多孔SISUB3/SUBNSUB4/SUB及其制备方法.pdf

上传人:54 文档编号:205801 上传时间:2018-02-02 格式:PDF 页数:15 大小:836.56KB
返回 下载 相关 举报
摘要
申请专利号:

CN200410001478.2

申请日:

2004.01.08

公开号:

CN1522989A

公开日:

2004.08.25

当前法律状态:

终止

有效性:

无权

法律详情:

未缴年费专利权终止IPC(主分类):C04B 38/00申请日:20040108授权公告日:20060329终止日期:20150108|||授权|||实质审查的生效|||公开

IPC分类号:

C04B38/00; C04B38/06; C04B35/626; C04B35/65; C04B35/584

主分类号:

C04B38/00; C04B38/06; C04B35/626; C04B35/65; C04B35/584

申请人:

住友电气工业株式会社;

发明人:

佐藤武; 朴辰珠

地址:

日本大阪府

优先权:

2003.01.21 JP 012370/2003

专利代理机构:

北京市柳沈律师事务所

代理人:

张平元;赵仁临

PDF下载: PDF下载
内容摘要

本发明提供一种多孔Si3N4制备方法,所述多孔Si3N4具有高气孔率、并且具有纵横比高的Si3N4粒子,该法具有下列工序:混合工序,把Si粉末和作为第一烧结助剂的至少1种稀土类元素化合物粉末加以混合,得到混合粉末,其中,对Si粉末100质量份,稀土类元素化合物换算成氧化物达到7.5~45质量份;添加工序,往该混合粉末中添加粘合剂;成型工序,用该混合粉末和粘合剂的混合物制造成型制品的成型工序;脱粘合剂工序,把该成型制品在氮氛围气中加热到300~500℃,除去粘含剂而形成脱粘合剂体;氮化工序,把该脱粘合剂体在氮氛围气中加热到1350~1500℃,进行氮化而制作氮化体;烧结工序,把该氮化体于1750~1900℃的温度在0.1~1个大气压的氮气中进行烧结。

权利要求书

1: 多孔Si 3 N 4 的制备方法,该方法包括: (a)混合工序,把Si粉末和作为第一烧结助剂的至少1种稀土类元素 化合物加以混合得到混合粉末,其中,对Si粉末100质量份,稀土类元素 化合物换算成氧化物达到7.5~45质量份; (b)往该混合粉末中添加粘合剂的添加工序; (c)用该混合粉末和粘合剂的混合物制造成型制品的成型工序; (d)脱粘合剂工序,把该成型制品在氮气氛围中加热到300~500℃,除 去粘合剂而形成脱粘合剂体; (e)氮化工序,把该脱粘合剂体在氮气氛围中加热到1350~1500℃,进 行氮化而制作氮化体; (f)烧结工序,把该氮化体于1750~1900℃在0.1~1个大气压的氮气压 中进行烧结。
2: 权利要求1所述的多孔Si 3 N 4 制备方法,其特征在于,在所述混合 工序中,作为第二烧结助剂,还混合至少1种选自周期表IIa族元素、IIIb 族元素、IVb族元素和过渡元素化合物的化合物粉末,对Si粉末100质量 份,所述化合物换算成各元素氧化物达到0.05~5质量份。
3: 权利要求1所述的多孔Si 3 N 4 制备方法,其特征在于,所述氮化工 序是在3~10个大气压的氮气氛围中进行。
4: 权利要求1所述的多孔Si 3 N 4 制备方法,其特征在于,所述烧结工 序的氮气压力为0.1~0.5个大气压。
5: 一种多孔Si 3 N 4 ,其特征在于,以Si粉末和作为第一烧结助剂的至 少1种稀土类元素化合物粉末作为起始原料,对Si粉末100质量份,所述 第一烧结助剂换算成氧化物达到7.5~45质量份,该多孔Si 3 N 4 的气孔率为 30~60%,Si 3 N 4 是粒子短径为0.2~5μm、纵横比为2~20的柱状粒子。
6: 权利要求5所述的多孔Si 3 N 4 ,其中所述起始原料还含有第二烧结助 剂,其为选自周期表IIa族元素、IIIb族元素、IVb族元素和过渡元素化合 物中的至少1种化合物,对Si粉末100质量份,所述第二烧结助剂换算成 氧化物添加0.05~5质量份。 7.权利要求5所述的多孔Si 3 N 4 ,其用作过滤器。 8.权利要求6所述的多孔Si 3 N 4 ,其用作过滤器。
7: 5~45质量份; (b)往该混合粉末中添加粘合剂的添加工序; (c)用该混合粉末和粘合剂的混合物制造成型制品的成型工序; (d)脱粘合剂工序,把该成型制品在氮气氛围中加热到300~500℃,除 去粘合剂而形成脱粘合剂体; (e)氮化工序,把该脱粘合剂体在氮气氛围中加热到1350~1500℃,进 行氮化而制作氮化体; (f)烧结工序,把该氮化体于1750~1900℃在0.1~1个大气压的氮气压 中进行烧结。 2.权利要求1所述的多孔Si 3 N 4 制备方法,其特征在于,在所述混合 工序中,作为第二烧结助剂,还混合至少1种选自周期表IIa族元素、IIIb 族元素、IVb族元素和过渡元素化合物的化合物粉末,对Si粉末100质量 份,所述化合物换算成各元素氧化物达到0.05~5质量份。 3.权利要求1所述的多孔Si 3 N 4 制备方法,其特征在于,所述氮化工 序是在3~10个大气压的氮气氛围中进行。 4.权利要求1所述的多孔Si 3 N 4 制备方法,其特征在于,所述烧结工 序的氮气压力为0.1~0.5个大气压。 5.一种多孔Si 3 N 4 ,其特征在于,以Si粉末和作为第一烧结助剂的至 少1种稀土类元素化合物粉末作为起始原料,对Si粉末100质量份,所述 第一烧结助剂换算成氧化物达到7.5~45质量份,该多孔Si 3 N 4 的气孔率为 30~60%,Si 3 N 4 是粒子短径为0.2~5μm、纵横比为2~20的柱状粒子。 6.权利要求5所述的多孔Si 3 N 4 ,其中所述起始原料还含有第二烧结助 剂,其为选自周期表IIa族元素、IIIb族元素、IVb族元素和过渡元素化合 物中的至少1种化合物,对Si粉末100质量份,所述第二烧结助剂换算成 氧化物添加0.05~5质量份。 7.权利要求5所述的多孔Si 3 N 4 ,其用作过滤器。
8: 权利要求6所述的多孔Si 3 N 4 ,其用作过滤器。

