用于将硫化氢分解成氢和硫并将 该分解产物分离的膜式催化反应器 【技术领域】
本发明涉及一种含有硫化氢的气体的处理,利用一种具有一层多孔陶瓷膜的膜式催化反应器,将硫化氢分解成硫和氢并将这些产物分离,所述多孔陶瓷膜可以渗透氢,在所述多孔陶瓷膜上沉积有一种用于将硫化氢分解成硫和氢的催化剂。
背景技术
多种工业生产过程都产生一种不希望得到的硫化氢产物,一种腐蚀管道和设备的产物。这些生产过程是使用氢气的石油炼制过程——比如通过氢化裂解对原油或各种石油馏分进行脱硫、天然气生产过程等等。
残留硫化氢的通常处理方法采用Krauss方法,它包括二氧化硫和硫化氢的相互还原/氧化以生成水和元素硫。
另外,人们已经开发了其它方法用于处理硫化氢以生产氢,氢是一种用作无污染能源的产品。这些方法是在1900℃温度下在一反应器中热分解硫化氢(US5843395)或者在450℃至800℃之间的温度下利用一种合适的催化剂来催化分解硫化氢(US4039613)。
要将硫化氢完全分解成硫和氢是一个很难的过程。将硫化氢转化成硫和氢依赖于许多因素,诸如温度、催化剂和分解产物的进料速率。最后一个因素是非常重要的,因为分解反应是可逆的而且产物很容易相互发生反应而生成硫化氢。
此外,人们已经开发了其它用于处理硫化氢的方法,它采用一种膜式催化反应器将硫化氢催化分解成硫和氢并分离氢,从而能够同时降低硫化氢的分解温度并且使分解产物的分解和分离阶段结合。
各种各样的膜,包括实心的和多孔的,都可以被用来除去当硫化氢在膜式催化反应器中分解时产生的氢。实心金属膜的优点是,它们仅仅允许氢通过;然而,它们的缺点是它们的渗透性低。另一方面,多孔膜具有高的渗透性但是选择性更少并且允许氢及其它反应产物通过。
由Edlund和Pledger(D.J.Edlund和W.A.Pledger,MembraneScience(膜科学)杂志,77,255-264,1993)研发的膜式催化反应器,用于将硫化氢分解成氢和硫,包括一种多层膜,其顶层(铂)用于硫化氢地催化分解,而其中间层(钒)被用作一种可以渗透氢的基底。然而,该反应器的缺点是采用一种昂贵的金属(铂)作为催化剂而且膜的渗透性低,从而有必要将吸入流再压缩到70-100大气压以提高生产率。
Kameyama等(T.Kameyama等,Int.J.Hydrogen Energy,第8卷,第1期,5-13,1983)描述了一种用于分解硫化氢的膜式催化反应器,包括一个圆柱形本体和一个被共轴地设置在该本体中的管状陶瓷膜。这样,在膜与本体之间的空间填充一种适当的催化剂,诸如一种过渡元素硫化物,比如硫化铜;硫化氢就是在该空间内被分解的。在该反应器中硫化氢是在700℃-800℃发生分解的。在硫化氢分解之后,氢被所述多孔陶瓷膜分离,该膜包含有一层选择层。然而,分解反应和氢的分离不能够同时发生,从而,氢在反应区域中的存在能够抑制硫化氢的分解。
【发明内容】
本发明针对上述问题,对用于硫化氢的催化分解和分解产物的分离的膜式催化反应器提出改进,它解决了上述问题的全部或者部分。
本发明的技术方案基于这样的发现,有可能能够同时(i)将硫化氢催化分解成氢和硫,并(ii)利用一种多孔陶瓷膜分离该分解产物,在该陶瓷膜上以层的形式沉积有一层合适的催化剂。这样,硫化氢的催化分解就能够与所生成的氢的分离同时发生,从而反应按照所需要的方向转移。
本说明书中所描述的反应器提供了一种将硫化氢催化分解成氨和硫而且同时将分解产物分离的改进方法。另外,该反应器经济,能够被有效地应用于工业上并且增加氢的产量。
本发明的一个目的是提供一种膜式催化反应器,用于分解硫化氢并分离该分解产物,包括一个多孔陶瓷膜,该陶瓷膜上被以层的形式沉积有一层合适的催化剂。
本发明的另一主题是一种用于分解硫化氢并同时分离该分解产物的方法,其采用了上述膜式催化反应器。
