耐磨电极和器件 【发明领域】
本发明涉及电极,以及制造和使用这种电极的方法。
【发明背景】
随着电子器件变得越来越紧凑和便携化,用于这些器件中的电极尺寸也必须随之缩小。可用于这些器件的电极通常是柔软又密集,而与导电通路呈电绝缘的。通常要求所用的电子器件最好具有耐磨电极(即,电极因受保护免受磨损而提供性能稳定持久的导电性),有时这种要求甚至是必须的。
比如,监控葡萄糖的器件通常包括一种具有金属涂覆的非导电膜制成的电极的电子器件。在用这些金属涂覆膜制成这些电极时,最好或必须不要刮擦或磨损电极的金属涂覆部分。刮擦或磨损这种电极的金属涂覆部分会使导电性完全损失或降低,并可能导致包括这种电极的电子器件发生过早失效。导电性降低会导致器件貌似有效却给出不正确的读数。使用导电油墨或细金属线或照相平版印刷的传统方法较复杂而且成本高。其它方法提供的金属涂覆塑料器件中的突起部分是导电的。一种已知的压印方法是先刻压出金属涂覆的介电压纹,然后采用快速切削技术从突起物上除去金属涂层。
虽然可以采用传统技术制造这种电极,但是仍然有必要采用更简单和成本更低的方法制造耐磨电极。
发明概述
本发明一个实施例提供了一种耐磨电极,其中包括一个聚合物基片,基片上具有两个平行地不导电突起部分,而且这两个突起部分被一个导电凹陷分隔,其中的不导电突起物具有金属断口涂层。
本发明另一实施例提供了一种包括多个耐磨电极的电子器件。该电子器件包括一个聚合物基片,基片上具有多个被导电凹陷分隔的多个不导电突起物,其中的不导电突起物具有金属断口涂层。
本发明另一实施例提供了一种制造耐磨电极或器件的方法。该方法包括以下步骤:提供一种金属涂覆的包含一种热塑性聚合物的不导电基片,用足够的热量和压力将金属涂覆的基片与一种压印工具接触,形成电极或器件。该压印工具包含一种工程应变小于10%的材料。
本发明的电极和电子器件具有简单结构,制造简单而且不昂贵。
附图详述
参见附图1,耐磨电子设备中包括多个本发明电极10,电极中包括一个不导电基片14,基片上的不导电突起物16之间具有导电凹陷18。位于两个不导电突起物之间的每个导电凹陷是一个电极。导电凹陷包括位于不导电基片14顶端的金属层或涂层12。不导电突起物具有完全覆盖不导电突起部分的金属断口层或涂层17。金属断口涂层在整体上是不导电的。在该实施例10中,位于导电凹陷18和不导电突起物16之间的至少部分不导电基片14具有金属涂层12和金属断口涂层17。但是,可以理解器件中的一些电极上的突起物可以具有与凹陷的导电金属邻接的金属断口涂层,或者金属断口涂层从突起部分顶端延伸至顶端和导电金属凹陷之间的任意点。
虽然上述附图1所示导电凹陷彼此呈线性平行,本发明还包括其它任何平行结构的导电凹陷和不导电突起部分,比如,导电凹陷可以是呈螺旋的连续形式。
在本发明中,通常使用不导电基片作为电子器件中的耐磨电极。不导电基片支撑连续的金属涂层,该涂层组合形成导电凹陷和电极。如上述附图1所示,基片具有突起部分和凹陷部分。本发明中,用来制造基片的材料通常根据以下特性进行选择,比如,耐磨性,柔软度,导电性(即,不导电性),光学透明度,透气性,韧性,热稳定性,熔点,和热变形温度。其它要考虑的因素包括使基片形成突起物和凹陷的方法。
为了保护电极(即,导电凹陷)防止其受磨损,通常要求其具有耐磨性。被磨损的电极(比如,受到刮擦的)会给出不一致的电信号,这是不理想的状况。具有适当耐磨性的基片取决于该耐磨电极的特定用途。耐磨性受以下特性的共同影响,包括硬度,弯曲模量,几何形状,和韧性。也可以选择性地向热塑性聚合物中添加填料,诸如玻璃珠,玻璃纤维,或无机颗粒,提高其耐磨性。可以对基片涂覆如含氟聚合物树脂,石墨,或全氟聚醚聚合物等润滑剂,或将其直接混入热塑性聚合物中,提高耐磨性。
基片的柔软度取决于耐磨电极的特定应用。柔软度高的基片可以用来制造连接近距离和/或未明确规定距离的电子元件的耐磨电极。为了连接这些电子元件,可以对其进行弯曲或扭曲。
本发明的基片是不导电的。这里所说的“不导电”是指塑料或聚合物基片。具有上述至少一种或多种特性的基片实例包括含有热塑性聚合物及其组合,以及热塑性和热固性聚合物的组合,比如混合料或多层膜。合适的热塑性聚合物是本领域众所周知的,比如,聚四氟乙烯,聚对苯二甲酸丁二醇酯,聚缩醛,和乙二醇改性的聚对苯二甲酸乙二酯。合适的热固性聚合物是本领域众所周知的,包括交联的丙烯酸酯,聚合环氧树脂,和聚二甲基硅氧烷树脂。
适用基片通常是一种膜。根据制造基片膜的方法,膜可以是平滑的或具有一种图案。制造适用平滑膜基片的方法是本领域众所周知的,包括浇注膜挤压法和/或吹塑膜挤压法。一种具有图案的基片膜实例是“微复制”膜。制造微复制膜的方法是本领域众所周知的,包括连续浇注和熟化过程。用于本发明的基片膜的厚度取决于耐磨电极要求的特性。基片膜的许多特性(比如,柔软度,光学透明度,透气性)会随基片膜的厚度而变化。比如,当某给定基片膜的厚度减小时,会变得更柔软(即,相对更高的弯曲模量值)。该基片膜的光学透明度和透气性会增加(即,当基片膜厚度减小时)。在一个实施例中,基片膜的厚度值在1微米到25,000微米范围内。在另一个实施例中,基片膜厚度在12微米到10,000微米范围内。在另一个实施例中,基片膜厚度在50微米到625微米范围内。
