用空分装置经济地生产氩是与生产等量的氮和/或氧相联系的。近年来,对氩需求量的增长速率较之氮或氧的相应增长率快得多,因此其他可供选择的氩的来源已引起人们十分关注,而合成氨装置中的吹扫气体则是其中一个来源。 在合成氨装置中,必须清除一小部分气流,以使惰性气体浓度保持在规定的水平以下。不希望有的高浓度惰性气体将降低反应物分压,并引起氨合成反应的平衡朝不利的方向移动。甲烷和氩是令人关切的惰性气体。压力约1900磅/英寸2(表压)的氨吹扫气的典型组成如下:60.5% H2、20% N2、4.5% Ar、13% CH4和2%NH3。
鉴于氨合成过程的能耗较大,从经济角度来看,回收吹扫气体中的氢,并使之再循环到氨合成回路中是有利的。目前,不外乎使用三种方法来达到这一目的,即隔膜分离、低温分离和压力交(替)变(化)吸附分离(Pressure swing adsorption seperation)。事实上,隔膜分离器已非常普遍地用于氢的回收和再循环,美国及其他国家中的一些合成氨装置已安装了氢隔膜分离器设备。
从合成氨装置吹扫气体中回收氩的现有技术并未与上述氢隔膜分离器进行最佳的结合,而是采用了一种低温工艺,后者包括一个去除氨的预处理段和三个连续的分离塔。在这类常规设计中,前面两个塔用于脱除原料气中的氢和氮,最后一个塔用于分离氩和甲烷,以得到纯液氩产品和用作燃料地纯甲烷。
本发明的主要目的是提供一种从合成氨装置吹扫气体中回收氩的改进方法。本发明的另一个目的是提供一种将非低温分离步骤和低温分离步骤有效地结合,以从非渗透气流中膜后回收氩的方法。而本发明的再一个目的是提供一种PSA系统,以从离开合成氨装置的吹扫气中除去甲烷。
在本发明的以下描述中,所用的术语“压力交变吸附”或其缩略语“PSA”系涉及一种目前熟知的,并广泛使用的有关从气体混合物中分离某些组分的一种方法或装置。压力交变吸附系统大体上包括使原料气混合物通过一个或多个充填分子筛的吸附床,所述的分子筛对气体混合物中被较强地吸附的组分较之较弱吸附的组分有更高的选择性。在典型的双床压力交变吸附系统运行中,连接管道、阀门和(自动)定时器等均按下述方式配合和布置;即当第一个床进行吸附操作时,则第二个床正在进行再生。在通常循环中,有关每个床的相继步骤包括床增压、产品释放和排气。美国专利2,944,627、3,801,513和3,960,522中对基本的压力交变吸附系统进行了描述。
1983年11月5日公布的美国专利4,415,340和1982年7月20日公布的美国专利4,340,398等文献中已对基本的压力交变吸附系统的方法和装置的各种变更和改进进行了描述。
本发明不限于用任何特定的压力交变吸附系统的方法或装置设计。以下将详细列举一种具有较高氩产额的具体设计。
业已研制出一种新的改进方法,以用于从合成氨装置所产生的吹扫气流中回收氩。该法采用非低温工艺与低温工艺相结合的方式。其中非低温工艺包括压力交变吸附单元,后者既可去除大部分氮,又可对甲烷进行必要的去除。
合成氨装置的吹扫气流包括氢、氮、氩、甲烷和氨。这种吹扫气流通常需经受氨吸收处理,和用第一级隔膜分离其中的氢,并使氢再循环到合成氨装置中。按照本发明的第一个实施例,来自第一级隔膜分离器,并包含上述四种组分及氨吸收过程中残余水分的氢贫化的非渗透气流经受下述步骤的处理:
(1)在使用分子筛或活性碳的压力交变吸附系统内分离气流中甲烷、残余水分和大部分氮气。
(2)在第二级隔膜分离器中分离大部分氢。分离得到的氢气可用作第一步压力交变吸附系统再生用的吹扫气。
(3)通过低温蒸馏分离氮气和残留的氢气,以得到基本上纯粹的液氩产物。
本发明的第二个实施例包括下列步骤:
(1)使膜后吹扫气通过压力交变吸附系统,以分离去除原料气中全部甲烷和残留水分,以及大部分氮气。
