带有转子密封系统的流体机械 本发明涉及一种带有一转子密封系统的流体机械,该转子沿着一旋转轴延伸,并具有一第一动叶片和一在转子的周向上与第一动叶相邻的第二动叶片。
流体机械,例如涡轮机或压缩机的可旋转的动叶片的设计各不相同,但都是固定在一转子轴的圆周表面的整个外周上,该转子轴例如由叶轮构成。一个动叶片通常包括一个叶片翼型板、一个叶片平台以及一个带固定结构的叶根,该固定结构由一个对应互补地设计的凹入部分(例如为圆周槽或者轴向槽)接收在转子轴的圆周面上,通过这种方式固定动叶片。根据结构的不同,在将动叶片插入转子轴后,在相邻的区域之间形成间隙,这些间隙在涡轮机运转时会造成冷却介质的泄漏流,或者驱动转子的热作用流体的泄漏流。这种间隙例如出现在沿圆周方向相邻的动叶片地两彼此相邻的叶片平台之间,或者出现在转子轴的圆周面与一径向上与圆周面相邻的叶片平台之间。为了限制可能出现的泄漏流,例如防止冷却介质(例如冷却空气)流入燃气轮机的流动通道,人们一直积极地寻求合适的密封方案,即,该密封方案能耐高温并且能承受因作用在旋转系统上的巨大离心力所造成的机械负荷。
DE19810567A1公开了一种用于燃气轮机的动叶片的密封板。当供给动叶片的冷却空气泄漏到流动通道中时,将导致燃气轮机的效率的下降。插接在两相邻的动叶片之间的叶片平台之间的一间隙的密封板应该防止由于冷却空气的流出而形成的泄漏流。这种密封作用通过穿过不同的密封销的所述密封板在外部形成。这些密封销也插接在两相邻的动叶片的叶片平台之间。为实现理想地防止冷却空气从相邻的叶片平台泄漏出去的密封效果,必需采用大量的密封元件。
在美国专利US5599170中描述了一种用于燃气轮机动叶片的密封方案。在两个固定在一可绕一轴旋转的叶轮的圆周面上的彼此邻接的动叶片之间形成一基本上沿径向延伸的间隙和一基本上沿轴向延伸的间隙。一个密封件同时密封径向和轴向间隙。该密封件嵌入一由动叶片的叶片平台构成的空腔中。密封件具有一第一和一第二密封面,它们与径向和轴向间隙邻接。该密封件还有一倾斜于径向延伸的滑移面。该滑移面紧挨着一反动面,该反动面构成一设置在所述空间中可移动的反动式元件的局部表面。该密封作用通过由于动叶轮的旋转而作用在移动的反动式元件上的离心力达到。反动式元件在倾斜的滑移面上传递一个力,其作用在密封件上的径向分力使得第一密封面密封径向间隙,而其轴向分力作用在密封件上使得第二密封面密封径向间隙。这种密封方案不能防止冷却空气沿着叶轮的圆周面流出该圆周面与一径向上邻接该圆周面的动叶片平台之间的间隙,进入燃气轮机的流动通道。
类似的带有一个或多个密封件的昂贵装置,例如就象在德国专利申请DE 19810567 A1或美国专利文献US 5599170中所描述的那样,在一种流体机械中还被进一步用于防止流动的冲击流体,例如一种热烟气或蒸汽流入一转子的间隙区域和中间区域。冲击流体的这种流入可能导致动叶片相当大的损害。为了防止这种危险,通常在动叶片平台的朝向冲击流体流动一侧插入多个密封件。
在GB905582和EP0761930A1中描述了一种带有一盘状涡轮转子的涡轮机,其中,动叶片借助于一轴向枞树槽式连接固定在叶轮上。动叶片的轴向固定通过端侧固定在叶轮上的固定板实现,在此,也达到了某种针对冲击流体流入叶根槽区域的密封作用。
本发明的目的在于为一种流体机械提供一密封系统,这种流体机械带有一沿着一旋转轴线延伸的转子,该转子具有一第一动叶片和一沿转子圆周方向与该第一动叶片相邻的第二动叶片。该密封系统应该保证能够特别有效地限制可能出现的流过转子的间隙区域和中间空隙的泄漏流,并且能承受所产生的热负荷和机械负荷。
本发明的目的通过这样一种流体机械来实现,它带有一沿着一旋转轴线延伸的转子,该转子包括一圆周面,该圆周面由转子的径向外部界面限定,该转子还包括一承接结构以及一第一动叶片和一第二动叶片,它们分别具有一叶根和一与叶根相邻的叶片平台,第一动叶片的叶根及第二动叶片的叶根插入承接结构中,第一动叶片的叶片平台与第二动叶片的叶片平台邻接,在两叶片平台与圆周面之间构成一中间空隙,在圆周面上的该中间空隙中设置一密封系统。
本发明出于这样的考虑,即,在流体机械运转时,转子要承受一种流动的热流体的冲击。该热冲击流体由于受热膨胀而在动叶片上做功,并使动叶片绕旋转轴线旋转。转子及动叶片不仅受到很大的热负荷,而且受到很大的机械负荷,特别是由于因旋转而出现的离心力。为了冷却转子,特别是动叶片,利用一种冷却介质,例如冷却空气,这种冷却介质通常通过适当的冷却介质输送装置向转子输送。在此,在中间空隙中不仅有冷却介质的泄漏流,而且有热冲击流体的泄漏流—所谓间隙损失。中间空隙在此由圆周面及径向上位于圆周面之外的、两个在转子圆周方向上相邻的动叶片的各平台构成。其中的圆周面定义为转子的外径向界面。这种泄漏流对于冷却效果非常不利,而且对圆周面的承接结构中的动叶片的机械装配强度(运行平稳和疲劳强度)也是非常不利的。在这方面特别重要的是要注意沿着旋转轴的泄漏流(轴向泄漏流),例如沿着圆周面定向。此外,还须注意垂直于旋转轴线的泄漏流(径向泄漏流),该泄漏流沿着径向,且因此基本上垂直于圆周方向定向。
本发明提供一种针对可能出现的泄漏流有效地密封一流体机械中的转子的新途径,该转子具有一第一动叶片和一在转子的圆周方向上与第一动叶片邻接的第二动叶片。在此不仅要考虑到轴向泄漏流,而且还要考虑到径向泄漏流。这通过如下措施来实现,即,在转子圆周面上的中间空隙中设置密封系统。通过所提供的设计,所述密封系统密封动叶片平台与所述圆周面之间的中间空隙。该中间空隙在转子的径向、轴向以及圆周方向上延伸。在此,间隙的轴向尺寸通常占主导地位,并且其圆周方向的尺寸大于径向尺寸。中间空隙的精确几何形状由相邻的动叶片平台的专门结构以及圆周面确定。所提供的密封系统在设计结构上可以个别地和相应的几何形状以及就有待限制的泄漏流所提出的要求相匹配。
