轻质透气防水的多层无纺布及其生产方法 本发明涉及无纺布及其制备方法,特别是轻质透气防水的多层无纺布及其生产方法。
已知单位重量较重的强力防水多层无纺布包括一层纺丝成网纤层和一层熔喷法成网纤维层。这样的多层织物的单位重量一般均较大,因为,有一定的厚度的熔喷纤层才有可能使成品达到所需的防水要求。产品的强度主要由纺丝成网纤层来保证。
按现有技术生产的多层织物主要用作生产尿布的腿部罗口、防护服装、医用遮盖材料或屋顶隔热材料等。所有的这些最终用途当然需要产品具有优良的透气性能。
本发明的一个重要目的就是提供一种改进型的多层无纺布及其生产方法,该产品具有单位重量轻、透气性能好且不失原有防水性能地特点,对单位成品面积来说,它采用更少量的热塑性聚合性起始原料。
本发明的其他目的以及范围、性质和用途等将在以下的详细描述中和所附的权利要求中将变得明显。
轻质、透气并能阻止水通过的多层无纺布主要由:(1)至少一层热塑聚合物的粗旦熔纺长丝纤维层,和(2)至少一层热塑聚合物的熔喷微纤维层组成,其中层(1)和(2)以面对面的关系在间隔点被热粘合在一起,然后在不被撕裂的情况下,在加热的同时至少向一个方向施力,使得粗旦熔纺长丝纤维层(1)沿所述的用力的方向长久伸长,而细旦熔喷微纤维层(2)在基本上没有牵拉下沿所述力的方向伸直,从而使得这些微纤维的排列紧密,使最终产品的厚度减薄。
已发现这种轻质、透气性好且能阻止水通过的多层无纺布的生产方法包括:
(a)将(1)至少一层热塑性聚合物的粗旦熔纺长丝层和(2)至少一层热塑性聚合物的细旦熔喷微纤维层在间隔的点面对面地热粘合在一起,
(b)在步骤(a)所述的粘合之后,使纤维层在加热的同时在不被撕裂的情况下经受至少一个方向的力,从而使熔纺长丝纤维层(1)沿着力的方向永久伸长,使熔喷微纤维层(2)在基本上无牵拉的情况下沿着力的方向伸直,以便形成所述微纤维的紧密排列,使形成的无纺布更薄。
在所附的附图中:
图1系本发明多层无纺布在间隔式粘合形成之后,基层粗旦熔纺长丝纤层永久伸长和顶层熔喷微纤维层伸直之前的中间状态的侧视示意图。
图2系本发明多层无纺布在基层粗旦熔纺长丝纤层永久伸长性和顶层熔喷微纤维层伸直之后的侧视示意图。
图3系本发明多层无纺布在间隔式粘合之后和受力之前的中间状态的俯视照片,图中显示的粗旦熔纺长丝纤层约放大了22倍。
图4系本发明多层无纺布在间隔粘合之后和受力之前的中间状态的仰视照片,图中显示的细旦熔喷微纤层约放大了22倍。
图5系本发明多层无纺布的俯视照片,其中上层永久伸长的粗旦熔纺长丝纤层的显示比例是约22倍。
图6系本发明多层无纺布的仰视照片,其中伸直后的细旦熔喷微纤层的显示比例是约22倍。
图7显示适用于形成本发明多层无纺布的典型设备配置。
图8显示适用于按轴向拉伸本发明的多层无纺布的设备的典型配置。
在本发明中,任何一种能经熔体挤出后形成纤维的热塑性聚合物均能在形成本发明的多层无纺布的两个基本纤维组分的过程中加以利用。例如,热塑性聚合物可以是聚丙烯,聚酯(如,聚对苯二甲酸乙二醇酯),或聚乙烯,等等。在优选的实施方案中,热塑性聚合物是全同列构聚丙烯。通常,所有种类的添加剂均能有选择地添加到这些热塑性聚合物。例如,影响热塑性聚合物结晶率的添加剂也可包括在内。
用于生产粗旦熔纺长丝纤层的热塑性聚合物可以和用于生产细旦熔喷微纤维层的热塑性聚合物一致,也可以采用不一样的原料。