说明书


多孔Si3N4及其制备方法

    【技术领域】

    本发明涉及用于分离或除去研磨半导体的水等液体中杂质的多孔Si3N4及其制备方法。

    背景技术

    作为Si3N4烧结体的原料,可以举出以Si3N4粉末作原料和以金属硅粉作原料的烧结体。WO 94/27929号公报(EP 0 653 392 A1)公开了在原料α-Si3N4粉末中添加稀土类元素化合物进行烧结,得到纵横比为3以上的柱状β-Si3N4粒子相互缠绕而成的Si3N4多孔体。该多孔体是气孔率在30%以上,平均细孔径在0.05~12μm的范围内,气孔率高且强度高的陶瓷多孔体。然而,这种特性是通过使Si3N4晶粒具有六角柱状形态而达到的(例如,WO94/27929号公报)。

    另外,特开2001-316188号公报(US 2001/0036531 A1)公开的发明涉及以金属硅粒子和硅氧化物粒子作为起始原料,与气体等流体的接触面积加大的具有近似柱状体外形的氮化硅多孔体。该多孔体可通过下列工序进行制备。即,首先,往含平均粒径1~150μm的金属硅粒子100质量份和换算成SiO2为0.2~45质量份的硅氧化物粒子的混合物中添加成型助剂和水,进行混炼。然后,把混炼物从模具挤出,成型为具有2个以上互相平行的贯穿孔,把得到的挤出成型体在1200℃~1400℃地氮气氛围中进行第一阶段热处理的工序和,然后,于1500℃~1800℃的范围内进行第二阶段热处理的工序。这样得到的多孔体是从贯穿孔表面于大致垂直方向对着内侧析出的多个柱状结晶(例如,参照特开2001-316188号公报)。

