决的另一技术问题在于提供一种基于用户日志和实体关联图库的个性化推荐系统的推荐方法,有效解决推荐系统的冷启动问题,并且使推荐结果随用户偏好的转换而动态变化,增强用户对推。

11、荐系统的使用体验性和个性化需求。0007 本发明解决上述技术问题之一的技术方案是 :0008 所述的系统主要包括有以下模块 :0009 数据接口层,主要负责与业务层的数据通信,接收数据请求以及发送推荐结果 ;0010 知识库,作为系统的数据源和推荐运算系统的学习集 ;0011 用户日志系统,记录用户在业务层的所有操作记录 ;0012 实体关联图库,分析知识库的数据,剖析并存储用户、实体数据、属性相互之间的关联关系 ;说 明 书CN 104462560 A2/3 页50013 推荐运算系统,接收数据接口层的输入,根据用户日志系统计算其最近偏好值,综合最邻近用户的偏好数据,得出用户可能最感兴趣的一。

12、个数据实体序列 ;0014 所述的知识库的数据实体主要为新闻、文献等文字性内容,且数据量随时间推移而不断增长。0015 所述实体关系图库是通过分析所述知识库的每一项实体数据以及用户配置文件,分解其属性,通过 TF-IDF 等相关算法计算各自的权值 ( 范围为 0,1),并以多维图形式记录实体 - 属性、属性 - 属性、实体 - 实体、用户 - 用户、用户 - 实体、用户 - 属性等相互之间的关联关系。0016 所述用户日志系统记录了业务层用户所有的操作,但在应用到推荐运算系统时,主要是提取用户对实体数据的点击操作日志,并且根据不同时间段之间实体数据的关联关系计算用户在某个时间点相对稳定的偏好值。

13、以作为个性化推荐的输入。0017 本发明解决上述技术问题之二的技术方案是 :0018 主要包括如下步骤,0019 步骤一,用户点击查看一条实体数据时,实体关联图库中相应属性的关联权值也会动态变化并重新被计算 ;0020 步骤二,分析用户当前点击实体数据的时间点和一个较早的时间点之间的实体数据的相关性,通过不断迭代收敛找出相关值最高的一个最近时间点,取这两个时间点之间的实体数据作为用户的最近偏好值数据源 ;0021 步骤三,根据用户的最近偏好值和动态变化的实体关联图库综合处理后得出与用户当前偏好最接近的推荐结果。0022 所述的步骤二中计算两个指定时间点范围内实体数据的相关性时采取基于局部敏感哈。

14、希的随机投影方法,时间复杂度从传统的 K-NN 方法的 O(N2) 变为 O(N)。附图说明0023 下面结合附图对本发明进一步说明 :0024 图 1 是本发明个性化推荐系统的框架结构 ;0025 图 2 是本发明个性化推荐系统的实体关系图库示意图 ;0026 图 3 是本发明推荐方法的流程图。具体实施方式0027 如附图 1 所示,本发明一种基于基于用户日志和实体关联图库的个性化推荐系统主要包括但不限于 5 个部分 :数据接口层、知识库、用户日志系统、实体关系图库、推荐运算系统。0028 其中数据接口层主要负责与业务层的数据通信,接收数据请求以及发送实体数据推荐结果 ;知识库,是应用系统的。

15、数据源和推荐运算系统的学习集 ;用户日志系统,记录用户在业务层的所有操作记录 ;实体关系图库,将知识库的数据实体属性和用户属性分离并计算、存储相互之间的关联关系 ;推荐运算系统,接收数据接口层的输入,根据用户日志系统计算其偏好,在实体关系数据库查找或分析其实体属性关系,得出相关性最强的一个数据实体序列。说 明 书CN 104462560 A3/3 页60029 如附图 2 所示,本发明一种基于用户日志和实体关联图库的个性化推荐系统的实体关系图库示意图是同时从横向和纵向的角度剖析知识库中数据的相互关联性。0030 实体数据和用户的每个属性都有其在全局的一个权值 ( 主要是通过 TF-IDF 等相。

16、关算法计算其全局词频 ),同时实体数据和用户的不同属性又根据属性重要程度有一个比重参数 ,由此可分别计算出实体数据或者用户之间的权值 ;同时根据用户日志记录计算出用户的最近偏好值参数 ,可以以 参数为依据寻找最邻近用户,获取其偏好数据作为推荐结果。0031 如附图 3 所示,本发明一种基于用户日志和实体关联图库的个性化方法的步骤流程图,可以有效解决推荐系统的冷启动和用户偏好漂移问题。该方法包括以下步骤 :0032 1、用户查看某个实体数据的详细信息,此时需判断用户是否为新用户 ;0033 2、若用户为新用户,通过实体关联图查找该用户的最邻近用户,以最邻近用户的偏好数据作为推荐结果 ;0034 3、若用户为老用户,首先在日志系统中以当前的日志记录为终点分析并计算用户的最近稳定偏好区间数据,得出偏好值,然后综合该偏好值以及最邻近用户权值得出关联度最高的实体数据作为推荐结果。说 明 书CN 104462560 A1/3 页7图1说 明 书 附 图CN 104462560 A2/3 页8图2说 明 书 附 图CN 104462560 A3/3 页9图3说 明 书 附 图CN 104462560 A。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 物理 > 计算;推算;计数


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1