铸模半导体晶片的装置及工艺 【技术领域】
本发明涉及密封半导体晶片,尤其涉及在铸模化合物中密封凸点化半导体晶片。
背景技术
众所周知,芯片级封装(CSP)是一种容纳半导体管芯的半导体封装,其中半导体封装的外部尺寸接近半导体管芯的尺寸。一些芯片级封装(CSP)容纳凸点半导体管芯,其中在管芯上的焊盘上形成互连端子(互连端)。形成互连端的工艺常常称为凸点化。一般在晶片级,在晶片的组成件管芯的焊盘上由焊料,例如共晶或高铅焊料,形成互连端。作为替换,可以由例如金、银、锡和铜的金属构成互连端。此外,金属互连端还可以具有焊料盖。
形成CSP的一种方法是在铸模化合物中铸模凸点化半导体晶片的互连侧。在下铸模件铸模的成型铸模表面上放置凸点化半导体晶片,半导体晶片的互连侧朝上,即互连端向上延伸。接着,在晶片的互连侧上设置预定量的铸模化合物。接着把下铸模片和上铸模片结合到一起,由成型铸模表面和在上铸模片上地平铸模表面与基板形成一个腔,在腔内密封预定量的铸模化合物。随着在施加升高的温度下把下铸模片和上铸模片压到一起,预定量的铸模化合物被压缩对腔中的铸模化合物产生预定压力。
铸模化合物熔化,在产生的铸模化合物压力之下熔融的铸模化合物流过半导体晶片的互连侧,并且在互连端之间在半导体晶片的互连侧上形成铸模化合物层。铸模化合物凝固之后,分开上下铸模片。由于固化的铸模化合物和上铸模片的平铸模表面之间的粘合力,半导体晶片的铸模互连侧一般粘结到上铸模片。
理想地是选择预定量的铸模化合物以存在足够量的铸模化合物形成具有某一厚度的层以使互连的自由端暴露。但是,当使用预定量的铸模化合物时,在铸模片之间的压缩期间,不能获得预定量的铸模化合物压力。因此,该方法具有在半导体晶片上的铸模化合物层中形成空隙的风险。
一般,为了避免形成空隙,使用过量的铸模化合物以确保在铸模片之间的压缩期间在腔中获得预定的铸模化合物压力。因此,由形成的铸模化合物层的过量部分覆盖互连的自由端。接着通过把它磨掉去除过量部分以暴露互连的自由端。但是,由于必须去除相当大量的铸模化合物,研磨工艺很慢,从而对CSP产品的产量造成消极影响。例如,过量部分可以是20微米(10-6米)厚,使用研磨、擦光、激光和/或等离子体蚀刻或这些的组合可能花费30分钟来去除铸模化合物的过量部分。
该工艺的另一个不利之处是在研磨之前难于从上铸模片移走铸模的半导体晶片而无损伤和/或无不利影响半导体晶片的组成管芯。
日本Towa公司的欧洲专利申请EP1035572教导了一种用铸模化合物密封半导体晶片的方法,其在铸模之前应用横过上铸模片的平铸模表面设置的膜。这里,在下铸模片的腔中放置具有从在其上的焊盘延伸的互连端的半导体晶片,如以前那样互连端向上延伸。接着在延伸的互连端上放置预定量的铸模化合物,横过上铸模片的平铸模表面设置膜。接着在施加升高的温度下把上下铸模片结合到一起,在腔中压缩预定量的铸模化合物和基板。
熔融的铸模化合物流过半导体晶片的互连侧表面,并在互连端之间流动,以在半导体管芯上形成铸模化合物层。压缩期间,互连的自由端邻近在上铸模片上的膜,其中该膜防止互连的自由端被铸模化合物覆盖,由此不再需要随后的研磨步骤。在设置铸模化合物之后,上下铸模片分开,膜和铸模化的半导体晶片与上铸模片粘结。这里,该膜允许使得通过拉开它把铸模化的半导体晶片从上铸模片移开。接着,在随后的剥离步骤中,从铸模的半导体晶片移走并废弃该膜。
如前面所提到的那样,使用膜防止互连自由端在铸模化合物中被覆盖以不再需要研磨。此外,该膜还能够使铸模化的半导体晶片从上铸模片移开。但是,使用膜的不利之处在于在每个铸模注入之后该膜将被遗弃。因此,使用该膜的成本相对很高。使用膜的另一个不利之处在于需要附加的剥离步骤以从铸模化的半导体晶片去除该膜。剥离步骤具有成本、操作和产量的考虑。使用膜的另一个不利之处在于在互连端和该膜之间俘获了一些铸模化合物。因此,在剥离步骤之后,仍然需要执行如前面提到的使用例如研磨和蚀刻的工艺去除铸模化合物的附加步骤。使用该膜的另一个不利之处在于在膜和晶片之间俘获了空气,这可能导致在铸模晶片中形成空隙,其不利地影响组成封装半导体管芯的可靠性。