【附图说明】
图1是表示本发明的主题反应器的示意图,其包括单一的多孔陶瓷膜元件;
图2是表示本发明的主题反应器的示意图,其包括几个平行的多孔陶瓷膜元件。
【具体实施方式】
本发明涉及一种膜式催化反应器,用于分解硫化氢并分离该分解产物,下面称为本发明的反应器,它包括一个本体,一个管状多孔陶瓷膜,该陶瓷膜被共轴地设置在所述本体内用以除去氢,以及一种用于将硫化氢热分解成硫和氢的催化剂,所述催化剂被以层的形式直接沉积在所述管状多孔陶瓷膜上。
本发明反应器的一个特征是,催化剂不是被设置在反应器内部,而是以被沉积在所述管状陶瓷膜上的一个薄层或微层的形式设置。因而,所述管状陶瓷多孔膜/被沉积的催化剂的元件的横截面图显示出,所述元件具有3层,一第一(底部)多孔陶瓷层,一第二(中间)选择性陶瓷层和一第三(上部)催化剂层。
本发明反应器的本体可以采用任何合适的形状,比如圆柱形,并可以由经受得住工作温度的任何合适的材料制成。所述反应器本体包括用于送进输入气体(包含硫化氢)的元件和用于输出氢、硫和未被分解的硫化氢的元件。
所述管状陶瓷多孔膜元件是一种由陶瓷多孔膜制成的管状元件。所用的陶瓷多孔膜可以是任何传统的多孔膜,其能够渗透氢但是基本上不能渗透硫。为此,所述陶瓷多孔膜包括一个允许氢通过的选择性渗透性层。在一个具体实施例中,该管状陶瓷多孔膜元件包括所述第一陶瓷多孔层和所述第二选择性陶瓷层。这些层的孔隙率可以在一个宽的范围内变化。在一个具体实施例中,所述第一层可以具有在1至2μm之间的孔隙率,而第二层的孔隙率小于1μm,比如0.2μm。
所述管状陶瓷多孔膜元件可以由任何合适的材料制成,比如由被用来制造用于膜式催化反应器的催化多孔膜的任何传统材料制成,该反应器用于分解硫化氢。在一个具体实施例中,用于制造所述管状陶瓷多孔膜元件的材料包括α-氧化铝,它可以是上述第二层或者选择性陶瓷层的材料,以及粘土,它起到一种粘合剂和/或增塑剂的作用。在一个具体实施例中,所述管状陶瓷膜元件是一种由Victor玻璃制成的管状件。
被沉积在所述管状陶瓷多孔膜上的催化剂可以是任何传统的催化剂,其能够催化地分解硫化氢,最好是在400℃至700℃之间的温度下。在一个具体实施例中,催化剂是一种选自过渡元素的金属,比如铬、钼、镍、钛、锆等,可选地比如它们的一种衍生物比如一种盐。在一个具体实施例中,所述催化剂是硫化钼,并且催化剂层的厚度达到2微米的钼的厚度。
所述催化剂可以通过任何传统的方法被沉积在管状陶瓷多孔膜元件的表面上,比如沉积、喷涂、浸渍或者浸没在包含有所述催化剂的溶液或者悬浮液中。尤其是,所述催化剂可以被用溶胶-凝胶方法(溶胶(液体胶体)-凝胶(共沉淀剂))以一种薄层的形式沉积,随后进行固结、或者化学气相沉积(CVD)的凝结、或者金属有机物交织物的高温分解、或者撒播在磁控管和一个弧形物中。
催化剂层(催化层)的孔隙率可以在一个宽范围内变化。在一个具体实施例中,催化剂层的孔隙率在0.04μm至0.07μm之间。
本发明的反应器可以包括一个单一的管状陶瓷多孔膜元件,或者作为选择,在其它具体实施例中,可以包括被安装在反应器本体中的两个或多个平行的管状陶瓷多孔膜元件。
在图1中可以清楚地看到,本发明的反应器由一个本体1、一个管状陶瓷多孔膜元件2和一个催化剂层4,该多孔膜元件2具有一个能够选择性地通过氢的层3,该催化剂层4被直接沉积在该选择性层3上。该管状陶瓷多孔膜元件2被共轴地设置在反应器本体1内,从而,该管状陶瓷多孔膜元件2的端部被密封地与在本体1和所述管状陶瓷多孔膜元件2的外壁之间的空间隔离。该陶瓷多孔膜元件的端部或者通过该端部或者通过一个填料箱式(套筒式)的管套节连接到反应器本体1上。该反应器本体1还包括一个用作初始气体混合物入口管的导管5以及两个导管6和7,后两个导管用作含有氢和任意一部分未被分解的硫化氢的气流的出口管,并用作含有部分未被分解的硫化氢的气流的出口管。本发明的反应器还可以包括一种合适材料的填料,比如graphite-graviflex(石墨- )。