本发明的电极中至少部分基片上有金属层。适用金属实例包括银,铝,镍,金,铟/锡氧化物,铜,锌,和它们的合金,及其组合。金属涂层的厚度是200埃到2毫米,500埃到1毫米,和500埃到20,000埃,任何整体或某区段厚度均在200埃到2毫米之间。
本发明的抗刮擦电极通常是通过在塑料或聚合物膜上涂覆金属,然后用合适的压印工具在热量和压力下刻压多层结构制成的。进行有效压印需要的热量部分取决于热塑性聚合物的热性质。通常将晶状或半结晶热塑性聚合物加热至高于其熔点不低于150℃的温度,在其它实施例中是不低于100℃,不低于60℃,和不低于30℃的温度。通常将基本上是无定形的热塑性聚合物加热至高于其玻璃化转变点10℃到150℃的温度,在其它实施例中是20℃到100℃,40℃到80℃。
压印工具对聚合物进行有效刻压的温度部分取决于热塑性聚合物的热性质。压印工具的温度应该基本保持在使热塑性聚合物在固化前基本上流入该工具低凹部分的温度水平上。对许多热塑性聚合物而言,压印工具应被加热到比ASTMD 1525中所述的维卡(Vicat)软化点温度低至少60℃的温度水平。对其它热塑性聚合物而言,压印工具应被加热至比其维卡(Vicat)软化点低至少30℃或15℃的温度水平。以0.1兆帕到100兆帕,0.5兆帕到60兆帕,或0.5兆帕到20兆帕的压力,将金属涂覆的塑料基片按压在压印工具上。
制造压印工具的材料在刻压热塑性聚合物的热量和压力下不会发生严重变形。压印步骤中工具发生的意外扭曲会使导电凹陷中的金属发生断裂,使电极变得不导电。适用的压印工具材料在有效刻压热塑性聚合物的热量和压力下的工程应变小于10%,在其它实施例中是小于2%,小于0.3%,或小于0.1%。适用的压印工具材料包括多种金属和合金,比如铜,镀金属的铜,镁,铝,钢,不锈钢,等一类材料。
塑料膜或聚合膜可以是浇注或挤压而成的。金属涂层通常是通过热蒸发,溅射,化学气相沉积(CVD),金刚石CVD,等离子体辅助CVD,电镀,和无电镀而形成的。
本发明的抗刮擦电极可以用于如血糖监控设备,射频身份证,微型反应容器,和压力传感器等设备或器件中。
通过以下实施例进一步说明本发明的优点和实施反式,但是在这些实施例中引用的特定材料和用量,以及其它条件和细节,不应被理解为对本发明的过度限制。除非另有指明,所有份数和百分含量都以重量计。
附图简要说明
附图1是本发明一种耐磨电极实例的截面示意图。
附图2是本发明一种耐磨电极实例上印刷的数字图象。
附图3是本发明一种耐磨电极实例上印刷的数字图象。
本发明优选实施方式
实施例1
将一个厚度大约是1000埃的银涂层涂覆于一个10密耳(0.25毫米)厚的聚(对苯二甲酸乙二醇酯)乙二醇(PETG)膜(从Spartech Plastics,Evanston,IL获得)上。在加热的压模设备中用刻有图案的镁板压印金属涂覆的基片。刻有图案的镁板上具有厚约50微米,高约70微米,槽沟间隔约200微米的一列平行棱或突起物。刻有图案的镁板表面与PETG膜的金属涂覆表面接触,并将该构件插入压模机中。将压模机中的压板加热至约187℃,将镁板/金属涂覆基片构件插入其中,并对该构件施加约10兆帕压力约5分钟。继续保持压力5-10分钟,同时将热压板冷却至约55℃。打开压板,取出压印好的金属涂覆基片。
用Hewlett-Packard 973A万用表和标准测试探针测量金属涂覆基片上平行于突起物和垂直于突起处的导电性。测试探针平行于电极方向间隔约4.5毫米时,万用表读数是约31欧姆。然后将测试探针置于垂直于电极方向间隔约4毫米处,万用表给出“OL”的读数,表示电阻太高无法计量。这些结果表明金属涂覆基片表面在平行于突起物的方向上是导电的,即,在凹陷处是导电的,在垂直于突起的方向上是不导电的。
用扫描电镜分析部分金属涂覆基片。得到的图像如附图2和3所示。两个图像清楚地表示被具有断裂银涂层的突起部分包围着的连续的金属涂覆导电凹陷。
比较例1
如上述方法压印银涂覆的PETG基片,区别在于银涂层厚度约5000微米,压印工具是由RTV硅酮制成的(SILASTICJ,从Dow Corning,Midland,MI获得)。按上述方法施加热量和压力。按上述方法测量压印好的银涂覆基片的导电性,发现基片在平行或垂直方向上都是不导电的。部分基片的显微照片表示金属涂覆的凹陷和突起处都具有断裂的银涂层。
不偏离本发明的范围和精神条件下,本发明的多种修改和变化对本领域技术人员而言是显而易见的。本发明不应受上述说明性内容的限制。