正温度系数组合物 本发明涉及正温度系数组合物,尤其是涉及适用于汽车反射镜加热器的正温度系数组合物。
在本领域都知道导电聚合物的电性能通常特别取决于它们的温度;以及极少数导电聚合物展现出被称作PTC的正温度系数性质,即在一特定温度或一特定温度范围内电阻率很快的增高。术词“转变温度”(Ts)用来表示发生所述快速增高的温度。当这种电阻率增高在一温度范围发生(经常会出现这种情况)时,那么Ts可方便地标为电阻率对温度的对数曲线图的基本直线部分的延长部分(在所述范围的上面和下面)交叉点的温度。在Ts以上PTC聚合物的电阻率继续随温度升高而增高直至在被称为峰温的温度下达到被称为峰电阻率的最大值;此后电阻率或快速或缓慢地降低。
具有PTC性质的材料可用于众多应用领域,其中通过电路的电流大小由构成部分电路的PTC元件的温度来控制。对实用来说这意味着材料的Ts应位于约-100℃至250℃之间以及在低于Ts的温度下材料的体积电阻率应为约2.5至105Ohm.cm(欧姆·厘米)。电阻率的下限源于在高于Ts地温度下PTC元件应为绝缘体的要求;如果低于Ts时元件的电阻率小于2.5Ohm.cm,那么即使在Ts左右或高于Ts时电阻率的增高后,其电阻率也不是足够高的。电阻率的上限源于在低于Ts的温度下PTC元件应为导体的要求。所述电阻率上下限的实际结果并没有考虑具非常高或非常低导体填料含量的导电聚合物。对PTC材料的另一实际要求为在Ts之上电阻率的升高值应高至足以使加热器(或其它装置)通过在温度上相对有限的升高而有效地从电导体转变成电绝缘体。这种要求的简便表达方式为该种材料应具有至少为2.0的R14值或至少为6的R100值,并优选至少4的R30值,这里R14是显示电阻率最显著提高的14℃范围的尾和端的电阻率比;R100是显示电阻率最显著提高的100℃范围的尾和端的电阻率比;R30是显示电阻率最显著提高的30℃范围的尾和端的电阻率比。对大多数PTC材料的再一实际要求是当往复地处于热循环条件下时,它们应持续地展现出有用的PTC性质,Ts维持基本不变,所述的热循环环包括将材料从于Ts的温度加热至高于Ts但低于峰温的温度,然后又冷却至低于Ts的温度。最好峰电阻率和在Ts时的电阻率比值也应为至少10∶1。从上所述可以看到为获得有用的PTC组合物可通过仔细地选择填充剂和聚合物来获得对特性方面的需求。本发明将在诸如汽车反射镜加热器等消耗品中降低材料耗费并延长电池寿命。
展示PTC性质的导电聚合物组合物和包含它们的电设备是为人熟悉的。有关参考文献例子有下列美国专利:5206482(Smumckler),518006(Shafe等),5174924(Yamada等),5093036(Shafe等),4935156(vanKonynenburg等),4818439(Blackledge等),4591700(Spory),4560524(Smuckler),4426633(Taylar),4400614(Sopory),4388607(Toy等),4237441(van Konynenburg等),4124747(Murer等);和1973年11月在“Polymer Engineering and Science”第6期462至468页的文章(J.Meyer)。
上述专利要求结晶或半结晶聚合物而不是象本发明聚合物的无定形聚合物。在本领域知道晶体性质对PTC组合物的自动调节是重要的。就是说,晶体熔化温度影响转变温度和展示PTC性质的温度范围。
另外的参考文献有下列的美国专利:4857880(Au等),4775778(van Konynenburg等),4727417(Au等)、4658121(Horsma等)、4560498(Horsma等)、4534889(van Konynenburg等);和GB1604735(Raychem Corporation)。
这组专利要求交联的聚合物,而不是象本是发明聚合物那样的非交联聚合物。该组专利认为交联对提高处在关键的“热区”即展示出PTC行为的温度范围的聚合物的稳定性是必需的。