相对于传统的密封方案而言,本发明通过将密封系统设置在圆周面上带来显著优点。这是通过将密封系统紧挨着圆周面形成密封作用来实现的。这特别适合于阻止泄漏流沿着圆周面的轴向泄漏。例如,在很大程度上阻止燃气轮机中的热冲击流体,比如说热烟气进入中间空隙,并显著地减小在中间空隙内的流体沿着圆周面轴向流动。这样就保护了转子的材料,特别是叶片平台的材料,使其免受热的冲击流体的高温和可能出现的氧化和腐蚀的影响。密封系统可以这样确定径向尺寸,即,使其挨着相邻的叶片平台,并达到一密封效果。通过这种方式,实际上完全防止了轴向上的泄漏流。
通过防止中间空隙中的热冲击流体和/或冷却介质穿过密封系统泄漏,避免了在动叶片固定区域内产生温度梯度。这样减小了因温差导致相邻转子部件的热膨胀受阻所引起的热应力。因此,可以以明显更小的公差制造动叶片的叶根和接收并固定动叶片的转子的承接结构。公差较小对于动叶片的机械安装强度和转子的平稳运行带来了有利的影响。特别是可以将动叶片固定在承接结构中的配合间隙设计得很小,通过这样的间隙配合也相应地减小了可能出现的泄漏流。
另一优点在于密封系统制造简便,安装容易。由于密封系统设置在圆周面上,所以不必将其固定装在动叶片上。因此,无需很高成本就可对动叶片进行安装或维修,例如更换动叶片。这样的密封系统不会因此有任何损坏,所以还可以反复使用。
在一个优选实施例中,流体机械中的转子具有一叶轮,它包括所述圆周面和所述承接结构,其中,圆周面具有一第一圆周面边缘和一沿旋转轴线方向与第一圆周面边缘相对的第二圆周面边缘,承接结构则具有一第一叶轮槽和一在叶轮的圆周方向上与第一叶轮槽隔开一定距离的第二叶轮槽,第一动叶片的叶根嵌入第一叶轮槽内,第二动叶片的叶根嵌入第二叶轮槽内。
由此实现可旋转的动叶片的固定,这种固定方式在流体机械运行时可靠地接收了叶片由于气流和离心力以及叶片振动所承受的负荷,并将所出现的力转移到叶轮上,且最终传递到整个转子上。动叶片的固定例如可以通过轴向槽实现,在此,各动叶片单独夹固在一为此而设置的基本上沿轴向延伸的叶轮槽内。对于小负荷的情况,例如在轴向压缩机上,可以以简单的方式安装动叶片,例如通过一燕尾槽叶根或拉瓦尔叶根来安装。对于具有长动叶片并相应地具有大的动叶片离心力的蒸汽轮机末级,除了所谓插入式根部,还可以考虑采用轴向枞树式叶根。该轴向枞树式固定方式还优选用于高耐热性的燃气轮机动叶片。
在上述优选的实施形式中,圆周面包括一个第一圆周面边缘和一个第二圆周面边缘作为局部区域。相对于流动的热冲击流体,特别是燃气轮机的热烟气的流动方向,例如可将第一圆周面边缘设置在上游,而将第二圆周面边缘设置在下游。根据结构情况和对密封效果的要求,这种几何上的细分可以使密封系统在圆周面的不同的局部区域上实现一种实施形式和设置。
优选将密封系统设置在第一圆周面边缘和/或第二圆周面边缘上。例如,将密封系统设置在第一圆周面边缘上首先限制了流动的热冲击流体进入中间空隙,并从而防止动叶片损坏。将密封系统设置在下游的第二圆周面边缘上主要用于在很大程度上阻止中间空隙中的冷却介质,例如在一预定压力下的冷却空气在轴向上沿着圆周面穿过第二圆周面边缘流出到流动通道中。由于热的冲击流体在流动方向上膨胀,所以,热的冲击流体在流动方向上连续地减压。中间空隙中处于一定压力下的冷却介质因此朝着较小的外界大气压力的方向从中间空隙中流出,即,在下游的圆周面边缘处流出。将密封系统设置在第一圆周面边缘和第二圆周面边缘上使得中间空隙被封闭起来,因此,不仅可靠地防止了热冲击流体流入中间空隙,而且可靠地防止了冷却介质流出中间空隙。
优选在圆周面上构成一圆周面中间区域,它在轴向上由第一圆周面边缘和第二圆周面边缘界定,密封系统至少部分设置在圆周面中间区域上。圆周面中间区域构成圆周面的一个局部区域。与第一和第二圆周面边缘结合,提供了将密封系统设置在圆周面的不同局部区域的可能性。视结构情况和对于密封效果的要求,人们可以确定一个合适的技术解决方案,其中密封系统可设置在不同的局部区域上。设置密封系统时还可以想像不同的局部区域的结合。因此,所提供的密封系统在满足对于所要达到的密封效果的具体要求方面有很大的灵活性。
密封系统优选具有一个在圆周方向上延伸的密封件。该中间空隙基本上沿径向和轴向以及转子的圆周方向延伸。一个沿着转子的圆周方向延伸的密封件特别适合于有效地阻止可能出现的冷却介质和/或热冲击流体的轴向泄漏流。例如,通过密封件完全阻止了一个上游的轴向的泄漏流,例如阻止了热烟气从燃气轮机沿着圆周面展开的流动通道中流出。泄漏流受到中间空隙中的阻力而减速,且最终停止在密封件朝向泄漏流的一侧(简单的截流)。密封件背向泄漏流的一侧和在轴向上与之邻接的中间空隙的部分通过这种简单的密封件就能有效地避免受到泄漏流,例如热冲击流体或冷却介质的加载。
上述带有一在圆周方向上延伸的密封件的简单方案通过这种密封件与另一个或另外多个密封件的组合得到了明显的改进。在一优选实施例中,至少设置另一个在圆周方向上延伸并在轴向上与所述密封件隔开一定距离的密封件。通过这种密封件的多重设置,在相当大的程度上减小了中间空隙中可能出现的泄漏流。特别是,例如可以在第一圆周面边缘上设置所述密封件,而在第二圆周面边缘上设置所述另外的密封件。这样就针对轴向泄漏流形成中间空隙的上游和下游密封。这样,不仅针对流动通道的高压的上游区域可能出现的热冲击流体的进入,而且针对流动通道的低压的下游区域可能出现的热冲击流体的进入,中间空隙得到了非常有效的保护。同时,所密封的中间空隙还可很好地用于冷却介质、例如冷却空气。冷却介质在压力下充入中间空隙,并首先用于高热负荷的转子、叶片平台和径向上与叶片平台邻接的叶片翼型板的有效的内部冷却。这种处于一定压力下的冷却介质在中间空隙中的另一种有利的应用在于,利用其阻断流动通道中的热冲击流体的作用。通过密封件的结构设计和对于中间空隙中冷却介质压力的选择,冷却介质与热冲击流体之间的压差足够小,但却足以阻断热冲击流体。为此,在中间空隙中冷却介质的压力只需略微高出上游的热冲击流体的压力。密封件的密封作用越大,在冷却介质中可能残余的冷却介质泄漏流就越小。