下面描述本发明反应器的操作过程。被加热到温度400℃至700℃之间并具有一个在50.5-101kPa(0.5-1大气压)的轻微过压的所述初始气体通过导管5输送到本发明的反应器内部。当它与被沉积在所述管状陶瓷多孔膜元件2外表面上的所述催化剂层4接触时,硫化氢分解成氢和硫。
在所述管状陶瓷多孔膜2的所述选择性层3中,氢被直接从硫和硫化氢中分离。将氢从硫和硫化氢中分离的总效率由催化转化的影响和所述管状陶瓷多孔膜元件元件2的选择性层3的分离系数的影响决定。穿透所述管状陶瓷多孔膜元件元件2的壁并且由氢和初始气体的混合物组成的气体,被通过导管6从反应器喷射。还没有穿透所述管状陶瓷多孔膜元件元件2壁的气体,包含未被分解的硫化氢和气态硫的混合物,被通过导管7喷射到外部。后者气体混合物可以被导向本发明的另一个反应器,以便可以根据需要而多次重复此操作以实现初始硫化氢的完全分解。硫化氢分解和气体混合物分离的总效率在一个单一步骤过程中可以达到被输入反应器的气体中硫化氢的初始含量的30%至55%之间(在其它因素中,依赖于温度、流量和硫化氢的浓度)。
作为实例,假如本发明的反应器作用于一种具有约4%的硫化氢并且流速为每单位初始气体体积/1-100小时的气体,并且所用的催化剂是预先在H2S介质中制备的一种过渡元素的硫化物,在本发明反应器的单一操作中,将硫化氢转化成氢和硫的总转化率将从35%增加到56%,并依赖于温度。在400℃-700℃之间的温度、在每单位初始气体体积的相同流速条件下,仅仅用同样的催化剂所获得的催化效率最多不大于40%。
本发明反应器的一个特征是,将催化剂直接沉积在管状陶瓷多孔膜元件的外部选择性层上作为一层,从而相当程度地减少了所需的催化剂量,减少了催化剂的损失,消除了催化剂微粒(在其它反应器中需要的)的合成,并提高了生产过程的总效率。通过陶瓷多孔膜直接从反应区域除去氢使分解反应的平衡向所需的方向上转移。这样,分解和分解产物分离的总效率就可以从反应区域直接获得,结果,在生产过程的几种形式的实施例中效率提高了。
因此,由于能够从催化反应区域同时除去氢,在比迄今所知的反应器中的温度更低的温度下,硫化氢在催化剂中的分解达到最大程度。
本发明还提供一种用于将硫化氢分解成硫和氢并分离该分解产物的方法,下面称为本发明的方法,其利用本发明的至少一个反应器。该方法包括:向反应器供应含有硫化氢的气体,其中硫化氢已被加热到400℃至700℃之间并具有一个在50.5至101kPa(0.5-1大气压)之间的轻微过压。然后,所述含有硫化氢的气体在本发明的反应器内部移动并与催化剂接触,其中催化剂被沉积在所述管状陶瓷多孔膜元件的外表面上作为一层,从而硫化氢分解成氢和硫。所制得的氢与被包含在管状陶瓷多孔膜元件内的所述选择性层交叉,氢从这里被除去。硫和未被分解的硫化氢通过设在反应器上的导管排出反应器。
本发明的方法适用于处理含有硫化氢的气体,尤其是硫化氢的含量在1%至96%之间的气体。
本发明可以被应用于石油的精炼,比如应用于处理“酸性气体”、处理气体、处理含有硫化氢的混合气体以从中除去硫化氢、处理硫化氢含量高的气态废气、以及应用于与将硫化氢分解成氢和硫并随后分离该分解产物相关的其它工业上。
如上所述,残留硫化氢的传统处理方法采用Klauss法,其包括二氧化硫与硫化氢的相互还原/氧化而生成水和元素硫。然而,此方法用在精炼厂是过时的,因为大多数精炼厂(采用含硫石油作为原材料)必须注意到额外数量的氢(每小时好几万立方米)的存在以在获得硫化氢之后完成水力清洗阶段。就是在此阶段应用本发明的反应器是有利的,因为它允许将在精炼厂的水力清洗阶段产生的氢回收而无需制造它所需的能力消耗。