相分离设备 本发明涉及对不同密度的液体的混合物具有改进分离效果的分离器。本发明还涉及用催化气相氧化制备丙烯酸的方法,该方法是用本发明的分离器得到改进的。
分离器用于化学工业中的许多领域以分离密度不同的不完全互溶的两种液体。这种类型的分离器是卧式或竖式的容器,它的一端具有所要分离的混合物的入口;另一端有不同密度的分离相的高位和低位出口。在已知的分离器中,混合物的入口(伸入容器的喂料管)是设计成直形的,并且大部分是水平安置的。因而喂入分离器地液体混合物以相当大的水平冲力流入分离容器,这会使相的分离、特别是相界面的建立更加困难。为了避免这一缺点,提出了使用大长/径比的分离器,这样就减少了液体水平喂入的冲力。这种方案的缺点是,分离器全长的不小一部分不用于相分离,而是用于缓冲喂入的液体,另一解决方法是在分离容器的入口附近安装一个或多个挡板以降低导入液体的冲力,这一方法已知于其它的流体设备。这一解决方法的缺点是大大地增加了分离器的构造花费,因为要达到好的效果,挡板需要有精密的液体动力学设计和准确的安装,然而一般也不能完全阻止不希望的湍流。
分离器的一个特别有趣的应用领域是从丙烯的催化气相氧化所形成的酸水中分离丙烯酸吸收溶剂。在制备丙烯酸的该方法中,将欲被氧化的丙烯与一稀释气体或含未反应起始原料的循环气体相混合,然后喂入气相氧化装置。将气相氧化反应混合物通过吸收柱以除去丙烯酸。在此使用溶剂从反应混合物除去了大部分所形成的丙烯酸,未被吸收的组分以气相脱离吸收柱并喂入冷凝段。此气体混合物的可冷凝部分以冷凝形式而分离和除去,被称之为酸水。一部分未冷凝的气体被循环到气相氧化段并形成所谓的循环气体。酸水一般是被烧掉,相当量的残留溶剂也与酸水一起被除去,因此溶剂循环系统中的溶剂必须加以补充。
因此,本发明的目的是提供一分离器,它能用简单的构造方式完成较好的相分离。本发明的又一目的是提供用催化气相氧化制备丙烯酸的改进方法,它明显地降低了存在于酸水中的溶剂损失。
本发明的目的是用分离密度不同的液体的混合物的分离器来完成的,该分离器包括具有至少一个喂入混合物的入口、一个排放混合物的轻相的高位出口和一个排放混合物重相的低位出口的容器。本发明分离器的特征在于入口的安置和构造方式应使引入的混合物以与垂直于内壁的轴线成0°-45°、优选0°-20°、特别优选0°-5℃的α角的方向冲击容器的出口相对一端的内壁。
入口和出口安装在容器中互相远离的两端,一般是相对的两端。所说的轴线是垂直于相关的容器壁的,或是垂直于液体射流的冲击表面(如果是弯曲的容器壁)。液体射流冲击器壁最好是垂直的,即其角度为0°,对表面有倾角的液流会损害器壁上的冲力降低效果,因为横向于器壁的冲力分力不能被器壁降低,而只能被周围的液体降低。这需要有制动空间,而且能导致不希望有的旋涡。本发明所述的将喂入液体流改向至分离器壁上可导致垂直于器壁的冲击分力几乎完全消除,以致从内壁返流的液体仅具有垂直于器壁的残留冲击力,此冲击力是流入分离器的实际分离区所需要的。此构造的有利作用是出乎预料的,因为在硬器壁上的液体粒子的基本上为弹性的反射中,预计冲击力会改变但能量仍保留下来,即基本上是液体粒子运动方向逆反,同时冲击量仍得以保留。正如将水喷射到墙壁上,将会有液体的反弹。此意想不到的效果的解释被认为是流进的液体射流的总能量在器壁和入口之间的固定圆形旋涡中被降低,即无自由旋涡存在。
在容器中的入口和两个出口之间最好安装一多孔板,多孔板能拉平容器中的液体流,特别是能降低由中心导入产生的任何径向压力差,否则能导致大规模旋涡的形成并因此降低分离效率。多孔板最好是平行于喷射液冲击的容器壁,在容器的整个横截面上(即扩展至整个容器)将容器隔开,但多孔板也可在容器壁处留有或大或小的边缘缝隙。再者,将多孔板安装在入口的附近是最佳选择,这样就在容器中形成了尽可能大的无旋涡分离区。多孔板的通孔/总表面的面积比最好是1%-40%,优选3%-15%。
根据以上所述详情,本发明也提供了互不完全相溶的密度不同的液体的混合物的分离方法,此方法最好是用于差别大的液体,例如相应混合物中的水和有机液体。