(2)用蒸馏单元(或装置)的低温废气预冷压力交变吸附系统气体产物,并使之可选择地膨胀到所需的低压,然后让其通过低温蒸馏单元。在单级塔中,塔底产物为纯液氩,而馏出物或塔顶产物是氢氮混合物。馏出物经与压力交变吸附系统产物进行热交换后,可作为该吸附系统再生用的吹扫气。
在第三个实施例中,采用压力交变循环,用金属氢化物分离非渗透气流中氢。用来分离氢的氢化物,可与甲烷、氮气分离用的分子筛合并在一个单级的压力交变吸附单元中。
该技术领域的熟练人员将会意识到,虽然以上三个实施例所述的方法均涉及膜后吹扫气,但本发明亦可适合处理这些用来回收合成氨装置中的氢,并使之再循环的压力交变吸附单元或低温单元(而不是隔膜分离器)所产生的废气。在这种情况下,应对此法作两点较小的变动。首先,应将原料气压缩到所需的压力交变吸附操作压力;其次,若原料气中存在氨,则需对PSA的甲烷分离方法作适当变动,以能同时除去氨。
与已有技术的三级低温氩回收法相比较,本发明具有显著的优点。通过采用气相甲烷分离大大减低了投资和运行费用。事实上,从合成氨装置排出的高压吹扫气可用来提供非低温分离所需的大部分或全部能量。而且,作为进一步节能措施,有可能使高压吹扫气流通过涡轮机,以提供低温分离所需的冷却。此外,本法所使用的小型紧凑装置便于搬动,因此遍布在很宽地域范围内的为数众多的合成氨厂的吹扫气均可十分迅速地引出,而加以分离,以满足日益增长的氩需求量。最后,本发明中分离甲烷的压力交变吸附单元也执行去除微量水分和氨的功能;而已有技术的低温氩回收法一般需要一个独立的吸附单元,以完成此功能。
以下将对照附图,并通过具体例子而描述本发明的方法和装置。
参照下文中结合以下附图对本发明之典型实施例所作的描述,以便更清楚地理解本发明。
图1是本发明第一个实施例的方块图,涉及从多组分气流中回收氩。
图2是本发明另一实施例的工艺流程示意图,用以处理含氢的压力交变吸附废气。
图3是压力交变吸附单元(或装置)一种可能的布置简图,图中表明了阀门位置和辅助设备。
图4是定时图,图中说明对应于图3所示布置方式的压力交变吸附单元运行的整个循环顺序。
氨吸收器和氢(气)隔膜分离器通常处理合成氨装置排出的吹扫气。兹以Monsanto的PRISMR隔膜分离器系统为例,氢隔膜分离器是该技术领域中众所周知的用以处理合成氨装置的吹扫气,以获得可进行再循环的氢气。参照用以说明本发明第一个实施例的图1,来自氢隔膜分离器的非渗透气流1包括氩、氢、甲烷和氮气。
所说非渗透气体的组成(体积比)一般在下述范围内:7-20%氢、6-12%氩、45-54%氮和25-33%甲烷。该技术领域的熟练人员将会意识到,本发明也适用于在上述组成范围以外的原料气。
根据本发明,使非渗透原料气流1通过压力交变吸附单元2,以分离得到包括大部分氮和基本上全部甲烷的气流3。这种含有甲烷的气流3可用作合成氨装置中主转化炉的燃料。然后使压力交变吸附的产品气流4通过隔膜分离器5,以除去大部分氢。分离得到的含氢气流6可用作压力交变吸附单元2再生用的吹扫气、也可作为燃料或使其再循环到合成氨回路中。最好用低温废气流9预冷含有氩及残余量氢和氮的产品气流7a,也可使之再在涡轮机中膨胀,以进一步冷却。接着在低温蒸馏单元8中处理冷却气流7b,以产生基本上纯粹的液态氩,即产品流10。残余量的氢和氮作为馏出物流9从低温蒸馏单元中排出。
馏出物流9可用于预冷原料气流1,其后并可用作压力交变吸附单元2再生用的吹扫气。带有作为热(力)泵之热阱的再沸塔的循环冷冻回路中的液氮可适当地提供蒸馏单元8的回流。也可将液氮贮存在罐内,然后在一定的计量流量下循环,以提供回流。氮蒸气可被送入合成氨装置的空气压缩机。由氮蒸气所提供的少量冷却将导致空气吸入裕量增加,有利于改善压缩机运行。
在第二个实施例中,来自压力交变吸附单元的产品气流可直接在低温蒸馏单元中进行处理。在单个塔中,纯氩可作为塔底产物得到,而氢和氮的混合物则进入馏出物流中。如前所述,这种馏出物流可用来冷却该塔的原料气,并且其后可用作压力交变吸附甲烷再生用的吹扫气。