使用膜以辅助从上铸模片移开铸模化半导体晶片的一个替代方式是用不粘附材料例如Teflon涂附上铸模片的平铸模表面。尽管不粘附材料层辅助从上铸模片移开铸模化半导体晶片,它不能确保铸模化合物不覆盖互连的自由端,使用不粘附材料对必须去除的过量铸模化合物也不能产生任何作用。因此,如前面所介绍的那样,需要研磨或蚀刻等后序步骤。此外,不粘附材料具有较短的使用寿命,将需要定期地制造补给物替代不粘附材料层。
【发明内容】
本发明试图提供一种铸模半导体晶片的装置及其工艺,它能克服或至少是削弱了现有技术的上述问题。
因此,在一个方案中,本发明提供了在基板的至少一个表面上模制铸模化合物层的装置,其中至少一个表面具有从其延伸的连接端,该装置包括:
具有开口位置和铸模位置的多个铸模片,其中在铸模位置中
多个铸模片形成主要腔,用于在其中设置基板,用于在基板的至少一个表面上设置预定量的铸模化合物,和用于在基板的至少一个表面上模制铸模化合物层,和
多个铸模片形成与主要腔连接的次要腔,该次要腔用于接收自主要腔的过量铸模化合物,该次要腔具有用于对铸模化合物施加预定压力的压力施加元件。
在另一个方案中,本发明提供了一种在基板的至少一个表面上模制铸模化合物层的方法,其中至少一个表面具有从其延伸的互连端,该方法包括如下步骤:
a)把多个铸模片移到开口位置;
b)在多个铸模片的至少一个上设置基板;
c)在基板的至少一个表面上设置预定量的铸模化合物;
d)把多个铸模片从开口位置移到铸模位置形成主要腔、次要腔和在它们之间的沟道,在主要腔中具有基板和预定量的铸模化合物;
e)压缩在主要腔中的预定量铸模化合物和基板;
f)把过量的铸模化合物经由沟道从主要腔引导到次要腔;
g)在次要腔中对过量的铸模化合物维持预定的压力;
h)在施加预定压力之下使铸模化合物凝固;
i)把多个铸模片从铸模位置移到开口位置;和
j)从主要腔移走铸模化了的基板。
在又一个方案中,本发明提供了一种铸模装置,包括:
用于形成铸模腔的多个铸模片,多个铸模片的每个用于提供至少部分铸模腔的铸模表面,其中铸模期间,多个铸模片结合到一起形成铸模腔并在铸模腔中形成铸模单元,并且在铸模之后,至少多个铸模片的一些分离开;
多个铸模片的至少一个,具有铸模期间相对于其它多个铸模片的第一位置,并具有在铸模之后相对于其它多个铸模片的第二位置,其中在第二位置铸模单元与多个铸模片至少一个的至少部分铸模表面粘结;
至少一个加热系统,在铸模期间用于加热多个铸模片的一个或多个;和
至少一个冷却系统,在铸模之后用于冷却多个铸模片的至少一个。
在再一个方案中,本发明提供了一种在由多个铸模片形成的腔中铸模单元的方法,其中在铸模之后铸模单元与多个铸模片的一个粘结,该方法包括如下步骤:
a)在多个铸模片之间设置将被铸模的单元;
b)安装多个铸模片形成腔,将被铸模的单元位于在该腔中;
c)在对多个铸模片的至少一些加热的同时用铸模化合物填充腔;
d)用与多个铸模片的一个粘结的铸模单元分开多个铸模片;和
e)冷却多个铸模片的至少一个,从多个铸模片的一个分离铸模单元。
在发明的再又一个方案中,本发明提供了一种在铸模之后移开与铸模片铸模表面粘结的铸模单元的方法,该方法包括冷却铸模片的步骤。
【附图说明】
下面将通过示例并参照附图全面说明本发明的实施例,其中:
图1示出按照本发明的铸模装置的侧面剖面图;
图2示出图1中铸模装置下片的顶视图;
图3示出使用图1中的铸模装置的铸模工艺流程图;
图4A-G示出按照图3中的工艺铸模装置的各个位置;
图5示出从铸模连接侧观察用图3中的工艺铸模的部分铸模半导体晶片的照片。
【具体实施方式】