    但是,WO 94/27929号公报中以Si3N4粉末作为起始原料,由于原料费高,无法得到廉价的Si3N4多孔体。另外,特开2001-316188号公报的起始原料是金属硅和二氧化硅,在烧结体中析出柱状结晶。析出柱状结晶的机理是,在多孔体流路中生成的一氧化硅气相与残留碳和氮反应,生成氮化硅粒子。可以认为,生成的氮化硅粒子以贯穿孔表面上形成的氮化硅粒子为核进行成长,对着贯穿孔内侧形成柱状结晶。按照特开2001-316188号公报的实施例,可以认为所得到的柱状结晶由于生成0.1~0.8mm的长柱状晶体,所以,也许会生成棉状的长结晶。另一方面,虽然没有记载烧结体的内部状态,但推测烧结体的内部处于充满了球状结晶的状态。换而言之,可以认为由于在烧结体的内部不生成柱状结晶,由特开2001-316188号公报公开的发明得到的烧结体的气孔率低、强度低。因此,在特开2001-316188号公报中,难以得到从烧结体的表面部分至内部具有均匀高气孔率的Si3N4。

    鉴于这种状况,本发明的课题是以金属硅作为起始原料,提供一种廉价而气孔率高的过滤器(フイルタ)用多孔Si3N4制陶瓷。

    发明概述

    本发明的多孔Si3N4可经过下列工序制备。即,本发明的制备方法包括:把Si粉末和,相对于Si粉末100质量份,换算成氧化物达到7.5~45质量份的作为第一烧结助剂的至少1种稀土类元素化合物的粉末进行混合,得到混合粉末的混合工序;往该混合粉末中添加粘合剂的添加工序;采用该混合粉末和粘合剂的混合物,制造成型制品的成型工序;从该成型制品除去粘合剂、形成脱粘合剂体的脱粘合剂工序;把脱粘合剂体在氮气氛围中加热至1350~1500℃进行氮化、制备氮化体的氮化工序;把氮化体于1750~1900℃在0.1~1个大气压(0.01~0.1MPa)的氮气压下进行烧结的烧结工序。采用该本发明的制备方法可以比原来的方法格外廉价地制备气孔率为30~60%,Si3N4粒子是短径为0.2~5μm、纵横比为2~20的柱状粒子,从烧结体表面至内部具有均匀高气孔率的多孔Si3N4。

    本发明的制备方法在混合工序中作为第二烧结助剂,优选还混合至少1种选自周期表IIa族元素、IIIb族元素、IVb族元素和过渡元素化合物的化合物粉末,相对于Si粉末100质量份,该化合物换算成各元素氧化物达到0.05~5质量份。

    另外,本发明的制备方法优选在氮化工序中在3~10个大气压(0.3~1MPa)的氮氛围气中进行氮化。

    本发明还提供一种多孔Si3N4,其特征在于,把Si粉末和作为第一烧结助剂的至少1种稀土类元素化合物的粉末作为起始原料,对硅粉末100质量份,上述第一烧结助剂换算成氧化物含有7.5~45质量份。本发明的多孔Si3N4是气孔率为30~60%,其Si3N4是粒子短径为0.2~5μm、纵横比为2~20的柱状粒子。本发明的多孔Si3N4其起始原料还含有至少1种选自周期表IIa族元素、IIIb族元素、IVb族元素和过渡元素化合物的第二烧结助剂,对硅粉末100质量份,该第二烧结助剂换算成氧化物添加0.05~5质量份是优选的。本发明的多孔Si3N4特别适用于制造过滤器。

    本发明的上述和其他目的、特性、形态和优点,通过下列本发明的详细说明将更加明确。

    发明的具体实施方案

    在本发明多孔Si3N4制备方法的混合工序中,Si粉末和第一烧结助剂的混合,例如,加入水或乙醇溶剂,采用球磨机或超微磨碎机进行。从可以得到平均细孔径为0.05~12μm范围的多孔体的观点看,Si粉末粒径在0.15μm以上~10μm以下范围内是优选的。作为第一烧结助剂,稀土类元素化合物具体的是采用至少1种选自Sc、Y、Yb、镧系元素的化合物,其中,从易得到、促进氮化及Si3N4柱状粒子生成的效果好的方面考虑,优选Y或Yb的化合物。

    对硅粉末100质量份,该第一烧结助剂换算成氧化物添加7.5~45质量份。当其量小于7.5质量份时,在氮化工序中出现部分Si未氮化而残留的不良情况。另外,当其量大于45质量份时,由于在烧结时液相量增加而促进烧结,所得到的多孔体气孔率低(气孔率:10~29%),并且原料费用升高。另外,即使在上述范围内,从促进氮化和提高气孔率的观点看,对硅粉末100质量份,该第一烧结助剂换算成氧化物添加8~35质量份是优选的。