参照图2,本发明的第三个实施例包括将金属氢化物材料掺入压力交变吸附单元的分子筛床层中,而代替所说吸附单元后的氢隔膜分离器,以在除去甲烷和氮的同时,一并除去氢。
在该实施例中,合成氨装置的吹扫气流11不是进入氢隔膜分离器,而是进入氢压力交变吸附单元12。气流13中含有高度浓集的氢气,以供再循环到合成氨回路。包含氮、氩、甲烷、氢和氨的氢贫化气流14经压缩机15进入压力交变吸附单元16,此处气流一般升压至50-100磅/英寸2(此处及下文中除特别注明外,均指绝对压力)范围内。所说压力交变吸附单元中的吸附床充填有分子筛和金属氢化物材料。分子筛基本上吸附全部甲烷、大部分氮、和全部的氨,而金属氢化物吸附大部分残余氢。因此排出气流17中包括由氨、甲烷、氢和氮所组成的混合物。离开压力交变吸附单元16的富集氩的产品流18a在诸如膨胀阀或涡轮机之类的膨胀装置19中进行冷却和膨胀,然后进入低温蒸馏塔20,在塔中产生主要由氮和微量氢所组成的馏出物流21,及作为最终产品流22的纯液氩。压力交变吸附单元16除了因从金属氢化物解吸释放的氢气所致的固有吹扫外,还可利用馏出物流21进行吹扫
新泽西州华考夫(Wycoff)的欧杰涅克司(Ergenics)公司出品的,市场上可购到的Hystor合金207(La Ni4.7Al0.3)可用作金属氢化物材料。也可使用市场上可购到的其他一些氢化物合金。在压力力交变吸附装置中,可将金属氢化物材料与分子筛吸附剂材料一起充填在一个双层床内,下述两点理由可以说明将金属化物材料置于分子筛吸附剂材料上面是有益的。首先,鉴于吸附期间床顶部的氢气分压最高,因此上述布置方式可使金属氢化物的容量得以较充分的利用;其次是由于解吸的氢可作为从分子筛吸附剂中解吸甲烷用的吹扫气。
将金属氢化物适当地压成细粉,以供压力交变吸附单元的吸附床使用。压碎后氢化物的大小一般约为10微米。正如该技术领域内熟练人员所知,金属氢化物的用量可以变化,以确保产物中氢的含量低于以后在产生纯液氩所必须的操作压力下进行低温分离所容许的限值。
也可将氢化物放在一只位于各沸石分子筛床层顶部的单独床层内,以便于更换。烧结金属盘过滤器适合用于床层的顶部,其孔径为5微米或更小,以防止颗粒夹带。然而,也可用与此不同的方式来解决颗粒夹带问题。床内可充填三层物质:首先是一层纯沸石分子筛,其次是一层氢化物与沸石分子筛的混合物,最后又是一层纯沸石分子筛。
在上述任一情况下,压力交变吸附单元中所包含的分子筛或活性碳对甲烷的选择性必须大于氩。硅铝酸钙和硅铝酸钠沸石分子筛均可使用。碳分子筛和二氧化硅分子筛也是有作用的。合适的沸石分子筛包括(但不限于)5A、10X、13X和丝光沸石。较佳分子筛是联合碳化物公司(Union Carbide)出品的5A医学级沸石分子筛,莱泡脱工业公司(Laporte Industries)出品的5AHC分子筛,或者其他具有类似孔径和分子引力的分子筛。5A医学级沸石分子筛有极好的氩/甲烷选择性,并显示出实际上可除去全部甲烷的能力,以至压力交变吸附单元的产品气体中甲烷的含量可低至百万分之几(ppm)的水平。将甲烷的量去除到较低水平是一条重要准则,因为存在于产品气体中的甲烷最终都将集聚在低温蒸馏单元的纯氩产品中。因此,若在压力交变吸附单元产品气体中含有不希望有的甲烷量,则后面昂贵的净化工序必不可少。通常要求产品中甲烷含量不大于20ppm,希望低达1ppm,最好为0.5ppm或更低。
压力交变吸附单元的合适操作压力在25-1000磅/英寸2(表压)范围内,其中以100-400磅/英寸2(表压)为佳。通过改变产品与原料之比,或者改变产品流量或循环时间,从而相应于产品中甲烷浓度为零时的不同操作压力下的氩产率,可使用气相色谱仪对压力交变吸附的产品流进行热导分析而确定。随着压力增加,氩的产率以中等速率降低。氩产率随压力的变化表明,甲烷的分离由再生程度所控制。在压力交变吸附床再生期间,所去除的甲烷量越高,则氩/甲烷选择性越好。