在凸点化半导体晶片的互连侧上用于模制铸模化合物层的铸模片包括主要腔和次要腔,过量的铸模化合物经由沟道从主要腔流到次要腔中。次要腔包括把铸模化合物上的预定反压力维持到与所需铸模化合物压力相等的活塞。在这种方法中,过量铸模化合物的主要部分被强制压到次要腔中,铸模化合物在所需铸模化合物压力之下。在主要腔中的多数过量铸模化合物流到次要腔中,有利地是在半导体晶片上剩余较薄层过量铸模化合物。接着在较短时间内例如通过研磨或蚀刻有利地去除铸模化合物薄层。通过设计,当分开下铸模片和上铸模片时,铸模化半导体晶片粘结到上铸模片,在次要腔中固化的铸模化合物粘结到那里。因此,在沟道中固化的铸模化合物破裂并裂开,分成两部分。
上铸模片包括基本上为平面并可移动的腔柱,铸模化半导体晶片与腔柱粘结。铸模片分离之后,从上铸模片移开并冷却腔柱。变凉的同时铸模化半导体晶片的铸模化合物收缩。变凉期间铸模晶片的收缩比腔柱的收缩大得多,其降低了铸模半导体晶片和腔柱之间的粘合,导致铸模半导体晶片从腔柱分离。
因此,有利地从上铸模片移开了铸模半导体晶片,而没有膜的使用和随之而产生的花费,还无需使铸模半导体晶片经受机械移开的损伤。
图1示出在铸模位置包括上铸模片105和下铸模片110的铸模装置100。本领域技术人员公知,把上铸模片105安装到压力机(未示出)的上部,把下铸模片110安装到压力机(未示出)的下部。在常规铸模压力机中,上部分不是可移动的,下部分可以在上铸模位置和下开口位置之间的垂直方向上移动。因此,如所示的那样,下铸模片110在下开口位置和升高的铸模位置之间垂直地移动。
上铸模片105包括可移动的腔柱115,当上铸模片105与下铸模片110间隔开时,即当铸模片105和110位于开口位置中时,可移动的腔柱115水平地滑动。由例如本领域公知的P20的钢构成上铸模片105,由例如本领域公知的440C或ASP23的刀具钢构成可移动的腔柱。腔柱115被构成在上铸模片105中的对应形成凹部中滑动的形状。因此,腔柱115在上铸模片105上水平滑动。
下铸模片110具有带铸模表面的腔117,在腔117a内设置具有连接端119的半导体晶片118用于铸模。下铸模片110可以包括几个次要腔,虽然这里为了说明的目的仅示出了一个次要腔120。次要腔120经由闸门121与主要腔117连接,闸门121在铸模期间提供了使熔融的铸模化合物从主要腔117流到次要腔120的沟道。选择弹簧125对柱塞130施加预定压力。柱塞130通过其上部138提供次要腔130的可移动表面,该可移动表面对次要腔120中的铸模化合物施加预定压力,它还被称为反压力,因此对主要腔117中的铸模化合物施加压力。
由此,通过应用在压缩时施加对应压力的弹簧125,能够有利地在铸模期间通过柱塞130对主要腔117中的铸模化合物施加并维持预定铸模化合物压力。柱塞可以是3-5毫米(mm)直径,并且在后面会更详细地介绍。在主要腔117周围布置了多个柱塞和辅助次要腔。
弹簧125提供了施加所需力相对廉价和便利的方式,但是将认识到在次要腔120中可以应用带辅助激励器的气动或液压系统来对柱塞130施加所需的力。
下铸模片110包括下铸模基座131、排出板132、制动轴133、下腔板134和下腔芯子145。下腔芯子145提供了其上设置基板118的下铸模表面,下腔芯子搁在底部铸模基座131的一部分上。导管135通过在底部铸模基座131和排出板132中的套管140延伸,并进入和固定在下腔板134。导管135的自由端具有在其上拧紧的螺母。当下铸模片110在开口位置和铸模位置之间移动时,导管135在套管140中滑动以维持上下铸模片105和110垂直对准。
下部铸模基座131支撑制动轴133,制动轴133的高度决定在互连端119的自由端上的过量铸模化合物的厚度。应用具有多个高度的制动轴来设定将取决于半导体晶片118厚度和互连端119高度的所需厚度,并在制动板132中的制动开口136中插入具有所需高度的选择制动轴。一般地,对于每批将被铸模的晶片,将应用具有选择高度的特定制动轴。