    在混合工序中,把选自周期表IIa族元素、IIIb族元素、IVb族元素和过渡元素化合物的至少1种化合物作为第二烧结助剂,对硅粉末100质量份,该化合物换算成氧化物添加0.05~5质量份,可以使烧结温度降低,并且,可以得到平均细孔径小到合适程度的多孔Si3N4,所以是优选的。第二烧结助剂低于0.05质量份时,可能失去第二烧结助剂的添加效果,另外,当大于5质量份时,所得到的多孔Si3N4可能气孔率过小。

    上述周期表IIa族元素可以举出Be、Mg、Ca、Sr等。IIIb族元素可以举出B、Al、Ga等,IIb族元素可以举出C、Si、Ge等,过渡元素可以举出Fe、Ti、Zr等。作为第二烧结助剂,只要是选自上述IIa族元素、IIIb族元素、IVb族元素和过渡元素化合物中的至少1种,未作特别限定,但是,为了不降低气孔率而减小平均细孔径,优选使用Ca、Be、Mg、Al、Ti、Zr作为第二烧结助剂。

    往混合粉末中添加粘合剂的工序(添加工序)可以视为在成型时用粘合剂固定粉末的准备工序。粘合剂的量及材料取决于在后述成型工序中成型为何种形状。作为粘合剂的材料,可以举出聚乙烯醇或其改性物、淀粉或其改性物、甲基纤维素、羧甲基纤维素、羟甲基纤维素、聚乙二醇、聚丙二醇、丙三醇等。例如,在成型工序成型为蜂窝状成型制品时,采用甲基纤维素作为粘合剂,对混合粉末100质量份添加5质量份~25质量份是优选的。另外,例如,在成型工序成型为圆板状成型制品时,采用聚乙烯醇作为粘合剂,对混合粉末100质量份添加3质量份~15质量份是优选的。

    制作成型制品的工序(成型工序),是把上述添加工序得到的混合粉末和粘合剂的混合物成型为所希望的形状,使烧结体的形状接近最终制品形状的工序。采用该成型工序,目的是把上述混合物成型为蜂窝状或圆板状、管状、方形板状等最终制品的形状。在成型为蜂窝状时,通常在添加工序添加较多量的上述粘合剂,进行挤出成型。另外,在成型为圆板状时,在添加工序添加比上述挤出成型较少量的粘合剂进行压制成型。在该成型工序,重要的是制造密度较低的成型制品。由于得到低密度成型制品,所以,在下述脱粘合剂工序得到的脱粘合剂体也变成低密度,结果得到高气孔率(气孔率:30~60%)的适于作为过滤器用的多孔Si3N4。

    但是,一般希望脱粘合剂体的相对密度在40~60%的范围内。当相对密度低于40%时,脱粘合剂体的强度变弱,处理可能变得困难。反之,当相对密度大于60%时,烧结体的气孔率变小,可能不能制造本发明目的的高气孔率陶瓷。脱粘合剂体的气孔率愈高,由于粒子成长空间增加,Si3N4粒子的纵横比理论上愈大。还有,所谓相对密度是指含气孔的粒子密度用理论密度除所得到的值。另外,相对密度是把从通过重量和尺寸测定或通过油浸渍法求出的体积值算出的密度,用氮化硅和添加物的重量加权平均的理论密度除而求出。为了得到具有上述理想范围的相对密度的脱粘合剂体,在成型工序,例如,在挤出成型时,可在挤出压力为2~7MPa的较低压力的条件下进行,而在压制成型时,可在压制压力为0.5~1.5吨/cm2的较低压力条件下进行。

    脱粘合剂工序是从成型工序得到的成型体除去粘合剂形成脱粘合剂体的工序。金属硅易氧化,并且氧化后难以氮化,所以,把成型制品保持在惰性气体中进行脱粘合剂。惰性气体可以举出例如氩气或氮气气氛。脱粘合剂时成型制品的温度通常保持在300~500℃的范围内,优选在400~500℃的范围内。这是由于当温度低于300℃时,粘合剂的去除不充分,可能出现碳残渣残留多的不良情况,当温度高于500℃时,粘合剂的去除速度过快,成型制品可能产生龟裂。

    另外,对脱粘合剂工序的保持压力未作特别限定,但当在较低压力下进行时,由于粘合剂易蒸发,是所希望的。另一方面,由于粘合剂分解成各种有机物而粘附在炉壁等处,从抑制其发生的观点考虑,在0.5~1.5个大气压的压力下进行脱粘合剂是优选的,实际应用中在1个大气压的压力下进行是特别优选的。另外,对脱粘合剂工序的时间未作特别限定,可根据成型制品的大小及形状加以适当选择,但是,当保持时间为1~5小时并包括升温时间时,优选约5~20小时。