压力交变吸附装置必须周期地再生。合适的再生方式包括:(1)在大气压下再生,并伴用产物吹扫);(2)在25磅/英寸2(绝对压力)或更低压力下再生,并伴有低压[约15磅/英寸2(表压)]氢或氢-氮混合物吹扫;(3)真空再生。
当利用产物吹扫时,将吹扫限于半循环的不同阶段也许是有利的。通常,在床层加压后立即释出的产物大部分是氢。因此,将吹扫限在两个时限是有利的。第一个时限是紧接在吸附床加压之后,而第二个时限是产品纯度发生下降时的半循环末。通过适当选择二次吹扫步骤的时间,可以确定这种再生方式下的最大氩产率,及产品的最低氢浓度。产物吹扫的优点是再生所需的能量较低,而且产物中氢浓度较低。
产物吹扫的缺点是由于产物吹扫气本身的损失,而导致氩的产率降低。为分离原料气中全部甲烷,吹扫气的需要量一般将造成30%以上的氩的损失。图1所示的富氢气流6适合用作吹扫气,以代替产物吹扫。在本发明的第一个实施例中,通过隔膜5分离得到的富氢气流6压力较低(表压约为15磅/英寸2),因此再使之循环回到合成氨装置中并无多大价值。所以将这部分气体用作吹扫气是有利的。
本发明的另一种再生方式是真空再生。用真空再生所得的产率一般高于氢吹扫或产品吹扫的相应数值。然而真空再生将使该方法的基本投资略有增加,并明显地增大能耗。鉴于排出气流是用作燃料,除了使用特殊的低压燃烧器外,也需将其再次压缩至25磅/英寸2。确定最佳再生方法时,通过真空再生而导致氩产率的增加必须同时权衡投资费用和能耗的增加。
以上所述的有关从合成氨装置的膜非渗透性气体中回收氩的各种实施例也同样适用于从业已安装压力交变吸附单元或低温氢回收单元的合成氨装置中进行氩的回收。来自这些单元的富氩气流与压力一般为1900磅/英寸2(表压)的非渗透气流相比,则为低压气体。相反,在氢压力交变吸附后,富氩气流的压力一般为8-25磅/英寸2(绝压)而在低温回收氢后,则所说富氩气流的压力一般为25-100磅/英寸2。来自氢压力交变吸附单元的原料气流需再次压缩至50-100磅/英寸2(表压),而低温单元的原料气不一定需再次压缩。再次压缩后,以上讨论的有关膜后处理的实施例是适用的。原料气中的氨与甲烷一起在沸石分子筛压力交变吸附单元中分离出来。
以下实例系在实验,或(若合适时)理论计算(假定气流混合十分均匀)的基础上,分别对上述三个实施例的设计予以阐述。
例1
本例阐明了基于本发明第二个实施例的设计。一般大致含有60.5% H2、20% N2、4.5% Ar、13% CH4和2%NH3的合成氨装置吹扫气流进入由水洗器所构成的预处理段,以除去氨。经预处理后的气体则进入PRISMR隔膜系统,并产生二股气流,第一股用作再循环的富氢渗透气流含有85.4%H2、5.3%N2、8%CH4和1.3%Ar;而第二股富氩非渗透气流包含9%H2、54% N2、12% Ar和25% CH4。将表压为150磅/英寸2的非渗透气流送入常温压力交变吸附单元中,该单元包括充填了5A医学级硅铝酸盐沸石分子筛的吸附床层。一个标出各只阀门位置的典型压力交变吸附单元的布置示于图3。参照图3,该单元包括吸附床A、吸附床B、平衡槽C、回填槽D、产品贮槽E、背压调节阀16,以及阀门1至15。压力交变吸附单元按表1所示的全循环顺序操作。图4为全循环顺序的定时图。
表1
步骤 床A 床B 阀门开启
序号
1 床平衡 床平衡 3,4,9,10,13
2 原料气加压 与槽平衡 1,8,13
3 原料气加压 排入大气 1,6,14,13
4 恒定供料和产品释放 真空再生 1,6,15,13
5 恒定供料和产品释放 与槽平衡 1,8,13
6 恒定供料和产品释放 产品回填 1,12
7 床平衡 床平衡 3,4,9,10,13
