一种电机用耐热稀土永磁材料技术领域
本发明属于合金领域,具体而言涉及一种电机用耐热能力和力学性能都得到极大提高并且成本低廉的稀土永磁材料。
背景技术
自从1966年以来,永磁材料中增加了一个新成员,它就是“稀土永磁体”。由于稀土永磁材料优异的性能,它的出现为应用打开了一扇全新的大门。特别是1983年问世的第三代稀土永磁材料钕铁硼,一直是当今世界上磁性最强的永磁材料。
钕铁硼稀土永磁材料是支撑现代社会的重要基础材料,与人们的生活息息相关。小到手表、照相机、录音机、CD机、VCD机、计算机硬盘、光盘驱动器,大到汽车、发电
机、悬浮列车、医疗仪器等,永磁材料无所不在。在低碳生活中充满了磁性材料,稀土永磁钕铁硼材料扮演着非常重要的角色,在风力发电、混合动力/电动汽车、节能家电等方面,都离不开稀土永磁材料,其中直流永磁式风电机组、混合动力车的稀土永磁同步电机、变频空调中的稀土永磁变频电机等都采用了钕铁硼稀土永磁材料。
所谓永磁体的耐热性是特指其磁性能不因温度的升高而劣化。在接近机器发热源的设备上使用钕铁硼磁体,要求随使用温度升高而磁性能不恶化,即剩磁Br不恶化,但在磁体使用温度达200℃附近的场合(如汽车引擎周边及一些磁体须高温焊接及粘胶固化),则只有使用Sm-Co磁体,通常烧结钕铁硼类磁体不能在这样的高温下使用。通常烧结钕铁硼的居里温度只有320℃左右,且温度系数较大,如剩磁的温度系数为-0.11~-0.126%,矫顽力温度系数为-0.6~-0.8%,通常其工作温度较低。随着稀土磁体应用范围的不断扩大,如汽车启动电机、马达类产品及集成化CO-ROM对烧结钕铁硼需求范围的扩大,在目前小型化设备下,对高温下磁体的性能提出了更高的要求。
发明内容
本发明提供一种电机用耐热稀土永磁材料,该稀土永磁材料具有较高的耐高温性能,力学性能优良,并且成本低廉,稳定性高,制造方法简单,容易实现大规模工业化生产。
具体而言,一种电机用耐热稀土永磁材料,包括稀土元素、铁、硼、铌、钴、钒、锰、锆、锑、镍,各组分的重量百分比为:稀土元素20-35%,硼0.8-1.5%,铌0.02-0.2%,钴0.5-5%,钒0.1-3%,锰0.02-0.5%,锆0.02-0.5%,锑0.02-0.5%,镍0.5-5%,余量为铁以及不可避免的杂质。
在本发明一个具体的实施方式中,所述的一种电机用耐热稀土永磁材料,包括稀土元素、铁、硼、铌、钴、钒、锰、锆、锑、镍,各组分的重量百分比为:稀土元素20-35%,硼0.8-1.5%,铌0.02-0.2%,钴0.5-5%,钒0.1-3%,锰0.02-0.5%,锆0.02-0.5%,锑0.02-0.5%,镍0.5-5%,余量为铁以及不可避免的杂质,稀土元素为钕、铕、铒和镨的组合。
在本发明一个具体的实施方式中,所述的一种电机用耐热稀土永磁材料,其中钕、铕、铒和镨的重量比为20:0.5:2:1.5。
在本发明一个具体的实施方式中,所述的一种电机用耐热稀土永磁材料,包括稀土元素、铁、硼、铌、钴、钒、锰、锆、锑、镍,各组分的重量百分比为:硼1.0%,铌0.1%,钴3%,钒1.5%,锰0.3%,锆0.1%,锑0.2%,镍3%,钕20%,铕0.5%,铒2%,镨1.5%,余量为铁以及不可避免的杂质。
在本发明一个具体的实施方式中,述的一种电机用耐热稀土永磁材料,包括稀土元素、铁、硼、铌、钴、钒、锰、锆、锑、镍,各组分的重量百分比为:硼1.2%,铌0.14%,钴2%,钒2%,锰0.15%,锆0.3%,锑0.4%,镍2%,钕24%,铕0.6%,铒2.4%,镨1.8%,余量为铁以及不可避免的杂质。
在本发明一个具体的实施方式中,所述的一种电机用耐热稀土永磁材料,包括稀土元素、铁、硼、铌、钴、钒、锰、锆、锑、镍,各组分的重量百分比为:硼1.4%,铌0.06%,钴1%,钒2.5%,锰0.45%,锆0.4%、锑0.1%,镍4.5%,钕28%,铕0.7%,铒2.8%,镨2.1%,余量为铁以及不可避免的杂质。