在优选的实施方案中,根据DIN 1133标准,生产粗旦熔纺长丝纤层的热塑性聚合物的熔体粘度是MFI 16至35,而根据DIN 1133标准,生产细旦熔喷微纤维层的热塑性聚合物熔体粘度是MFI 400至2500。当进行熔体粘度的测定时,观察230℃的熔融聚合物在10分钟内通过一个直径为2.095±0.005毫米、长度为8±0.25毫米的细管的克数。熔体粘度可通过添加可打断聚合链的氧化剂来调节。用于生产细旦熔喷微纤维层的热塑性聚合物熔体粘度较大时,当象下面所述的施加外力时,纤维将抗伸长或牵拉,而只伸直。然而,当粗旦熔纺长丝纤层的熔体粘度较低时,在进行下面所述的加热时,粗旦熔纺长丝会非常顺从地接受伸长或牵拉。
作为起始原料的热塑性聚合物粗旦熔纺长丝纤层和热塑性聚合物细旦熔喷微纤维层均可以按本领域已知的常规方法生产。在每一层中的纤维组分最好按随机的方式排列。同样,这些用作起始原料的纤维层最好首先进行压缩加工,然后再进行下面将要描述的面面接触加工中的纤维排列。在优选的实施方案中,所用的起始原料选自:其中第一层的粗旦熔纺长丝的直径约在20至40微米,第二层细旦熔喷微纤维的直径一般在0.5至10微米。通常,粗旦熔纺长丝的直径是细旦熔喷微纤维的10倍左右。粗旦长丝给人以厚实之感,同时保证了产品的强度和在牵拉加工(将在下面描述)中可使长丝的直径大大降低。换句话说,熔喷微纤维几乎不增加最终产品的强度,但对成品的防水性能有显著的贡献,因为,它们具有形成十分密的纤层的潜在能力,但又在缠结纤维中保持有微小的间隔空间,从而使织物具有良好的透气性能。
当按本发明的加工方法进行生产时,将至少一层的热塑性聚合物粗旦熔纺长丝纤层和至少一层细旦熔喷微纤维层面对面地放置在一起。然后在间隔点将各个纤层热粘合在一起(即,热粘接)。这样的粘合被称作为热轧(heat-stamping)或点粘合加工,它采用大家所熟知的生产技术,将热和压力同时施加到整个表面的不连续区域。在优选实施方案中,粘合区域的大小优选小于约0.5mm2(例如,约0.2至小于0.5mm2之间),粘合区域按一定的规律分布,从而,大部分的纤维组分至少在两个不同部位靠粘合和/或通过自然啮合而固定在一起。在优选实施方案中,间隔式粘合点是按直线排列的,这样,相邻点可以按与牵拉力交叉的方向(即生产方向)部分地重叠。通常,纤维要加热到接近那些区域发生粘合的软化点,然后再进行压缩,从而产生永久的熔融粘结,这样的产品即使在进行下面所述的拉伸时受到各种力的牵拉后,仍然保持粘结。
接下来,是在不被撕裂的情况下对由此粘结的层在加热的同时至少在一个方向施力。当加力后,优选将该纤层加热到接近它们的软化点。这样,在无大力牵拉的前提下粗旦熔纺长丝获得了永久伸长,而细旦熔喷微纤维被伸直。正如对本领域的熟练人员而言是显而易见的那样,熔纺长丝牵拉的程度要受下列因素影响:热塑性聚合物的结晶程度,纺丝速度(例如,相对慢的速度是1000~1500米/分钟或更高),所纺纤维的冷却条件和在纺丝过程中长丝受到牵伸的情况。当熔纺长丝伸长时,长丝之间会产生另外的热量。在优选的实施方案中,粗旦熔纺长丝要被永久地伸长或牵拉,约至原来长度的2至5倍。与此同时,细旦熔喷微纤维产生伸直,形成一个更密的排列,纤维层要薄得多。这样的成品,除了微纤层的防水性能有所提高外,产品总的单位重量也有了显著的降低。