优选的是,密封件嵌入一凹入部分,特别是圆周面上一凹槽内。将密封件嵌入一合适的凹入部分,能够防止在流体机械平稳运转或瞬时被加载时在离心力的作用下密封件脱落或抛出。此外,通过凹入部分还可以在圆周面上形成一密封面,该密封面相宜地构成凹入部分的局部表面。在设置一个槽的情况下,该密封面例如在槽的底部。为了在嵌入密封件的情况下尽可能达到好的密封效果,所述密封面具有相当小的精心选择的粗糙度。在制成槽之后,例如借助于铣削或车削工艺从圆周面上去除材料,可以通过抛光在槽的底部形成一个具有理想粗糙度的密封面。
优选的是,使密封件在径向上移动。这样可以使密封件在离心力的作用下在径向上与转子的旋转轴脱离。这一特性被用来明显地改善动叶片的叶片平台上的密封效果。密封件在离心力的作用下与沿径向与圆周面隔开的、在圆周方向上相邻的叶片平台接触,并紧压在叶片平台上。密封件的这种径向移动性可以通过对凹入部分定尺寸和对密封件定尺寸来保证。更有利的是,通过这种实施形式,在维护动叶片或动叶片失灵的情况下,无需附加的工具就可毫无问题地卸下密封件并必要时更换密封件,不会由于高温运转时的氧化或腐蚀而烧结密封件。此外,嵌入凹入部分,特别是槽内的密封件的某种公差是非常有利的,因为这样可以允许热膨胀并从而避免转子中形成热引发的应力。
密封件优选包括一个第一局部密封件和一个第二局部密封件,第一局部密封件与第二局部密封件相互啮合。局部密封件可以这样设计,使得它们以特定的方式在中间空隙的不同的待密封区域实现一种局部的密封功能。这种中间空隙中的不同区域例如通过槽底部的适当密封面在第一动叶片的叶片平台上或者第二动叶片的叶片平台上形成。局部密封件成对地设置,这样,两局部密封件互补成一密封件,成对密封件的作用大于一局部密封件的作用。通过局部密封件的一特别适合的设计,在被密封的中间空隙的区域上,成对的局部密封件的密封作用大于例如以一单体的密封件所实现的作用。
优选的是,第一局部密封件与第二局部密封件在圆周方向上可相对移动。这样就提供了一种由局部密封件构成的适配系统。局部密封件在圆周方向上的相对移动使得局部密封件可以根据转子的热和/或机械负荷而相互适配地互相嵌入。这种由局部密封件构成的适配系统可以这样来实施,即,它在外力,例如离心力及法向力和支撑力的作用下进行某种自身的调节,以发挥其密封作用。此外,通过这种由局部密封件构成的可移动的局部密封件对,明显更好地平衡可能出现的热或机械诱发的应力。
在一优选的实施形式中,第一局部密封件和第二局部密封件分别有一个与圆周面邻接的叶轮密封棱和一个与叶片平台邻接的平台密封棱。各平台密封棱可以进一步根据功能划分成平台局部密封棱。例如,在设置局部密封件的情况下可以规定一个第一平台局部密封棱和一第二平台局部密封棱,第一平台局部密封棱与第一动叶片的叶片平台邻接,第二平台局部密封棱与第二动叶片的叶片平台邻接。通过这种功能上的划分,可以简单地实现局部密封件与承接结构中的第一和第二动叶片各自的安装几何形状的相互适配。通过局部密封件的相应结构,实现了叶轮密封棱相对于圆周面密封以及平台密封棱相对于动叶片的叶片平台密封,并由此形成尽可能好的形状吻合(Formschluss)。
通过以第一和第二局部密封件成对地组成密封件,实现了一种特别有效的密封。优选的是,第一和第二局部密封件相互重叠,第一局部密封件的平台密封棱与叶轮密封棱邻接在第二局部密封件的平台密封棱处或者叶轮密封棱处。这样,成对设置的两局部密封件可以很好地形状吻合,因此,通过密封件实现了很好的密封,防止了热冲击流体进入中间空隙和/或冷却介质流出到流动通道。
优选的是,密封件由一种高耐热性材料,尤其是一种镍基或钴基合金制成。这种合金具有足够的弹性变形特性。这样就可以选择出密封件的材料,使其与转子的材料相匹配,以避免由于掺杂或扩散而损坏,并保证转子、特别是动叶片的叶片平台均匀地热膨胀。
在一个优选实施形式中,密封系统具有一迷宫式密封系统、特别是一迷宫式间隙密封系统。迷宫式密封系统的作用方式基于对密封系统中的热冲击流体和/或冷却介质的一种尽可能有效的截流,以及因此形成的在很大程度上对轴向泄漏流(泄漏质量流)穿过中间空隙的抑制作用。在此,穿过密封间隙、例如在迷宫式间隙密封中常常出现的残余泄漏流,可以通过考虑所谓的桥接因素计算出。在密封前后流动参数相同以及迷宫式密封系统的主尺寸(密封间隙直径、密封间隙宽度、密封的轴向总长)相同的情况下,与所谓的齿-槽式密封系统相比,迷宫式间隙密封系统(也称之为视孔密封-Durchblickdichtungen)的情况下穿过密封间隙的泄漏流要大多达3.5倍。然而,与齿-槽式密封系统相比,由于迷宫式间隙密封系统中残余有密封间隙,所以其具有对大的热和/或机械引发的转子内的相对膨胀的自适应性。
密封系统优选一体制造,特别是通过对动叶轮的材料切削制成。在密封系统的一种构造中(例如构造成迷宫式密封系统),该密封系统至少由两个在动叶轮的圆周方向上延伸并在轴向上彼此相隔一定距离地设置在圆周面上的密封件实现。这种密封件可以由完全车削的节流挡板实现。一体制造方法的优点是,在迷宫式密封系统与圆周面之间无需附加连接件。在制造技术上,叶轮的加工与迷宫式密封系统的制造可以在一个步骤中并在一台车床上完成,这在成本上是非常有利的。此外,在叶轮与迷宫式密封系统之间热引发的应力不起作用,因为采用的只是一种材料。密封件其它可替换的实施形式也是可行的,例如一个焊接在叶轮上的节流挡板,或一个榫眼结合在圆周面上槽内的节流挡板。
密封件优选在其径向外端上具有一个密封尖头,特别是一刀刃。