8 与槽平 原料气加压 2,7,13
9 排入大气 原料气加压 2,5,14,13
10 真空再生 恒定供料和产品释放 2,5,15,13
11 与槽平衡 恒定供料和产品释放 2,7,13
12 产品回填 恒定供料和产品释放 2,11
在1.5磅/英寸2(100乇)的绝对真空度下,基本上可使全部甲烷和80%以上的氮经由该压力交变吸附单元的排气流除去。PSA产品气体通过低温蒸馏,产生作为塔底产品的纯液氩。温度和压力条件、流量、以及各气流的组成均归纳成表2。
表2
组成
(体积百分数)
气流 温度 压力 流量 H2Ar N2CH4
(图1) (K) (磅/英寸2) (单位/分)
1 298 150 100.0 9.0 12.0 54.0 25.0
最小25
3 293 最小1.5 74.3 0.6 4.0 61.7 33.7
最大25
4 303 150 25.7 33.3 35.1 31.6 -
7b 116 45 25.7 33.3 35.1 31.6 -
9 83 42 16.9 50.5 1.6 47.9 -
10 98 40 8.8 - 100.0 - -
例2
本例阐明了基于本发明第一个实施例的设计。压力为400磅/英寸2(表压)的非渗透原料气流在双床PSA中进行处理。其中PSA的布置方式与例1所示的相似。PAS的再生使用吹扫气,因而放宽或取消了真空度。本例的排气压力为大气压。PSA产品气体经隔膜处理后,产生下述两种产品:一种是压力为30磅/英寸2的富氢渗透气流,用作PSA再生的吹扫气,另一种富氩的非渗透气流如例1所述那样在低温下蒸馏,以得到作为塔底产物的纯液氩。温度、压力、流量和各气流的组成均归纳成表3。
表3
组成
(体积百分数)
气流 温度 压力 流量 H2Ar N2CH4
(图1) (K) (磅/英寸) (单位/分)
1 298 400 100.0 9.0 12.0 54.0 25.0
最小200
3 293 最小1.5 81.9 9.1 4.3 56.1 30.5
最大25
4 303 400 27.5 36.0 33.1 30.9 -
6 303 最小20 9.4 88.4 7.5 4.1
最大35
7a 303 400 18.1 8.8 46.5 44.7
7b 1 40 18.1 8.8 46.5 44.7 -
9 8 35 10.0 16.0 2.5 81.5 -
10 9 33 8.1 - 100.0 1×10-41×10-4
例3
本例阐明了基于本发明第三个实施例设计。压力为400磅/英寸2(表压)的非渗透原料气流在双床PSA系统中进行处理。所说吸附床内充填了金属氢化物(HystorR合金207)和沸石分子筛,并分成两层布置,两者重量比约为1∶6。金属氢化物位于该床的产品一端。在真空[1.5磅/英寸2(绝对压力)]下再生可使全部甲烷、70%氢和80%以上氮经由排气流除去。离开PSA后的富氩产品气体经低温蒸馏,可得到作为塔底产物的纯液氩。温度、压力、流量和各气流的组成归纳成表4。
表4
组成
(体积百分数)
气流 温度 压力 流量 H2Ar N2CH4
(图1) (K) (磅/英寸2) (单位/分)
1 298 400 100.0 9.0 12.0 54.0 25.0
3 293 最小1.5 78.1 8.1 4.6 55.3 32.0
最大25
4 303 400 21.9 12.3 38.4 49.3 -
7b 116 40 21.9 12.3 38.4 49.3 -
9 83 35 13.8 19.6 1.80 78.6 -
10 98 33 8.1 - 100 - -
在本发明的范围和原理内,而对上述实施例所作的各种变换,对于该领域的熟练人员是显而易见的。例如,可用吹扫气再生代替真空再生。而吹扫气在通过PSA进行再生前,可予以加热。此外,可将原料气冷却,以得到合适的温度交替变化。