在优选的实施方案中,对熔纺长丝进行至细旦熔喷微纤维的最大“伸直潜能”的处理。 “伸直潜能”定义为,在多层无纺布产品内,加热下,细旦熔喷微纤维层在不受撕拉的情况下在粘合点之间至少沿一个方向伸直。当伸直超过“伸直潜能”时,所得的产品所有的实际应用而言将丧失防水能力。熔纺长丝的伸长度总是在渗水力有一明显的、大幅增加时截止。
通过使用本发明的生产方法,你可能会得到意想不到的效果。任何人可能都会假定,多层无纺布的伸长会引发纤维组分之间产生开孔或细孔,从而破坏无纺布线性方向上的防水性能。然而,在本发明的内容中,经验试验表明,牵拉程度与防水能力的保持存在非线性关系。由此可见,当按本方法生产多层无纺布时,在伸长或牵拉过程中多层无纺布开始保持原有的防水性能,直到伸长或牵拉到达其防水性能急剧减弱点。这一观察结果的详细理由反映在:普通卷曲的、随机排列的微纤维的体积性能可在这一伸长步骤中得以伸直,因此,织物除了防水性能得到保证外,纤维就防水性而言排列结构更为有效。不论你按本方法生产何种用途的产品,只有粗旦熔纺长丝被伸长,细旦熔喷微纤维主要只在粘合部位之间伸直。起初的高随机性和体积的细旦熔喷单丝在这一步骤中以更加有序的方式被拉得更加靠近在一起。因此,熔喷微纤维层的厚度也在降低,因而形成更紧密且排列致密的微纤维排列。同时,粗旦熔纺长丝的直径由于伸长的缘故而减小,而基本上不引起防水性的明显降低,而防水性的降低是由伸长时引起的粗旦熔纺长丝的厚度减小以及与此同时相邻长丝之间的开孔形成所致。至少在某种程度上,相信相邻的细旦熔喷微纤维当它们变得伸直时也填充了这些开孔。
在优选的实施方案中,本发明的多层无纺布具有足够的防水能力,一般应能防止高达150毫米高水柱的水渗透,更优选应能防止高达200毫米高水柱的水渗透,同时,保持良好的透气性能并允许水汽能够通过。这一特性使使用者在应用时,如作为服装和尿布时,达到一定舒适程度。
本发明的多层无纺布适宜生产尿布、防护性服装、医用遮盖材料、屋顶隔热材料、清除特种固态物质的滤材等。各种不同用户对产品性能(即强度、防水性和透气能力)的要求均能得到满足,而单位面积织物所采用的聚合物原料却要少得多。这一优势也有可能使各种特定用途产品的生产成本降低。
下述实施例作为要保护的发明的详细描述。然而,应该理解,本发明的情况不只局限于下面的具体介绍之中。
图1是在伸长或拉伸之前在间隔点处进行了热粘合的多层织物的侧视图。多层无纺布由一层粗旦熔纺长丝纤层10和一层细旦熔喷微纤层12组成。长丝和微纤维均由热塑性聚合物通过熔体挤出而形成。纤层10和纤层12以面面接触的形式靠间隔点14热轧接触来联接,从而使纤维组分能牢固地熔融在一起。粗旦熔纺长丝纤层10以常规方式加工,它将长丝杂乱地集合在一个表面,细旦熔喷微纤层12同样也以常规方式加工,但这些不连续的卷曲纤维是随机排列的。两个纤层靠热轧辊来联接,热轧辊上以间隔的位置排列着可进行热粘合的冲压点。
纤层10首先形成,接下来在其上形成纤层12,之后再进行热轧。或者是,每一纤层在不同的地方独立形成,并由一个辊筒提供以形成多层织物,然后再在间隔点14处进行热轧。
粗旦熔纺纤层10的长丝直径大约是细旦熔喷微纤层12之纤维的10倍。当纤层10的长纤层被加热至它们的软化点附近时,纤维变得易于伸长或牵拉。另一方面,在纤层10的长丝处于这样的拉伸过程时,细旦的、原本就是不连续的熔喷微纤维只被拉伸,一点也不被拉长。在施加外力前,微纤层中的纤维非常松散并且向各个方向,包括向熔喷沉积区域相垂直的方向伸展。在多层无纺布受牵拉的过程中,绝大多数的微纤维沿径向平行伸直。与此同时,熔喷微纤层12的厚度也在降低,微纤维被压缩得更紧,所用的这种细旦纤维也更少。