美国专利5198639(Smuckler)和4774024(Deep等)分别公开了包含“聚合物基体”和“聚合物成分”的组合物。除聚合物组分和导电填料外,该两项专利均要求还含有非溶剂的存在于PTC组合物中的其它材料。Smuckler要求在最终的PTC组合物中含具低于约150°F的特性晶体熔化温度的、与聚合物相容的单体可结晶有机化合物,这种化合物选自饱和烃、有机酸和醇。按其提出的方式干燥后得到的最终的PTC化合物不含有在本发明公开的或任何等价结晶度的单体有机化合物。Deep要求电弧控制剂和润滑剂或包含有机硅化合物、硬脂酸盐或钛酸盐的偶合剂等其它组分。在本发明的组合物中没有任何一种这些组分。
本发明涉及正温度系数组合物,基于组合物的总重量计,所述组合物包含:10-30%导电相;10-40%氯化的、马来酸酐接枝的聚丙烯树脂;和80-30%溶解树脂的有机介质。
本发明还涉及包括已加热除去挥发性有机溶剂的上述新的正温度系数组合物浇铸层的片材。
本发明还进一步涉及包括反射镜、本发明的新组合物和与电源相连以在电极间通电流的隔开的电极的自动调节加热反射镜组件。
I.导电相
本组合物含约50/100至300/100填料与粘合剂重量比的或基于总组合物重量10-40%的诸如炭黑、石墨等导电填料以提供导电膜。优选的粒状填料是炭黑。对于本发明的众多装置特别是自控加热器来说,优选的炭黑是具有低结构的炭黑。低结构炭黑由可紧密包装的小的初级聚集体组成的;高结构炭黑一般导电性更好并使溶液的粘度变得更高。用于栓验低结构的常规测定方法是邻苯二甲酸二丁酯(DBP)油的吸收,测定每100克炭黑吸收的油的cc(毫升)数。因此,炭黑的DBP吸附值低于100cc/100g炭黑。优选的炭黑是那些象具有72的DBP的Cabot Monarch 120炭黑。在干燥后的状态下组合物的2.5微米厚的膜具有约1-50KΩ(千欧姆)最好是5-20KΩ的电阻。所选的炭黑类型将影响组合物的电阻率/温度特性。在本发明中使用的其它类型的炭黑有炉法炭黑和乙炔黑,但也可使用导电性较低的热炭黑和槽法炭黑。诸如银等导电填料也可采用。
II.聚合物
本聚合物层的特点是聚合物基本上是非晶态和非交联的。本文所用的术语“非晶态”是指通过x-射线衍射测定结晶度不大于约0%的聚合物。在本发明中存在有占组合物总重量约10-30%的聚合物。优选的本发明的聚合物是位于特拉华州Wilmington的E.I.du Pont deNemours and Company生产的Hypalen CP 826,但也可使用任何氯化的、马来酸酐接枝的聚丙烯树脂。除了加入聚合物以形成初始组合物外,也可将2-20%(重量)的另外的Hypalon介质(溶于溶剂中的Hypalon)加入所述组合物中使电阻率值上升至满足加热的反射镜没计要求的水平。例如,如果4Ω是反射镜电路所需的初始电阻并且其尺寸为5英寸×15英寸,那么只有PTC炭的某一电阻率值满足这些要求。平衡这一点是具有一定水平的PTC活性的需要,即对其“关闭”速度或自动恒温速度的需要。电阻率越高,TCR越高,因此PTC作用越强。在Hypalon介质中优选的Hypalon对溶剂的比率是20/80,但是Hypalon组分可在10-40的范围内。
III.有机介质
通过机械混合将无机颗粒和基本惰性的液体介质(媒介物)相混合。然后将这种混合物用三辊滚轧机处理以保证颗粒的适度分散,从而形成具有适合于丝网印刷的稠度和流变性的浆状组合物。后者以常规方式作为“厚膜”印刷在常规的介电基材上。
只要聚合物可被充分加溶,任何有机惰性液体均可作为媒介物的溶剂使用。本说明书中的加溶被定义为物质和液体混合达到形成均相体系溶液的程度。含有或不含有增稠剂和/或稳定剂和/或其它常规添加剂的各种有机液体可作为媒介物使用。可用的有机液体的实例有例如二丁基卡必醇或β萜品醇。
下文各实施例的组合物、电阻的温度系数(TCR)值、和电阻率总结于表1中。
实施例1