    氮化工序是把脱粘合剂体中的Si加以氮化,制造含Si3N4的成型制品(氮化体)的工序。在该工序中,把脱粘合剂体中几乎全部的Si加以氮化,变成Si3N4。氮化工序是把脱粘合剂体在氮气氛围下加热到1350~1500℃(优选1380~1480℃)进行氮化制成氮化体。Si的熔点是1414℃,因此在该温度以下进行氮化使表面层先进行氮化后,在超过该温度的温度1415~1500℃中选择的温度下进行氮化。在温度低于1415℃时,氮化的反应速度缓慢,是不能实用的。另外,当温度超过1500℃时,在氮化时,氮化生成的Si3N4粒子之间因热而粘接,可能发生凝聚的不理想情况。在不采用这种氮化工序时,在后面的烧结工序中,由于烧结温度超过Si的熔点而熔融,脱粘合剂体的形状被破坏。因此,氮化工序不仅是将金属硅进行氮化的工序,也是提高Si3N4粒子的纵横比、得到由针状结晶的Si3N4粒子构成的烧结体的一个重要工序。

    因此,当以约100%氮化率使Si氮化生成Si3N4时,在达到Si脱粘合剂体的1.66倍重量的同时,通过氮化也可以使Si3N4的体积增加、气孔率减少。所得到的氮化体由α型结晶的球状Si3N4粒子构成。此时,例如气孔率为50%的脱粘合剂体在氮化工序中气孔率减少到30%。

    对氮化工序的氮气压力未作特别限定,但优选3~10个大气压(0.3~1MPa),更优选4~7个大气压(0.4~0.7MPa)。这是因为当在低于3个大气压的氮氛围气下进行氮化工序时,反应速度缓慢,未氮化的硅有残留倾向,另外,当在高于10个大气压的氮气氛围下进行氮化工序时,反应速度加快,但装置所需要的费用升高,操作性有变差的倾向。

    另外,氮化工序所需要的时间,只要根据脱粘合剂体的大小、形状等加以适当选择而未作特别限定,但是,从制备效率、经济性方面考虑,希望在2~10小时的范围内。

    烧结工序是决定所得到的多孔Si3N4的气孔率、平均细孔径以及构成多孔Si3N4的Si3N4粒子的纵横比的最终工序。烧结工序中,把上述氮化工序中得到的氮化体在1750~1900℃于0.1~1个大气压(0.01~0.1MPa)的氮气压力下进行烧结。本发明多孔Si3N4的制备方法的最大特征在于,利用上述0.1~1个大气压(0.01~0.1MPa)的低氮气压力进行烧结,使Si3N4发生积极分解,进一步通过再析出,柱状晶体变细,气孔率及纵横比增加。另外,烧结时烧结助剂变成液相,从溶于该液相的Si3N4成长为β型Si3N4,生成柱状结晶。因此,当柱状结晶碰上阻碍其伸长的物质时停止成长,所以,气孔率高的氮化体可以得到纵横比高的烧结体。

    当烧结工序的氮气压低于0.1个大气压时,Si3N4的分解激烈,出现由于挥发而使损失量增多等不良情况,当氮气压高于1个大气压时,Si3N4难以发生分解,出现气孔率降低的不良情况。当在上述氮气压中,特别是在0.1~0.5个大气压(0.01~0.05MPa)的氮气压中进行烧结时,发生Si3N4的分解和再析出,可以得到气孔率更高的烧结体,因此是优选的。

    另外,本发明制备方法中的烧结工序是在1750~1900℃的温度进行烧结。这是由于当上述温度低于1750℃时,烧结不充分,出现强度下降的不良情况,而高于1900℃时,出现纵横比下降的不良情况。另外,即使在上述温度范围内,当在1750~1850℃的温度进行烧结时,其优点在于可有效进行细柱状结晶的生长,得到平均细孔径小的结晶,所以,是优选的。

    还有,对烧结工序的保持时间未作特别限定,但优选0.25~5小时。这是由于当烧结工序的保持时间低于0.25小时时,烧结不充分,强度有降低的倾向,而大于5小时时,烧结过度进行,引起粗大粒子的成长,电费成本有增加的倾向。