下腔板134接收导管135的端部137,其可以装载弹簧,下腔板是可以垂直移动的。此外,与柱塞130的上部分130结合下腔板134还形成次要腔120。排出板132的延伸部分152形成用于弹簧125的基座,当升高排出板132时,延伸部分152邻近柱塞130的下部139,并相对于下腔板134提升柱塞130。
下铸模片110还包括排出轴150,其通过在底部铸模基座板131中的开口151从排出板132的下表面延伸。本领域技术人员公知,排出轴150具有大约10mm的直径,并与为部分排出系统的激励器160(如图4F所示)对准。当在压力机下部的排出系统(未示出)启动时,激励器160向上移动,邻接排出轴150,排出轴150克服弹簧125的力和排出板132的重量提升排出板132。排出板132的升高延伸部分152邻接柱塞130的下部139并相对于下腔板134提升柱塞130。在柱塞130上的向上力引起柱塞130的上部138排出在次要腔120中固化的铸模化合物,下面将对此详细介绍。
图2示出下铸模片110的顶视图,其中多个次要腔120位于主要腔117周围,如前面介绍的那样,每个次要腔120通过闸门121与主要腔117连接。可选择地,使用在主要腔117中的真空开口205来在铸模期间固定半导体晶片118,并在铸模之后将其释放。此外,在主要腔117周围示出了导管135和它们各自的套管140。
参照图3和图4A-4F,铸模工艺300开始于305,在310移动上下铸模片105和110到如图4A所示开口位置。注意到在弹簧125压力之下,柱塞130向上延伸到由下腔板134轮廓设定的最大可允许限度。一般,铸模片105和110结合加热装置,例如电加热元件(未示出),其使铸模片105和110维持在预定升高的温度以备铸模之用。接着,在315,在形成主要腔117基座的下铸模片110上设置凸点化半导体晶片118,用经由开口205施加到半导体晶片118上的真空可选择地保护在主要腔117上的晶片118。
接着,如图4A所示,在320,在半导体晶片118上设置铸模化合物的颗粒405。尽管这里示出了颗粒,但本领域技术人员应认识到还可以使用液体或粉末形式的铸模化合物,并还可以应用适当的分配机制。选择铸模化合物的量以使铸模化合物的体积填充主要腔117和所有的次要腔120,并包括足够的附加体积来克服弹簧125的作用来挤压柱塞130。作为弹簧125对柱塞130作用结果,这确保对主要腔117中的铸模化合物施加预定的铸模化合物压力,即对铸模化合物的压力。
公知把上下铸模片105和110加热到预定温度。一般为160-175摄氏度(℃),接着在325,把铸模片105和110移动到铸模位置。在该移动期间,自加热的铸模片105和110的热量和颗粒405上铸模片105和110之间的压缩力引起颗粒405更加变成液态。在该状态中,如图4B所示,铸模化合物在互连端119之间横过半导体晶片118的互连表面流动。这里应注意到现在柱塞130的上部138邻接腔柱115,克服弹簧125的压力向下推柱塞130。如图4C所示,随着两个铸模片105和110向着彼此继续移动,熔融的铸模化合物被从主要腔117压出,并在327通过闸门121引到次要腔120中。
当上下铸模片105和110邻接时,在主要腔117和次要腔120中压缩的铸模化合物的压力作用于柱塞130的上部138。当柱塞130上的压力大于弹簧125的压力时,克服弹簧125的压力向下放置柱塞130。因为弹簧125的压力预设为对铸模化合物施加预定压力,所以如图4D所示,在329,在次要腔120中的铸模化合物具有施加的预定压力。