将20.0g Hypalon 826树脂溶解于80.0g 50/50(重量)二丁基卡必醇/β-萜品醇的混合物中。将该混合物在约80℃加热3小时得到淡黄色均匀溶液。将该溶液冷却约1小时。然后将20.0g Monarch 120炭粉(Cabot Corporation产品)加入到80.0g上面的Hgpalon溶液中并混合30分钟。将这种混合物在200psi(磅/英寸2)压力的三辊轧制机上进行一轮处理。取10g上面的电阻浆体用于全部后续的工作。
用丝网印刷法将所得到的厚膜电阻墨汁涂布到5密尔厚的聚酯基材(E.I.du Pont de Nemours and Company的产品MYLAR)上。在将适用的高导电性聚合物厚膜导体印刷在聚酯基材如5025上后,将其在130℃的炉中固化5分钟。随后,将电阻浆体印刷在银粉油墨的边上,并在130℃固化5分钟。将测定件印刷以测定25℃和125℃下炭浆体的电阻/电阻率。最初电阻率值(25℃)为0.95Kohm/sq(千欧姆/平方)(可接受的Kohm/sq范围为约1-60Kohm/sq)而125℃ TCR值为22500ppm/c。不显示出PTC作用的炭黑的一般TCR值是50-6000的HTCR。22500的值表明和在25℃的电阻相比在较高温度下电阻值的显著提高。
实施例2
使用和实施例1一样的条件。向10g实施例1的油墨中加入1.0gHypalon基的介质,其中Hypalon对溶剂的比率是20/80。将混合物混合10分钟,并按上面的方法测定。该实施例的最初电阻率值为2.1Kohm/sq,而125℃的TCR值(参比温度为25℃)是42800。
实施例3
使用和实施例1一样的条件。这里,将3.og Hypalon基的介质(其中Hypalon与溶剂比率为20/80)加入到实施例1的浆料中。将混合物混合10分钟,并按上面方法测定。初始电阻率值是8.1Kohm/sq而在125℃(参比温度25℃)的TCR值是68900。
实施例4
将20.0g聚酯树脂(Goodyear Vitel-200)溶解于80.0g DBE-9(E.I.du Pont de Nemours and Company产品)中。将混合物搅拌/加热至80℃几小时直至得到均匀的溶液。然后将20.0g Monarch 120 Carbon(CabotCorporation产品)加入到80.0g聚酯基的溶液中并然后按实施例1那样处理。用该浆料制备的元件的电阻率值为0.53Kohm/sq。在125℃的TCR值为5317(参比温度为25℃),表明无PTC作用。
实施例5
使用与实施例1一样的条件。这里,Sanyo 822s氯化的聚丙烯(通过Philip Brathers Chemicol Co.,74 Mt.Paran Road,Altanta,GA30327出售)代替Hypalon826树脂使用。初始电阻率值为1.37k而HTCR值是15190。明显存在有PTC活性。
实施例6
使用和实施例1相同的条件。使用Eastman Chemical CP-343-1树脂(Eastman Chemicals,Kingsport,TN)代替Hypalon836。初始电阻率值为1.67K,而HTCR值为22690。同样,明显存在PTC活性。有关实施例情况的总结列于下面的表1中。
表1
实施例1 实施例2 实施例3 实施例4 实施例5 实施例6Hypalon 16% 14.5% 12.3%Sanyo 822S 16%Eastman Chemical 16% 二丁基卡比醇/64% 58.2% 49.2% 64% 64% 64% β-萜品醇 聚酯树脂 16%Monarch 120炭粉 20% 18.2% 15.4% 20% 20% 20%Hypalon-基的- 9.1% 23.1% 介质(Addition) 电阻率25℃ 0.95Kohm/sq 2.1Kohm/sq 8.1Kohm/sq .53Kohm/sq 1.37Kohm/sq. 1.67Kohm,TCR@125℃ 22500ppm/C 42800ppm/C 78900ppm/C 5317ppm/C 15190ppm/C 22690ppm/C