可行的密封间隙宽度,例如,密封件的径向外端和与其相邻的待密封的叶片平台之间的距离对穿过中间空隙的残余泄漏流起着决定性的影响。为了将密封间隙宽度制造得尽可能小,在密封件的径向外端上斜削切角。在此,通过使密封尖头或刀刃具有一个相对于叶片平台的径向安装尺寸很小的余量,还可以实施一个密封间隙跨接。由于密封尖头或刀刃与叶片平台轻微接触,在动叶片插入叶轮的例如一轴向槽内的承接结构中时,密封间隙被跨接。通过这种方式将密封间隙封闭,达到了一种改善的密封,并进一步减小了轴向泄漏流。与传统的实施形式相反,这样还可以实现动叶片在承接结构中的安装尺寸明显的减小。通过这种新的方案,可以将目前通常为0.3至0.6mm的最小安装尺寸减小到大约0.1至0.2mm,因此达到了大约三分之一。
在一个优选的实施形式中,设置一个用于密封基本上沿轴向延伸的间隙的间隙密封件,所述间隙在第一动叶片的叶片平台与第二动叶片的叶片平台之间形成,并与中间空隙流动连通。间隙密封件阻止了穿过该间隙的泄漏流的流出。这种泄漏流基本上沿径向,并且不仅可以穿过间隙从中间空隙中径向向外流出,而且可以穿过间隙在径向上向内流入中间空隙。
在此可以有不同的实施形式:
与间隙径向上向外邻接的是流体机械的流动通道,例如是一压缩机或一燃气轮机的流动通道,因此,通过间隙密封件防止了冲击流体,例如一燃气轮机中的热烟气穿过间隙径向向内地流入中间空隙。这样就保护了转子,特别是动叶片在中间空隙中免受氧化和/或腐蚀的侵袭。同时,间隙密封件防止冷却介质,例如冷却空气从中间空隙穿过间隙沿径向向外进入流动通道。在一替换实施形式中,所述间隙还可以径向向外邻接一空腔,该空腔由在圆周方向上彼此相邻的第一和第二动叶片构成(所谓动叶片的箱状设计)。这样,间隙密封件一方面防止了热冲击流体从中间空隙穿过间隙径向向外地流入所述空腔。另一方面,由间隙密封件所密封的空腔中充入一种冷却介质,例如冷却空气。这使得所述空腔中保持低压,并例如用于对高耐热的动叶片进行一种有效的内部冷却,或者用于其它冷却目的。在所述空腔中处于低压的冷却介质的另一有利的应用在于充分利用了其对于流动通道中的热冲击流体的封闭作用。
间隙密封件优选由一间隙密封板制成,该板具有一间隙密封棱,在离心力作用下,该棱嵌入间隙中,并封闭间隙。将间隙密封件设计成间隙密封板是一种简单而又廉价的方案。例如它可以为一个具有纵轴和横轴的薄金属条。间隙密封棱基本上在金属条的中部沿着纵轴延伸,并可以简单的方式通过折叠金属条制成。间隙密封件可以比较有利地设置在中间空隙中。在流体机械运转时,间隙密封件由于旋转的原因,在径向上向外的离心力的作用下紧压在彼此相邻的叶片平台上,间隙密封棱嵌入间隙中,并将其完全有效密封。
间隙密封件优选由一种高度耐热的材料,特别是镍基或钴基合金制成。这种合金具有足够的弹性变形特性。选择间隙密封件的材料时,使其与转子的材料适配,这样可以避免掺杂或扩散。此外,保证了转子,特别是动叶片的叶片平台均匀地热膨胀或收缩。
间隙密封件优选在径向上与密封系统邻接。通过间隙密封件与一个设置在圆周面上的密封系统的组合,特别是与一迷宫式密封系统的组合,实现了中间空隙相对于可能出现的热冲击流体泄漏流和/或冷却介质的泄漏流特别有效的密封。这样尤其保持了离心力支持的、用于密封一轴向延伸的间隙的间隙密封件的密封作用。在这种组合中,密封系统减小了基本上轴向的泄漏流,而间隙密封件减小了基本上径向的泄漏流。通过这种功能上的分离,还能够毫不费力地在结构设计上提供一种对不同的转子几何形状灵活的适应。间隙密封件和密封系统非常有效地互补。
在一个优选的实施形式中,在带有一沿着一旋转轴延伸的转子的流体机械中,承接结构由一个圆周槽形成,圆周面具有一第一圆周面和一沿着旋转轴与第一圆周面相对的第二圆周面,它们分别在轴向上与圆周槽邻接,密封系统设置在中间空隙中的第一和/或第二圆周面上。
动叶片的固定装置必须可靠地承受在流体机械运转时叶片所受到的流体冲击力和离心力及叶片振动负荷,并将所产生的力传递给叶轮,且最后传递给整个转子。除了将动叶片固定在轴向槽内,动叶片的固定还扩大到圆周槽内,这首先是在低负荷和中负荷的情况下采用。在这方面,根据不同的负荷有多种公知的实施形式(参见I.Kosmorowski和G.Schramm的《涡轮机械》,ISBN 3-7785-1642-6,Dr.Alfred Huethig出版社出版,海德堡,1989,第113页-117页)。对于离心力和弯曲力矩小的短动叶片,采用例如易于加工的所谓锤头连接。对于较长的动叶片(因此具有较大的叶片离心力),在转子为轮状结构的情况下,必须通过特别的结构措施防止叶轮在圆周槽高度上的第一和第二圆周面区域桡曲。例如,这可以借助于一个在圆周槽高度上实心的叶轮、一个加工成钩状的锤头式叶根或一个加工成钩状的外包式叶根(Reiterfuss)实现。然而,一个有利地向叶轮的力传递通过外圆周上枞树状的固定方式实现。这里所提出的密封中间空隙的方案在各种情况下都可以非常灵活地移植到一个转子上,该转子的动叶片固定在一个圆周槽内。
流体机械优选为一台燃气轮机。
下面借助附图中示出的实施形式详细地描述本发明。部分附图是示意性的简化示图。
图1是一台带有压缩机、燃烧室和透平机的燃气轮机的半剖面视图;
图2是一个转子的叶轮局部的立体视图;
图3是一个上面装有动叶片的动叶轮局部的立体视图;
图4是一个带有密封系统的动叶片的侧视图;
图5A-5D分别是一个图4中所示密封元件的第一局部密封元件各个角度的视图;
图6A-6D分别是一个图4中所示密封元件的第二局部密封元件各个角度的视图;
图7是一个带有密封元件的转子局部的轴向视图;
图8是一个与图7相类似的转子局部的轴向视图,但该转子带有另一种可作为图7中所示密封元件替换件的密封元件;
图9是一个带有迷宫式密封系统的动叶片的侧视图;