本发明的电机用耐热稀土永磁材料可以采用普通的生产设备按照常规的方法制备。例如,具体步骤可以包括:
(1)原材料准备:将经过表面清除的原材料按重量配比配料;
(2)铸锭:将原料加入熔炼炉中,抽真空,并在0.05MPa氩气保护下进行熔炼并浇铸成锭,再将铸锭放在真空炉中均匀化处理,所述处理的温度为900-960℃,时间为8-10小时;
(3)制粉:将均匀化处理的铸锭进行氢破碎,至200-250μm的合金粉末,再进行脱氢处理;
(4)磁场成型:将上述磁粉放在1.2T-2.0T的磁场中取向,以10MPa-20MPa的压强压制成型;
(5)烧结:在真空气淬炉中进行烧结,烧结温度为1100-1180℃,烧结时间为4-5小时;
(6)时效处理:将烧结好的磁体进行两次回火热处理,第一次回火热处理温度为900-1000℃,时间为4-5小时,第二次回火热处理温度为400-600℃,时间为7-9小时;
(7)充磁,将经过上述步骤制备的磁体再次进行充磁,即得。
本发明的稀土永磁材料优化了元素的搭配,改善了烧结钕铁硼材料耐温性不良的缺点,扩大了烧结钕铁硼的适用范围。本发明的稀土永磁材料具有较高的耐高温性能,力学性能优良,并且成本低廉,稳定性高,制造方法简单,容易实现大规模工业化生产。
具体实施方式
下面结合具体实施方式,对本发明作进一步说明。
实施例1:
一种电机用耐热稀土永磁材料,包括稀土元素、铁、硼、铌、钴、钒、锰、锆、锑、镍,各组分的重量百分比为:硼1.0%,铌0.1%,钴3%,钒1.5%,锰0.3%,锆0.1%,锑0.2%,镍3%,钕20%,铕0.5%,铒2%,镨1.5%,余量为铁以及不可避免的杂质;
具体步骤包括:
(1)原材料准备:将经过表面清除的原材料按重量配比配料;
(2)铸锭:将原料加入熔炼炉中,抽真空,并在0.05MPa氩气保护下进行熔炼并浇铸成锭,再将铸锭放在真空炉中均匀化处理,所述处理的温度为950℃,时间为9小时;
(3)制粉:将均匀化处理的铸锭进行氢破碎,至200μm的合金粉末,再进行脱氢处理;
(4)磁场成型:将上述磁粉放在1.5T的磁场中取向,以20MPa的压强压制成型;
(5)烧结:在真空气淬炉中进行烧结,烧结温度为1100℃,烧结时间为5小时;
(6)时效处理:将烧结好的磁体进行两次回火热处理,第一次回火热处理温度为950℃,时间为5小时,第二次回火热处理温度为500℃,时间为8小时;
(7)充磁,将经过上述步骤制备的磁体再次进行充磁,即得。
实施例2:
一种电机用耐热稀土永磁材料,包括稀土元素、铁、硼、铌、钴、钒、锰、锆、锑、镍,各组分的重量百分比为:硼1.2%,铌0.14%,钴2%,钒2%,锰0.15%,锆0.3%,锑0.4%,镍2%,钕24%,铕0.6%,铒2.4%,镨1.8%,余量为铁以及不可避免的杂质;
具体步骤包括:
(1)原材料准备:将经过表面清除的原材料按重量配比配料;
(2)铸锭:将原料加入熔炼炉中,抽真空,并在0.05MPa氩气保护下进行熔炼并浇铸成锭,再将铸锭放在真空炉中均匀化处理,所述处理的温度为900℃,时间为10小时;
(3)制粉:将均匀化处理的铸锭进行氢破碎,至230μm的合金粉末,再进行脱氢处理;
(4)磁场成型:将上述磁粉放在1.2T的磁场中取向,以15MPa的压强压制成型;
(5)烧结:在真空气淬炉中进行烧结,烧结温度为1100℃,烧结时间为5小时;
(6)时效处理:将烧结好的磁体进行两次回火热处理,第一次回火热处理温度为1000℃,时间为4小时,第二次回火热处理温度为600℃,时间为9小时;
(7)充磁,将经过上述步骤制备的磁体再次进行充磁,即得。
实施例3:
一种电机用耐热稀土永磁材料,包括稀土元素、铁、硼、铌、钴、钒、锰、锆、锑、镍,各组分的重量百分比为:硼1.4%,铌0.06%,钴1%,钒2.5%,锰0.45%,锆0.4%、锑0.1%,镍4.5%,钕28%,铕0.7%,铒2.8%,镨2.1%,余量为铁以及不可避免的杂质;