    采用上述工序可以比以往更廉价地制备气孔率为30~60%的高气孔率多孔Si3N4,该多孔Si3N4-从烧结体的表面部分至内部具有均匀的气孔率,其中Si3N4粒子是短径为0.2~5μm的柱状,纵横比为2~20。还有,本说明书中所述的纵横比系指柱状粒子长径对短径之比,一般来说,纵横比高者烧结体的强度增加。所述Si3N4粒子的纵横比是用氟硝酸(HF-HNO3混合物)处理所得到的烧结体(多孔Si3N4),使烧结助剂溶解而Si3N4粒子变得松散,用SEM等观察各个粒子,通过测定柱状粒子的宽度和长度来决定。本发明的Si3N4柱状结晶为近似六角柱状体。

    本发明提供具有下述特征的多孔Si3N4:以Si粉末和作为第一烧结助剂的至少1种稀土类元素化合物粉末作为起始原料,对Si粉末100质量份含有换算成氧化物达到7.5~45质量份的上述第一烧结助剂。所述本发明的多孔Si3N4可以通过上述本发明的制备方法得到,如上所述,其气孔率为30~60%,Si3N4粒子是短径为0.2~5μm的柱状,纵横比为2~20的优良性质。具有这种性质的多孔Si3N4优选的理由如下:气孔率低于30%时,流体的流量可能不足。而当气孔率高于60%时,烧结体的强度过低,有不能实际使用之虑。然而,由于气孔率高和液体透过量增加,从经济上考虑,即使气孔率在上述范围内,高者是优选的。另外,当Si3N4粒子的短径低于0.2μm时,由于过小而可能使强度不足,当大于5μm时,球形粒子的比例增高,有生成非柱状粒子的倾向。当Si3N4粒子的纵横比小于2时,所得到的多孔Si3N4强度有变得不足的倾向,另外,当纵横比大于20时,制备有变困难的倾向。

    所述本发明的多孔Si3N4的耐高温特性和耐药品性优良,适合用作除去腐蚀性液体中的杂质的过滤器、高温下使用的过滤器、在腐蚀性高的氛围气中使用的催化剂载体等,特别适用于过滤器中的用途。另外,如果采用具有上述构成的本发明多孔Si3N4,使用过的过滤器易于通过逆流液体进行再生。人们认为,这也许是在柱状晶体上堆集的杂质与其他部分的结合小等而易于去除的缘故。

    另外,多孔Si3N4的起始物质为Si粉末和稀土类元素化合物,这可以把成为烧结体的多孔Si3N4加以粉碎,分析硅及稀土类元素的含量,通过确认它们的存在进行判别。即,把以Si粉末作为起始物质的多孔Si3N4与以Si3N4粉末作为起始物质的多孔Si3N4相比,Si的含量增多。以Si3N4粉末作为起始物质时,Si的残留量为50ppm以下,但以Si粉末作为起始物质时,Si的残留量在50ppm以上。因此,本发明的多孔Si3N4可容易地进行判定。

    另外,本发明多孔Si3N4的起始原料还含有第二烧结助剂,其选自周期表IIa族元素、IIIb族元素、IVb族元素和过渡元素化合物中的至少1种,对Si粉末100质量份,该第二烧结助剂换算成氧化物达到0.05~5质量份是优选的。

    对本发明多孔Si3N4的平均细孔径未作特别限定,但优选0.05~12μm。平均细孔径小于0.05μm的烧结体(多孔Si3N4)工业上有难以制造的倾向。另外,当平均细孔径大于12μm时,本发明目的的过滤效果变小。这种细微的平均细孔径可以通过使作为起始原料的金属Si粒子大小为0.15μm以上~10μm以下,以及在减压氮气氛围中进行烧结获得。

    实施例1~4、比较例1~3

    确认烧结时氮气压力的效果。对平均粒径为1μm的市售Si粉末100质量份,添加7.5质量份的Y2O3作为第一烧结助剂,以乙醇作为溶剂用球磨机混合15小时。把得到的淤浆在大气中自然干燥,对该干燥粉末100质量份,配合压制成型用有机粘合剂(聚乙烯醇)8质量份。然后,用压制成型法制作直径25mm、厚3mm的圆板状Si成型制品。在氮气氛围中加热到400℃,保持2小时,进行脱粘合剂处理后,在3个大气压(0.3MPa)的氮气氛围下加热至1400℃,保持5小时,得到由Si3N4形成的氮化体。