图10也是一个带有迷宫式密封系统的动叶片的侧视图,但其中的迷宫式密封系统相对于图9中的而言在结构上有所不同,它可替换图9中所示的迷宫式密封系统;
图11是一个上面装有动叶片和一个间隙密封元件的动叶轮局部的立体视图;
图12是图11所示装置沿剖切线XII-XII剖得的局部剖视图;
图13是一个带有圆周槽的转子轴的立体视图;
图14是带有圆周槽且装有动叶片的一个转子的局部剖视图;
图15也是一个转子的局部剖视图,但其中的动叶片固定机构是一个相对于图14中所示动叶片固定机构而言可供选择的替代方案。
在各附图中,相同的附图标记有相同的含义。
图1示出一燃气轮机1的一半截面。燃气轮机1具有一用于燃烧空气的压气机3、一带有液体或气体燃料燃烧器7的燃烧室5、一用于驱动压气机3的涡轮9以及一在图1中未示出的发电机。在涡轮9中,在沿着径向延伸的各轮缘(在该半截面图中未示出)上,沿着燃气轮机1的旋转轴线15设置静止的导向叶片11和可旋转的动叶片13。在此,一沿着旋转轴线15前后相邻设置的、由一组导向叶片11(导向叶片环)和一组动叶片(动叶片环)组成的叶片环对被称为涡轮级。各导向叶片11具有一叶片平台17,其用于将所述导向叶片11设置在内涡轮壳体19上。叶片平台17为一个在涡轮9中的壁件。叶片平台17是一个高耐热部件,其构成涡轮9中的气流通道21的外边界。动叶片13通过一个相应的叶片平台17固定在沿着燃气轮机1的旋转轴线15设置的透平转子23上。透平转子23可以例如由多个在图1中未示出的接收动叶片13的叶轮组装而成。这些叶轮由图中未示出的拉线连接在一起,并借助于切端面齿(Hirthverzahnung)与旋转轴线15留出热膨胀公差地对中。透平转子23与动叶片13一起构成流体机械1、特别是燃气轮机1的转子25。在燃气轮机1运行时,从大气中吸入空气L。这些空气L在压气机3中受到压缩,同时由于受到这种压缩而被预热。这些空气与液体或气态燃料在燃烧室5中混合并燃烧。利用适当的抽气装置27事先从压气机3抽取的一部分空气L被用作冷却涡轮级的冷却空气K,例如将其输至第一涡轮级,该涡轮级具有750℃-1200℃的涡轮入流温度。热冲动流体A在涡轮9中膨胀和冷却,以下将热冲动流体A称之为热烟气A,其流过涡轮级,使转子25旋转。
图2示出转子25的一叶轮29的一局部透视图。该叶轮29沿着转子25的旋转轴线15对中。叶轮29具有一用于固定燃气轮机1的动叶片13的承接结构33。承接结构33由叶轮29上的凹陷部分35,特别是槽形成。在此,凹陷部分35被设计成轴向叶轮槽37,特别是轴向枞树状槽。叶轮29具有一个位于叶轮29的外径向端的圆周面31。该圆周面由转子25、各叶轮29的外径向边界面所形成。这样形成的圆周面31并不包括承接结构33,该承接结构在此为叶轮槽37。在圆周面31上形成一第一圆周面边缘39A和一第二圆周面边缘39B。第一圆周面边缘39A与第二圆周面边缘39B在旋转轴向上相对。在圆周面31上形成一个圆周面中间区域41,该区域沿轴向由第一圆周面边缘39A与第二圆周面边缘39B界定。
图3示出一个装有动叶片13A的叶轮29的局部视图。该叶轮29的整个周边上带有叶轮槽37A和37B,这两个叶轮槽朝向圆周面31敞开,并基本上平行于旋转轴线15延伸,但也可以倾斜于旋转轴。叶轮槽37A和37B带有侧凹咬边59。一动叶片13A插入一叶轮槽37A内,该叶片带有一沿着叶轮槽37A的插入方向57的叶根43A。叶根43A通过纵向筋61支撑在叶轮槽37A的侧凹咬边59上。通过这种方式,在叶轮29绕旋转轴线15旋转时,叶片13A克服了在叶片13A的纵轴47的方向上出现的离心力,而牢固地固定在叶轮上。在沿叶根43A的纵轴47径向向外的方向上,叶片13A具有一加宽的区域,亦即所谓的叶片平台17A。叶片平台17A在叶轮侧具有一基部63和一个与该叶轮侧基部63相对的外侧65。在叶片平台17A的外侧65上是叶片13A的叶片翼型板45。在叶片翼型板45上流过用于驱动转子25的热烟气A,从而在叶轮29上产生一个转矩。在转子25的运行温度很高的情况下,动叶片13A的叶片翼型板45需要有一个内部冷却系统,这在图3中没有示出。在此,冷却介质K、例如冷却空气K,经一穿过叶轮29的未示出的引入导管流入动叶片13A的叶根43A,从叶根出来后流向内部冷却系统的一个适当的(在图3中同样没有示出的)供应管路。为了防止冷却介质K,特别是冷却空气K过早地在叶根43A和叶片平台17区域排出,设置一个密封系统51。该密封系统51设置在圆周面31的第二圆周面边缘39B上。密封系统51具有一个在叶轮29的圆周方向上延伸的密封件53。另一密封件55也在叶轮29的圆周方向上延伸,在轴向上与密封件53隔开一定距离。密封件53和另一密封件55分别嵌入圆周面31上的一个凹入部分35,特别是凹槽中。密封系统51对动叶片13A的叶片平台17A与一第二动叶片13B的叶片平台17B以及圆周面31之间的中间空隙49进行密封,在图中,第二动叶片13B以点划线示出,它插入一在叶轮29的圆周方向上与第一叶轮槽37A隔开一定距离的第二叶轮槽37B中。这样就可进一步防止热烟气A沿轴向经过第二圆周面边缘39B到达中间空隙49,并防止动叶片13A和13B在叶根43A和43B的区域或者叶片平台17A和17B的区域上被损坏。还可防止冷却介质K轴向上沿圆周面31穿过第二圆周面边缘39B流出中间空隙49。