接着在330使铸模化合物凝固一段时间,之后在335把铸模片105和110移动到开口位置。参照图4E,当铸模片105和110移开到开口位置,铸模半导体晶片412的铸模化合物部分和腔柱115之间的粘结力与在次要腔120中固化的铸模化合物部分419和次要腔120表面、柱塞130的上部138表面之间的粘结力一样强。如图4D所示,这由柱塞130的上部138形状保证,并由确保在闸门121之下向下移动柱塞130的上部138来保证。具体来说,由下腔板134中的开口侧提供的垂直表面(柱塞130在其中移动)和次要腔120作为整体充分促进与铸模化合物的粘结力。
结果,铸模半导体晶片412(如图4E所示)与腔柱115粘结,在次要腔120中的固化铸模化合物部分419与次要腔的表面粘合。通过设计,在闸门121的固化铸模化合物形成微弱连接,随后这种连接随着铸模片105和110移开到开口位置而断开。在铸模半导体晶片412的侧表面415上和固化的铸模化合物部分419侧表面上可以识别到断开的连接部分。
由于在开口位置中的铸模片105和110,在压力机下部中的激励器160向上移动穿过开口151并邻近排出轴150的自由端,向上挤压排出轴150。这使得排出板132克服其自身重量和弹簧125的压力向上移动,排出板132的延伸部分152邻近柱塞130的下部139并向上提升柱塞130。因此,如图4F所示,柱塞130的上部138向上移动并从次要腔120挤压或排出固化和铸模化合物部分419。接着,当在压力机下部中的激励器160不动作时,排出板132返回到如图4E所示的位置。
由于铸模化半导体晶片412与腔柱115粘结,在340腔柱从上铸模片105移开,在345腔柱的温度115相对于铸模半导体晶片412的温度而降低。这可以以多种方式实现。例如,如图4F所示,腔柱115可以放置成与较冷的金属片414接触。接着金属杆414用作热沉,由此冷却腔柱115。作为替换,以空气射流形式的冷却剂可以对准腔柱(未示出)。应认识到为了便于腔柱115的冷却,可以用较少体积金属制造腔柱115,由此降低腔柱115中的将被取走的残留热量。变凉的同时,铸模半导体晶片412的铸模化合物收缩。变凉期间,铸模晶片412的收缩远大于腔柱115的收缩,变凉降低了铸模半导体晶片412和腔柱115之间的粘合,导致铸模半导体晶片412从腔柱分离。
当然,可以应用真空机械固定铸模半导体晶片412。随着在350它离开腔柱115接收铸模半导体晶片412,接着与本领域技术人员公知的那样,在355去除在铸模半导体晶片412上的过量铸模化合物较薄层,直到暴露互连端119的自由端。除了研磨工艺之外或替代研磨工艺可以应用多种工艺。这些包括激光蚀刻和搭接。接着在360终止铸模工艺300。
图5示出在铸模之后、在去除过量铸模化合物薄层之前,从半导体晶片的连接侧观察铸模半导体晶片505的一部分。注意到从互连自由端和铸模化合物表面测量,穿过大约20-30微米(10-6米)厚的过量铸模化合物层可以见到互连端510。
如介绍的那样,本发明提供了一种在凸点半导体晶片的互连侧上模制铸模化合物层的方法,其中铸模化合物层较薄并能够比使用现有技术工艺形成的铸模化合物层有效地去除。此外,铸模不需要使用膜。
这使用铸模片实现,铸模片具有次要或溢出室,从铸模腔流出的大多过量铸模化合物进到次要或溢出室中。在溢出室中预定的反压力确保在铸模腔中的压力是所需铸模化合物压力。在这种方法中,充分减少了在铸模腔中铸模化合物中空隙的形成,在互连的自由端上形成铸模化合物较薄层,有利地使铸模化合物层被有效去除。
此外,铸模片之一包括在铸模之后与铸模半导体晶片粘结的腔柱。接着从铸模片去除并冷却腔柱。变凉期间,铸模晶片的收缩比腔柱的收缩大很多,变凉降低了铸模半导体晶片和腔柱之间的粘合,导致铸模半导体晶片从腔柱分离。因此,有利地从铸模片去除了铸模化半导体晶片,而没有膜的费用,还没有使铸模半导体晶片受到机械去除损伤的风险。
因此本发明提供了一种用于铸模晶片的装置,和克服或至少是降低现有技术上述问题的工艺。
应认识到尽管仅详细介绍了发明的一个特定实施例,本领域技术人员在不脱离本发明范围的情况下可以进行各种改进和提高。