按照本发明,所述的分离器可用于丙烯的催化气相氧化以制备丙烯酸的方法,其中在吸收段使用第一溶剂从气相氧化反应混合物中吸收丙烯酸,然后使气体混合物(在其中第一溶剂和内烯酸含量低)脱离吸收段,接着在冷凝段将气体混合物冷却至20-60℃,气体混合物的冷凝相作为酸水从冷凝段排放出,最后将气体混合物的气体相从冷凝段排放并至少部分作为循环气体再循环到气相氧化段。根据本发明,在此方法中中等沸点物特别是马来酸酐借助于酸水得以从第一溶剂中分离,方法是用酸水和至少一部分第一溶剂流喂入混合器,然后喂入本发明的分离器。优选使用的第一溶剂是包括至少一种取代或未取代的联苯、取代或未取代的二苯醚或邻苯二甲酸二甲酯的溶剂,进一步优选的溶剂是约60wt%二苯醚和约20wt%联苯以及20wt%邻苯二甲酸二甲酯的混合物。
本发明现以图1-3为参考叙述如下。
图1所示为先有技术分离器实例;
图2所示为本发明分离器实例;
图3所示为按本发明方法制备丙烯酸的实例。
图1所示的分离器是已知的,容器1具有欲被分离的液体的入口2和已分相的两个出口3和4。入口2只是与器壁平直相连的。在其它的具体实施方案中入口2也可以伸入容器或以倾斜角安排。或者可在容器1中安装挡板,安装应使导入的液体混合物的冲击力基本减低。
图2A所示为作为对照的本发明的分离器,其入口12进入容器11向回弯曲,它的安排应使引入的液体射流以对轴线17成α的角度冲击容器内壁16,此容器内壁是在相对于出口13和14的另一端。在此轴线17在射流的冲击区域内与器壁16成90°的角。此外,在容器11中安装了多孔板15,其中孔面积约占多孔板总面积的10%。弯曲的入口12几乎完全消除了水平进入的冲击力,然后多孔板进一步将液体流拉平并与容器11的内壁一起限定了一个分离空间。在此空间内发生了比常规分离器效率高得多的相分离。显然也可采用向着容器的同一内壁或不同的内壁的多个入口以代替入口12。
图2B所示是已述及的图2A所示分离器的变体。此例的液体混合物是从顶部经管12引入的,同样可从底部引入容器11,只要符合上述冲击器壁16的条件。
图3是用催化气相氧化制备丙烯酸的方法示意图,此方法根据本发明用上述的分离器得到了改进。此方法通过管线31喂入丙烯,稀释气体例如空气或水蒸气通过管线32喂入反应器33,在反应器33中进行丙烯的催化气相氧化。反应中形成的丙烯醛在另一反应器中(未示出)进行氧化。气相氧化反应混合物经管线34进入急冷设备35被冷却,一部分吸收介质(溶剂)在此蒸发,通过管线317喂入吸收柱37并由此经冷却器36通入急冷设备35,溶剂的高沸点次要组分在急冷设备35中被冷凝下来并由排放管线319排放出去,适合时它们在蒸出溶剂后弃去,例如烧掉。已被大大冷却的反应混合物继续由急冷设备35通入冷却器36,冷却器36例如由冷却回路组成,在此被冷却至适当的吸收温度。然后反应混合物进入吸收柱37。在此用经管线317喂入的溶剂进行逆流吸收将丙烯酸从气相氧化反应产物中分离出来,所用的溶剂可包括例如75wt%二苯醚和25wt%联苯。也可再有高达25wt%的极性溶剂以减少固体形成,例如邻苯二甲酸二甲酸。将负载丙烯酸的溶剂通入冷却器36并经侧排放口318排放以进一步加工(未示出)。进一步加工常包括脱低沸物,需要时进行溶剂蒸馏或相当的工艺步骤。基本无丙烯酸的反应产物从吸收柱37的柱顶排放并通入急冷设备38。在此反应产物的未冷凝部分经管线39排放,在通过管线311分离除去惰性气体组分后,通过管线310作为循环气体再循环至丙烯气相氧化段。该循环气体还包括气相氧化的未反应原料、氮气和碳的氧化物。无丙烯酸的反应产物可冷凝的部分通过管线312送出。此冷凝物称为酸水,由水溶液组成,水溶液除丙烯酸外还含有相关量的乙酸、马来酸和甲醛以及其它的酸。酸水经管线312喂入混合器313。酸水在混合器里与来自负载有丙烯酸的溶剂流的加工段的并通过管线320喂入的一部分第一溶剂相混合,然后将混合物喂入本发明的分离器314。然后通过管线315和316从分离器排放出分离相。在此制备丙烯酸的方法中使用本发明的分离器可将溶剂的损失降低至三分之一左右。
丙烯酸生产的主要步骤可用另外的一些步骤加以补充,但这不会削弱本发明的重要性。因此本发明方法代表制备丙烯酸的高效方法,其中溶剂损失明显降低达70%。另外,总的说来,本发明提供了进行相分离的既简单又有效的设备。