图4示出一带有密封系统51的动叶片13的一侧视图。在图4中以局部剖视的方式详细地示出了密封系统51设置在中间空隙49中第一圆周面边缘39A和第二圆周面边缘39B的部位上。沿热烟气A的流动方向看过去,第一圆周面边缘39A位于叶轮29的圆周面31的上游,而第二圆周面边缘39B位于下游。在上游的第一圆周面边缘39A上的密封系统51首先限制了流动的热烟气A进入中间空隙49。这样就防止了动叶片13以及叶轮29在圆周面31区域的损坏。密封系统51设置在下游的第二圆周面边缘39B上主要用于尽可能高效地抑制中间空隙49中的冷却介质K,例如处于一定压力下的冷却空气K在轴向上沿着圆周面31经过第二圆周面边缘39B流出后,流入流动通道。在转子25运行期间,热烟气A在流动方向上膨胀。因此,热烟气A在流动方向上的压力逐渐下降。中间空隙49中处于一定压力下的冷却介质K向着较低的环境压力方向从中间空隙49中排出,亦即在设置在下游的第二圆周面边缘39B处排出。密封系统51在第一圆周面边缘39A和第二圆周面边缘39B上从两个方向密封中间空隙49。这种设计提供了很高的可靠性,不仅可靠防止了热烟气A流入中间空隙49,而且可靠防止了冷却介质K从中间空隙49中流出。
密封系统51在第一圆周面边缘39A上具有一密封件53,其在叶轮29的圆周方向上延伸。该密封件53嵌入一凹入部分35,特别是一在圆周面31上切出的槽内。密封系统51在第二圆周面边缘39B上具有一密封件53,其在圆周方向上延伸。另一密封件55也设置在第二圆周面边缘39B上。该另一密封件55在叶轮29的圆周方向上延伸,并在轴向上与密封件53隔开一定距离。
这种由一个或多个密封件53、55构成的密封系统51特别适合于尽可能以更高的效率来防止冷却介质K和/或热烟气A在中间空隙49中的轴向泄漏。因此,通过在第一圆周面边缘39上设置的密封系统51高效地防止了上游泄漏的流体,例如从燃气轮机1的流动通道中流出的热烟气A通过第一圆周面边缘39A沿圆周面31进入中间空隙49。同时,通过密封件53、55形式的阻碍物可靠地防止了沿着第二圆周面边缘39B从中间空隙49的轴向泄漏的流出。
通过这种多层设置的密封件53、55显著地减少了中间空隙49中可能出现的泄漏流。因此,密封后的中间空隙49很好地适用于一种冷却介质K,例如冷却空气K。这些冷却介质可以在压力下使用,并且可高效地用于高热负荷的转子25,特别是叶片平台17和沿着纵轴47与叶片平台相邻的叶片板45的内部冷却。这种在中间空隙49中处于一定压力下的冷却介质K的另一个有利的应用是提供隔绝流动通道中的热烟气A的作用。通过对冷却介质K的阻碍作用,更进一步防止了热烟气A进入中间空隙49。
密封件53、55径向上可移动地设置在凹入部分35中,因此,在转子25运行时,由于离心力作用在密封件53和55上,与现有技术相比,密封效果得到了改善。在离心力的作用下,密封件53和55平行于纵轴47径向向外移动。因此,叶片平台17的叶轮侧基部63针对可能出现的从中间空隙49流出的泄漏气流和流入中间空隙49的泄漏气流形成了非常有效的密封。可以通过凹入部分35和密封件53及55的相应结构来保证密封件53、55的径向可运动性。通过这种设计,还可以在维修时或叶片13出现故障时无需附加工具就毫无问题地拆卸或更换密封件53和55,而且不会由于在高温下运行所造成的氧化或腐蚀而使密封件53有烧结的危险。
此外,嵌入凹入部分35,特别是一槽内的密封件53和55带有一定公差也是非常有利的。这种设计允许受热膨胀,从而避免了受热产生的应力。密封件53和55具有一第一局部密封件67A和一第二局部密封件67B。第一局部密封件67A与第二局部密封件67B相互嵌入。它们通过成对设置以特定的方式构成一个密封件53和55,由此达到的密封效果大于一个单独的局部密封件67A、67B所达到的效果。局部密封件67A和67B在中间空隙49中的各个待密封区域的一种特别有利的构型保证了成对设置的密封效果大于以一个单体的密封件53所实现的密封效果。下面结合图5A至5D及图6A至6D来描述局部密封件67A和67B的一种特别有利的构型设计。
在一优选的实施形式中,图4所示密封件53和55由两个相互啮合的局部密封件67A和67B组装而成。在图5A至5D中以不同的视图示出了第一局部密封件67A。
图5A为第一局部密封件67A的一立体视图。第一局部密封件67A具有一个叶轮密封棱69和一个与该叶轮密封棱相对的平台密封棱71。在局部密封件67A装配好的状况下,叶轮密封棱69抵在圆周面31上,平台密封棱71则抵在叶片平台17的叶轮侧基部63上。图5B为第一局部密封件67A的叶轮密封棱71的一视图。图5C为第一局部密封件67A的一个俯视图。图5D为其侧视图。平台密封棱71具有一个第一平台局部密封棱71A和一个第二平台局部密封棱71B。将平台密封棱划分成两个平台局部密封棱71A和71B可以使第一局部密封件67A在结构上可简单地与一叶轮29上的一叶片13和另一叶片13B的各装配几何形状相配合(参见图3和图4)。
第二局部密封件67B以相应的方式进行设计。图6A至6D以不同的视图示出了图4所示的密封件53的第二局部密封件67B。与第一局部密封件67A相类似,第二局部密封件67B具有一叶轮密封棱69和一与该叶轮密封棱相对的平台密封棱71。平台密封棱71按照功能进一步划分成平台局部密封棱71A和71B。设置一第一平台局部密封棱71A和一第二平台局部密封棱71B。局部密封件67A和67B中的每一个设计成,使其各自的质量重心与相应的局部密封件67A、67B的平台局部密封棱71A、71B中的一个相邻。这可以通过各局部密封件67A、67B的一种分台阶的结构设计来实现,在这种设计中,各局部密封件具有一材料厚度较小的区域和一材料厚度较大的区域,为各区域分配有一个平台局部密封棱71A、71B。
通过这种局部密封件67A和67B的特殊设计,叶轮密封棱69很好地对圆周面31进行了密封,而平台密封棱或者更确切地说平台局部密封棱71A和71B中的每一个密封了叶片13的叶片平台17,在此,不仅形状闭合,而且机械稳定性得到了改善。第一局部密封件67A与第二局部密封件67B成对构成一密封件53。由此形成一种非常有效的密封。局部密封件67A与67B设计成能在装配状态下彼此啮合并重叠,第一局部密封件67A的平台密封棱71和叶轮密封棱69与第二局部密封件67B的平台密封棱71或叶轮密封棱69相邻。局部密封件67A、67B这样设置,即,各不同厚度的区域彼此接触。