具体步骤包括:
(1)原材料准备:将经过表面清除的原材料按重量配比配料;
(2)铸锭:将原料加入熔炼炉中,抽真空,并在0.05MPa氩气保护下进行熔炼并浇铸成锭,再将铸锭放在真空炉中均匀化处理,所述处理的温度为960℃,时间为9小时;
(3)制粉:将均匀化处理的铸锭进行氢破碎,至250μm的合金粉末,再进行脱氢处理;
(4)磁场成型:将上述磁粉放在1.8T的磁场中取向,以12MPa的压强压制成型;
(5)烧结:在真空气淬炉中进行烧结,烧结温度为1180℃,烧结时间为5小时;
(6)时效处理:将烧结好的磁体进行两次回火热处理,第一次回火热处理温度为900℃,时间为5小时,第二次回火热处理温度为400℃,时间为9小时;
(7)充磁,将经过上述步骤制备的磁体再次进行充磁,即得。
对比例1:
一种电机用耐热稀土永磁材料,包括稀土元素、铁、硼、钴、钒、锰、锆、锑、镍,各组分的重量百分比为:硼1.0%,钴3%,钒1.5%,锰0.3%,锆0.1%,锑0.2%,镍3%,钕20%,铕0.5%,铒2%,镨1.5%,余量为铁以及不可避免的杂质;制备方法同实施例1。
对比例2:
一种电机用耐热稀土永磁材料,包括稀土元素、铁、硼、铌、钴、钒、锆、锑、镍,各组分的重量百分比为:硼1.0%,铌0.1%,钴3%,钒1.5%,锆0.1%,锑0.2%,镍3%,钕20%,铕0.5%,铒2%,镨1.5%,余量为铁以及不可避免的杂质;制备方法同实施例1。
对比例3:
一种电机用耐热稀土永磁材料,包括稀土元素、铁、硼、铌、钴、钒、锰、锆、镍,各组分的重量百分比为:硼1.0%,铌0.1%,钴3%,钒1.5%,锰0.3%,锆0.1%,镍3%,钕20%,铕0.5%,铒2%,镨1.5%,余量为铁以及不可避免的杂质;制备方法同实施例1。
对比例4:
一种电机用耐热稀土永磁材料,包括稀土元素、铁、硼、铌、钴、钒、锰、锆、锑、镍,各组分的重量百分比为:硼1.0%,铌0.1%,钴3%,钒1.5%,锰0.3%,锆0.1%,锑0.2%,镍3%,钕20%,铒2.5%,镨1.5%,余量为铁以及不可避免的杂质;制备方法同实施例1。
对比例5:
一种电机用耐热稀土永磁材料,包括稀土元素、铁、硼、铌、钴、钒、锰、锆、锑、镍,各组分的重量百分比为:硼1.0%,铌0.1%,钴3%,钒1.5%,锰0.3%,锆0.1%,锑0.2%,镍3%,钕20%,铕0.5%,铒3.5%,余量为铁以及不可避免的杂质;制备方法同实施例1。
实施例4:本发明电机用耐热稀土永磁材料的性能检测
采用本领域通用方法测定将实施例1-3以及对照例1-5的磁性能和力学性能,并计算不可逆减磁率。结果见表1。
表1本发明稀土永磁材料的性能
Wirr260℃/%(BH)max(MGOe)Hcj(kOe)抗弯强度(MPa)|
实施例10.838.4330.76391.65
实施例20.838.5830.82391.75
实施例30.939.0530.51391.54
对比例17.832.5426.32363.48
对比例27.533.0521.55337.76
对比例34.335.3925.26375.10
对比例43.534.2822.35370.85
对比例53.832.1525.74380.95
从表1可以得出,本发明稀土永磁材料的不可逆损失率Wirr260℃明显减小,并且在提高了材料耐热性的同时,具有较高的矫顽力和抗弯强度,以及稳定的磁能积(BH)max;本发明的各个组分相互协同,缺一不可,对比例1-3分别省略铌、锰、锑后,耐高温性能、矫顽力Hcj以及抗弯强度都会下降;采用钕、铕、铒和镨的组合的稀土元素亦能提高耐高温性能、矫顽力和抗弯强度,而对比例4-5证明省略了某种稀土元素会使耐高温性能、矫顽力和抗弯强度下降。