    另外,把该氮化体于1850℃保持2小时,分别在表1所示的条件下进行烧结,得到实施例1~4、比较例1~3的Si3N4烧结体(多孔Si3N4)。得到的Si3N4烧结体的气孔率及平均细孔径用水银测孔仪(カンタ·クロム社制造的オ一トスキヤン60水银测孔仪)进行测定。所得到的烧结体用氟硝酸溶解,使Si3N4粒子变得松散。每个Si3N4粒子用扫描型电子显微镜进行观察,求出纵横比。结果示于表1。在1个大气压(0.1MPa)以下的氮气压下进行烧结时,可以得到气孔率为30%以上的高气孔率陶瓷。纵横比有随着氮气压的升高而增大的倾向。

                                        表1   烧结时的氮气压力  气孔率   (%) 平均细孔 径(μm)  柱状结晶 的短径(μm) 纵横比  (大气压)   (MPa)实施例1    1    0.1    42   1.0    1.4   5实施例2    0.5    0.05    44   1.2    1.1   4实施例3    0.2    0.02    55    2.5    0.75    4实施例4    0.1    0.01    60    3.0    0.5    3.5比较例1    5    0.5    23    0.9    3.2    10比较例2    3    0.3    26    0.7    2.7    9比较例3    3    0.3    17    0.5    2.6    5

    实施例5~9

    确认作为第一烧结助剂的稀土类元素化合物的添加量的效果。往平均粒径1μm的市售Si粉末中分别添加表2所示量的烧结助剂,以乙醇作为溶剂用球磨机混合15小时。把得到的淤浆在大气中自然干燥,对该干燥粉末100质量份,配合压制成型用有机粘合剂(聚乙烯醇)8质量份。然后,用压制成型法制作直径25mm、厚3mm的圆板状Si成型制品,在氮气氛围中加热到350℃,保持5小时,进行脱粘合剂处理。

    然后,在5个大气压(0.5MPa)的氮气氛围下加热至1380℃,保持7小时,得到氮化体。把该氮化体在0.5个大气压(0.05MPa)的氮气中于1835℃保持2小时进行烧结,得到实施例5~9的Si3N4烧结体(多孔Si3N4)。得到的Si3N4烧结体的气孔率和平均细孔径用水银测孔仪与实施例1~4同法进行测定。结果汇总于表2。在0.5个大气压(0.05MPa)的氮气压下进行烧结,可以像实施例1~4一样,得到30%以上的气孔率。从表2可知,烧结体中Si3N4粒子的纵横比与稀土类元素化合物的添加量成比例增高。其中,气孔率高的实施例8的样品实用性最优良。

                                       表2 第一烧结助剂及其量     (质量份)  气孔率   (%) 平均细孔 径(μm) 柱状晶体的  短径(μm) 纵横比实施例5    Y2O3:20    48    1.1    1.2    3实施例6    Y2O3:30    45    0.9    1.5    6实施例7    Y2O3:45    42    0.8    1.6    8实施例8    Y2O3:5    +(Yb2O3:7.5)    50    1.3    1.7    15实施例9    Y2O3:10    +(Yb2O3:15)    36    0.3    1.8    18

    实施例10~15

    研究同时添加第一烧结助剂和第二烧结助剂的效果。分别添加平均粒径0.15μm的市售Si粉末、作为第一烧结助剂的Y2O3 25质量份、按表3中所示的量的第二烧结助剂,以乙醇作为溶剂混合20小时。把得到的淤浆在大气中自然干燥,对该干燥粉末100质量份,配合压制成型用有机粘合剂(聚乙烯醇)8质量份。然后,用压制成型法制作直径25mm、厚3mm的圆板状Si成型制品,在氮氛围气中加热到450℃,保持4小时,进行脱粘合剂处理后,在3个大气压的氮氛围气中加热到1400℃,保持5小时,得到氮化体。

    然后,把该氮化体在0.3个大气压(0.03MPa)的氮气压下,把烧结的保持时间定为2小时,在表3所示的烧结温度条件下进行烧结。得到的Si3N4烧结体的气孔率和平均细孔径用水银测孔仪进行测定。结果汇总于表3。即使仅少量添加第二烧结助剂,由于液相量增多,液相生成温度降低,可以抑制Si3N4粒子成长。结果是,气孔率降低,但具有微小的平均细孔径。其中,实施例11、13的样品是气孔率高的优质过滤器。