通过成对设置的两局部密封件67A和67B,达到了非常好的形状吻合,并因此为防止热烟气A渗入中间空隙49和/或冷却介质K流入流动通道而实现了良好的密封(参见图4)。局部密封件67A、67B例如为金属密封板。在此选择一种这样的材料,其具有高耐热性和足够的塑性变形特性。适合的材料例如有镍基或钴基合金。由此保证局部密封件67A和67B与转子25的材料相适应。这样就避免了搀杂和扩散而造成的损伤,同时可以使转子25基本上无应力地均匀热膨胀。
图7是带有一密封件53的转子25的局部轴向视图。该转子25具有一叶轮29。叶轮29具有一第一叶轮槽37A和一在叶轮29的圆周方向上与第一叶轮槽37A隔开一定距离的第二叶轮槽37B。在叶轮29中插有一第一叶片13A和一第二叶片13B,第一叶片13A的叶根43A插入叶轮槽37A中,第二叶片13B的叶根43B插入第二叶轮槽37B中。第一叶片13A的叶片平台17A与第二叶片13B的叶片平台17B相邻,并且在叶片平台17A和17B以及圆周面31之间构成一中间空隙49。在中间空隙49中,在圆周面31上设置了一密封件53。该密封件53具有一叶轮密封棱69和一与该叶轮密封棱69相对的第一平台局部密封棱71A和一第二平台局部密封棱71B。密封件53插入圆周面31上的一凹入部分35,特别是一槽中。叶轮密封棱69与圆周面31邻接。第一平台局部密封棱71A与第一叶片平台17A的叶轮侧基部63邻接,第二平台密封棱71B与第二叶片平台17B的叶轮侧基部63邻接。密封件53可以由两个相互嵌入的、在径向和圆周方向上可移动的成对局部密封件67A、67B构成,如图5A至5D和图6A至6D所示。这样可以实现对中间空隙49的非常有效的密封。特别是极为有效地防止了从中间空隙49中流出的轴向泄漏气流或流入中间空隙49中的泄漏气流。在转子25旋转时,密封件53在离心力的作用下平行于纵轴47径向向外地离开转子25的旋转轴线15。充分利用这种作用,以便明显地改善相邻的叶片13A和13B的相邻叶片平台17A和17B的密封作用。密封件53、亦即在图7中未示出的成对的局部密封件67A、67B(参见图5A-5D和6A-6D)在离心力的作用下与在径向上与圆周面31相隔一定距离的、在圆周方向上彼此相邻的叶片平台17A、17B接触,并紧压在其叶轮侧基部63上。
通过相应确定凹入部分35(特别是槽)的尺寸以及密封件53的尺寸,可以保证足够的径向可移动性。此外还使密封件53在叶轮29的圆周方向上可移动。于是,密封件53,特别是在图7中未示出的各局部密封件67A、67B(参见图5A-5D及6A-6D)在全部外力,例如离心力及法向力和/或支撑力的作用下自动调整,以发挥其密封作用。平台局部密封棱71A、71B相对于纵轴47的倾斜度与叶片平台17A、17B的叶轮侧基部63的倾斜度相当。这样就形成了一种较好的形状吻合,而且通过相对于纵轴47的倾斜实现了有利于密封的、在密封件53和与其相邻的叶轮侧基部63上的力的分配。根据装配的需要,可以在相邻的平台17A与17B之间形成一间隙73。间隙73与中间空隙49流动连通,并且在必要时可以用一简单的间隙密封件来密封(参见图11和与该图相应的附图说明)。
图8中示出一带有可替换图7中所示密封件的另一结构密封件53的转子25局部的轴向视图。第一叶片13A的叶片平台17A与相邻的第二叶片13B的叶片平台17B在径向上错开。根据装配的条件,这种在圆周方向上相邻的叶片平台17A与17B之间的径向错位δ在叶轮槽37A和37B相对于转子25的旋转轴线15倾斜时才出现。由在图7中未示出的局部密封件67A、67B(参见图5A-5D及图6A-6D)构成的密封件53带有一错位密封棱75,它形状吻合地将错位δ密封。所提出的密封方案通过密封件53相应的结构设计可灵活地应用于不同的转子几何形状和安装尺寸。
图9示出了一动叶片13的侧视图,该叶片插入一叶轮29,在中间空隙49中,密封系统51设置在圆周面31的圆周面中间区域41上。在此,密封系统51为迷宫式密封系统51A,特别是迷宫式间隙密封系统51A。迷宫式间隙密封系统51A通过在圆周面中间区域41上设置多个在叶轮29的圆周方向上延伸的、轴向上彼此隔开的密封件53实现。各密封件53分别设计成一个榫接在圆周面41上的节流板77A-77E。由不同的节流板制成的迷宫式间隙密封系统51A基本作用方式是对在密封系统51A中流动的热烟气A和/或冷却介质K实行尽可能有效的节流,以及在很大程度上减小了泄漏气流轴向通过中间空隙49。节流板77A的径向外端79与叶片平台17的叶轮侧基部63隔开一个密封间隙81。通过密封间隙81(这例如通常在迷宫式间隙密封系统51A中出现),在中间空隙49中可能出现残余泄漏气流。但通过迷宫式间隙密封系统51A的节流板77A-77E的相应的结构设计和布置,在一定的程度上抑制了这种残余泄漏流。迷宫式间隙密封系统51A与其它迷宫式密封系统相比具有的优点是,通过密封间隙81在转子25中留出一公差,这一公差是为受热和/或受机械作用引发的相对膨胀而留出的。