图2所示的是多层无纺布在熔纺长丝10伸长后的示意图。现在,长丝10的直径变细,熔喷微纤维12联接得比先前更加紧密。虽然产品的厚度在降低,但其防水性能几乎没有什么改变。这主要归功于熔喷微纤层12现在被拉伸结合得更加紧密,微纤之间的空隙现在有了显著的降低。
图3和图4显示所示的是在伸长之前多层无纺布的两个相对表面。图3是仰视图,显示的是粗旦熔纺长丝纤层;图4是俯视图,显示的是细旦熔喷微纤维层。两幅照片采用同样的放大比例。底层较粗的结构在图3中很明显。粗旦熔纺长丝纤层10和细旦熔喷微纤维层12的粘合点显示在14的位置。应该注意到,相邻热轧点14至少部分地在与所施加的牵拉力的方向交叉的区域内重叠在一起。
图5和图6显示在延伸之后多层无纺布的两个相对的表面。图5是仰视图,显示的是粗旦熔纺长丝纤层10;图6是俯视图,显示的是细旦熔喷微纤维层12。粗旦熔纺长丝纤层10上的纤维直径变细,大多数长丝沿着伸长方向排列。细旦熔喷层12的纤维现在被拉得更加紧密。由于熔喷纤维伸直,与之接触的其他纤维被压缩得更紧。
图7和图8所示的是适用于生产本发明的多层无纺布的装置。当粗旦熔纺长丝纤层和细旦熔喷微纤维层分别生产后,它们以面对面结触的形式一起从一对热圆辊筒16中经过。圆型辊筒16表面有突起的冲压点18,使两个纤层在结触点(面积约0.25mm2)产生熔融。然后,多层无纺布由其余中间辊筒过渡,传送至由一对光滑的加热辊筒22和24组成的拉伸装置。辊筒22和24将多层无纺布加热至刚好在纤维元素的熔融点以下的温度。辊筒24的旋转速度要比辊筒22的速度高,这样粗旦熔纺纤层的永久伸长才能产生,而每种纤维组分的纤维特性仍然得以保留。
图8所示的是伸长模架26,它可在横向拉伸多层无纺布。受热的伸长模架26包括一对回转皮带30组成,皮带上镶有掣子28,用于接合多层无纺布的布边。皮带30在导向辊筒32的上面通过,将织物的行径路线确定为向与中心线成对角的方向外行。这样,织物被拉伸,因为布必须去适应运行中的回转皮带30所确定的方向。当生产具有两个方向伸长的多层织物时,应将图7和图8所示的装置联合使用。
本发明的多层无纺布的优点可以通过对织物在伸长前后的观察得到。举例来说,在未经拉伸时,当其粗旦熔纺纤层的单位重量是30g/m2,细旦熔喷微纤维层的单位重量是15g/m2,发现长纤层可防止80mm高水柱的水渗透,发现熔喷层的防水能力是200mm高水柱,总共280mm。但是,本发明的产品能将其单位重量减轻到三分之一或以下,防水能力则仅稍有减弱。具体来说,经三倍拉伸后,粗旦熔纺纤层的单位重量是10g/m2,微纤维层的单位重量是5g/m2。在这样的拉伸之后,长纤层可防止40毫米高水柱的水渗透,熔喷层虽然厚度降低很多,但其防水能力仍可达200毫米高水柱。因此,本发明产品总的防水能力是240mm高水柱,而不经拉伸的多层无纺布的总防水能力是280mm高水柱,而前者所用的起始原料只是后者的三分之一。
本发明产品中获得的防水能力的确切水平,也可通过调节各纤层的厚度和调节牵拉的程度来修正。
尽管已通过优选实施方案对本发明作了描述,但应该理解,本发明将很有可能会有所变化和修正。这种变化和修正在所附的权利要求书中有所考虑。