                                             表3   样品 烧结温度   (℃)   第二烧结助剂  及其量(质量份) 气孔率  (%) 平均细孔 径(μm) 柱状晶体的 短径(μm)  纵横比实施例10   1780     SiO2:0.1   33   0.15     0.5    2.5实施例11   1750     MgO:0.1   35   0.05     0.2    1.5实施例12   1750     MgO:4.5   31   0.1     0.2    2实施例13   1770     Al2O3:0.1   36   0.3     0.4    4实施例14   1770     Al2O3:0.5   31   0.2     0.4    3.5实施例15   1770     (TiO2:0.2)     +(MgO:0.1)   32   0.1     0.4    2.5

    实施例16~20

    改变脱粘合剂体气孔率和烧结时的氮气压力来制备样品,所述脱粘合剂体气孔率是将成型制品进行脱粘合剂处理后的气孔率。往平均粒径9μm的市售Si粉末中添加作为第一烧结助剂的Y2O3 15质量份,用乙醇作为溶剂混合0.5小时。把得到的淤浆在大气中自然干燥,对该干燥粉末100质量份,配合压制成型用有机粘合剂(聚乙烯醇)8质量份。然后,用压制成型法制作直径25mm、厚3mm的圆板状Si成型制品,在氮氛围气中加热到400℃、保持3小时,进行脱粘合剂处理。各脱粘合剂体的气孔率示于表4。然后,在5个大气压(0.3MPa)的氮气氛下加热至1450℃,保持3小时,得到氮化体。

    然后,把该氮化体在1835℃保持3.5小时,分别按表4所示的条件进行烧结,得到实施例16~20的Si3N4烧结体(多孔Si3N4)。所得到的Si3N4烧结体的气孔率及平均细孔径用水银测孔仪与实施例1~4同法进行测定。由于采用大粒径原料,可以得到具有大的平均细孔径的多孔体。另外,与脱粘合剂体的气孔率相比,多孔Si3N4的气孔率显示对烧结时的氮气压力的依赖性大。其中,实施例19的样品气孔率高而优良。

                                               表4  脱粘合  剂体气 孔率(%)    烧结时氮气压力 气孔率  (%)  平均细   孔径   (μm)  柱状晶  体的短  径(μm) 纵横比  (气压)   (MPa)实施例16    51    1    0.1   48    3.1    4.5    7实施例17    43    1    0.1   41    2.4    4.2    6实施例18    55    1    0.1   52    3.5    4.8    8实施例19    51    0.2    0.02   58    5.5    3.6    6实施例20    42    0.2    0.02   54    4.5    3.2    6

    本发明的多孔Si3N4制备方法不是以Si3N4作为起始原料,而是采用Si粉末和稀土类元素化合物,原料便宜,可以廉价得到适于作过滤器的优质Si3N4。另外,烧结工序通过在1750~1900℃的氮气中进行,并采用0.1~1个大气压的低压氮气,在烧结中Si3N4发生分解、再析出,借此保持高的多孔Si3N4气孔率,并且,可以保持高的Si3N4粒子纵横比。本发明的多孔Si3N4由于具有优良的高温特性和耐药品性,适于作除去腐蚀性液体中的杂质用的过滤器、高温使用的过滤器以及作为腐蚀性高的氛围气中使用的催化剂载体使用。

    尽管本发明已经详细的作了公开和说明,这可以清楚地理解为上述仅是作为举例说明和实施例,而不是作为对本发明的限制,本发明的精神和范围仅通过权利要求加以限定。

多孔SISUB3/SUBNSUB4/SUB及其制备方法.pdf_第1页
第1页 / 共15页
多孔SISUB3/SUBNSUB4/SUB及其制备方法.pdf_第2页
第2页 / 共15页
多孔SISUB3/SUBNSUB4/SUB及其制备方法.pdf_第3页
第3页 / 共15页
点击查看更多>>
资源描述

《多孔SISUB3/SUBNSUB4/SUB及其制备方法.pdf》由会员分享,可在线阅读,更多相关《多孔SISUB3/SUBNSUB4/SUB及其制备方法.pdf(15页珍藏版)》请在专利查询网上搜索。

本发明提供一种多孔Si3N4制备方法,所述多孔Si3N4具有高气孔率、并且具有纵横比高的Si3N4粒子,该法具有下列工序:混合工序,把Si粉末和作为第一烧结助剂的至少1种稀土类元素化合物粉末加以混合,得到混合粉末,其中,对Si粉末100质量份,稀土类元素化合物换算成氧化物达到7.545质量份;添加工序,往该混合粉末中添加粘合剂;成型工序,用该混合粉末和粘合剂的混合物制造成型制品的成型工序;脱粘合剂。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 化学;冶金 > 水泥;混凝土;人造石;陶瓷;耐火材料〔4〕


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1