图10中示出了图9中的密封系统51的一种替换形式。密封系统51同样也是一种迷宫式间隙密封系统51A,在此它尤其通过对叶轮29的材料切削一体形成。该迷宫式间隙密封系统51A设置在叶轮29的圆周面中间区域41上。迷宫式间隙密封系统51A具有多个在叶轮29的圆周方向上延伸的、轴向上彼此隔开一定距离的密封件53。密封件53由四个从叶轮29的整体上切削出的节流板77A-77D形成。通过这种制造方法,在迷宫式间隙密封系统51A与圆周面31之间无需附加的联接元件。从加工工艺上讲,这也是一种成本有利的技术方案。此外,在叶轮29与迷宫式间隙密封系统51A之间受热引发的应力不起作用,因为采用的只是一种材料。密封件53还可以采用另一种实施形式,即,在叶轮上焊接节流板77A。密封件53的径向外端79具有一密封尖端83,它尤其是一刀刃。通过密封件53的径向外端79的尖角,密封间隙81被尽可能地减小。这样,通过中间空隙49的残余泄漏流被进一步减少。在此,还可以实现一种密封间隙搭接,其中,密封尖端83或者刀刃相对于叶片平台17的径向安装尺寸的过量很小。通过密封尖端83或者刀刃与叶片平台17的叶轮侧基部63的接触,在将动叶片插入叶轮29中时密封间隙81被搭接。通过这种方式,密封间隙81实际上被完全封闭,密封作用由此明显得到了改善,并进一步减小了可能出现的轴向泄漏,例如在中间空隙49中的流动的热烟气A或冷却介质K的轴向泄漏。
图11示出一带有插入的动叶片13A的叶轮29局部的立体视图,其中,动叶片13A的叶根43A插入一第一动叶片槽37A中。在图中以点划线示出的第二动叶片13B的叶根43B插入一第二叶轮槽37B中,并且在叶轮29的圆周方向上与动叶片13A相邻。在圆周面31的圆周面中间区域41上设置密封件51,它是一迷宫式间隙密封系统51A。该密封系统51A由多个沿着旋转轴线15彼此隔开并在叶轮29的圆周方向上延伸的密封件53形成。在动叶片13A的叶片平台17A与第二动叶片13B的叶片平台17B之间构成一个基本上轴向延伸的间隙73,该间隙与中间空隙49流动连通。为了密封间隙73设置了一个间隙密封件85。该间隙密封件85以一种简单的方法通过一种适合的间隙密封板实现,这种间隙密封板具有一个间隙密封棱87。在离心力的作用下,该间隙密封棱嵌入间隙73中,并密封该间隙73。间隙密封件85这样设置在中间空隙49中,即,其径向上与密封系统51,特别是迷宫式间隙密封系统51A相邻。由于采用了间隙密封件85,充分防止了有通过间隙73流出的泄漏流。这种流过间隙73的泄漏流基本上沿径向定向,不仅有由中间空隙49穿过间隙73径向向外流出的泄漏流,而且还有穿过间隙73径向向内流入中间空隙49中的泄漏流。通过在动叶轮29的圆周方向上彼此相邻的动叶片13A和13B的平台17A和17B形成一空腔97。该空腔在径向向外的方向上与间隙73联接(箱状设计的动叶片13A、13B)。这样,间隙密封件85一方面防止了热烟气A从空间49经间隙73沿径向向外进入空间97。另一方面,可以使冷却介质K,例如冷却空气K穿过由间隙密封件85密封的空间97。冷却介质K在压力下进入空间97,并在那里对高度耐热的动叶片13A、13B进行有效的内部冷却,或者用于其它冷却目的。此外,还充分利用了在空腔97中处于一定压力下的冷却介质K对于流动通道中的热空气A的封闭作用。
为了在转子25运转时承受高温,并尽可能承受热烟气A的氧化和腐蚀,间隙密封件85由一种高度耐热材料,特别是镍基或钴基合金制成。
图12示出图11所示装置沿着截面线XII-XII截取的一截面。间隙密封件85设置在中间空隙49内,并沿径向在外与密封件53邻接。在转子25运转时,间隙密封件85随着旋转由沿着纵轴47径向向外的离心力紧压在相互邻接的平台17A、17B的叶轮侧基部63,从而使间隙密封棱87嵌入间隙73,充分封闭间隙73。通过间隙密封件85与圆周面41上的密封系统51的结合,特别是与迷宫式间隙密封系统51A(参见图11)的结合,针对可能出现的热烟气A和/或冷却介质K的泄漏流特别有效地密封了中间空隙49。通过这种结合,密封系统51基本上减小了轴向泄漏流,而间隙密封件85基本上减小了径向泄漏流(参见图11)。通过这种方式,间隙密封件85与密封系统51非常有效地取长补短。
除了将动叶片13固定在叶轮29的一个基本上轴向定向的叶轮槽37内,还公知有另一种固定动叶片的方式。在下面的图13至15中描述了所述密封系统在另一种可供选择的动叶片固定方式中的应用。
图13为一转子25的转子轴89的立体视图,该转子25沿着一旋转轴线15延伸。多个在轴向上彼此隔开一定距离的圆周槽91构成一承接结构33,这些槽在转子轴89的整个圆周上延伸,并在圆周面31上制成。在此,圆周面31具有一第一圆周面93和一第二圆周面95,该第二圆周面沿着旋转轴线15与第一圆周面相对。第一圆周面93和第二圆周面95分别在轴向上与一圆周槽91邻接。圆周面93、95分别构成转子轴89的一外径向限界面。
在图14中示出了转子25一局部的一截面图,该转子带有圆周槽91和插入的动叶片13。该圆周槽91为一锤头形槽,该槽接收叶根43。对于具有小离心力和弯曲扭矩的动叶片13,优选采用这种动叶片的固定形式。在第一圆周面93和第二圆周面95上,在中间空隙49中分别设置一密封件53。该密封件53在转子轴89的圆周方向上延伸,并嵌入转子轴89的一凹入部分35,特别是一槽内。该密封件53沿径向可移动地设置在凹入部分35内。在转子轴89绕旋转轴线15旋转时,密封件53在离心力的作用下沿着动叶片13的纵轴47径向向外地移动,并紧压在叶片平台17的叶轮侧基部63上。这样,就将中间空隙49密封。密封件53可以由两个在图14中未示出的、彼此嵌入的成对局部密封件67A和67B装配而成(参见图4及图5A-5D和6A-6D)。
图15同样为转子25的一局部的一截面图,但相对于图14而言动叶片采用了另一种可供选择的固定方式。在此,圆周槽91为一所谓的枞树式圆周槽。与此相应,动叶片13的叶根43为枞树根,它嵌入圆周槽91,特别是枞树式圆周槽。通过动叶片13的这种固定方式,当转子25绕旋转轴线15旋转时,力非常有效地传递到转子轴89上,实现了一种特别可靠的保持。与图14相似的是,在中间空隙49中分别在第一圆周面93和第二圆周面95上设置一密封件53,以密封中间空隙49。
所述密封中间空隙49的方案在各种情况下都可以非常灵活地用于其动叶片13固定在圆周槽91内的转子25上。