具有改进空气动力学性能的飞行器构造 【技术领域】
本发明涉及一种具有良好空气动力学性能的飞行器构造;尤其是根据本发明的飞行器可设计为类似于一种有二级操作能力(secondaryoperational capabilities)的高性能教练机。
背景技术
许多飞行器都需要可以很容易操纵,并且根据其所要执行的任务必须具有特殊的动力学特性。
上述飞行器的典型实例包括用于特技飞行的轻型飞机、教练机和战斗机。
这些飞行器经常需要在一个很高的攻角下飞行(在任何时候飞行器和风速方向之间形成的角度)。
很容易理解到,在这些飞行条件下,飞行器需要非常稳定并且需要很容易地被飞行员控制以在飞行中保持安全状态。
这种稳定性通过使用可产生力和力矩以平衡不合需要的飞行状态地特殊自动装备来获得。
虽然飞行器沿着俯仰轴的稳定性可以通过优化静态冗余度(staticmargin)和时间-双振幅来控制,但是在高攻角时出现的水平方向不稳定性(在“roll”和“yaw”轴)却很难控制,即使使用高度复杂的飞行控制系统也很难控制。
因此很有必要最大程度地提高水平方向上的稳定性直到高攻角以使得允许飞行器控制/灵敏度以及避免飞行偏差和旋转。
过去以及尤其在最近,对机身的空气动力学外形和其它飞行器部件尝试性地做了一些简单的改进。但是直到现在,这些尝试还没有得到成功的结果。
【发明内容】
在上述需要的范围内,因而本发明的一个目的是避免所提到的问题,尤其是和具有改进空气动力学性能、可优化飞行器动作(特别是在高攻角飞行时)的飞行器构造相关的问题。
本发明的另一目的是提供一具有改进空气动力学性能的飞行器,其可以减轻对于具有薄翼和变曲面的低展弦比机翼很典型的抖振效应。
本发明的另一目的是提供一具有很高空气动力学性能的飞行器,其可以成功地避免水平方向上稳定性的损失以及由于机身侧壁和水平尾翼附近发动器气流而引起的负效应,这和阻力、稳定性和纵向控制有关。
本发明的一附加目的是提供一具有改进空气动力学性能的飞行器,其通常可以优化高攻角时飞行器的动作,从旋转中恢复出来。
这些以及其它目的通过如我们涉及的权利要求1所述的具有改进空气动力学性能的飞行器来实现。
有利的是,将根据本发明的飞行器设计为和具有高性能和二级操作能力的教练机特别相似。
该飞行器构造包括一双引擎“方案”,并且其特点在于具有一系列非常特殊的结构元件。
具有互连飞行控制的双座位舱(一前一后)与一变截面基本为圆的前半部相耦合,该前半部的特征在于低展弦比,并且为高攻角飞行进行了优化。在此空间内可以很容易地安装一适合于该飞行器使用方案的雷达。
对前半部的形状和尺寸进行了优化以减小在中等/高攻角时对飞行器空气动力特性的涡流干扰;所述特性可减小高攻角时方向上的不对称,这对于圆形或椭圆形截面的前半部尤为典型。
此外,机翼外形和标准机翼外形具有不同之处,以集成一个可最小化抖振效应的系统,这对于具有薄翼和变曲面的低展弦比机翼尤为典型。
空气动力的设计还包括一LEX(Leading Edge Extension,前缘伸展)涡流控制设备,其尺寸大小适当以使得在中等/高攻角时LEX涡流喷出均衡,因为均衡的涡流爆发可保持水平方向上的稳定性和中等/高攻角时飞行器的控制。
本发明中的教练机至少有一个发动机进气口,其可保证发动机的性能,并且和发动机有一适当的流体动力学接口。这样的设计就不需要在进气口的上唇处集成一典型的、和LEX集成在一起的转向器,。
最后,水平尾翼的交错式设计可降低机身后半部产生的阻力,从而优化飞行器的旋转动作以及改进高机动攻角时飞行器的空气动力设计。
从下面的描述和附图中可以清楚地了解到本发明更多的目的和好处。这些分别给出的附图并不仅限于实例,如下:
【附图说明】
图1是根据本发明设计的一种飞行器(尤其是教练机)的侧视图;
图2是根据本发明设计的一种飞行器(尤其是教练机)的俯视图;
图3是根据本发明设计的一种飞行器(尤其是教练机)的仰视图;
图4是根据本发明设计的一种飞行器(尤其是教练机)的正视图;
图5是根据本发明设计的一种飞行器(尤其是教练机)的后视图;
图6是沿着图2中VI-VI线的剖面图;
图7是根据本发明设计的飞行器构造一个细节部分的局部放大图;
图8是沿着图7中VIII-VIII线的剖面图;
图9是沿着图7中IX-IX线的剖面图;
图10是沿着图7中X-X线的剖面图;
图11是沿着图7中XI-XI线的剖面图;
图12是沿着图7中XII-XII线的剖面图;
图13是沿着图7中XIII-XIII线的剖面图;
图14是沿着图7中XIV-XIV线的剖面图;
图15是沿着图7中XV-XV线的剖面图;
图16是沿着图7中XVI-XVI线的剖面图;
图17是沿着图7中XVII-XVII线的剖面图;
图18是根据本发明设计的飞行器构造的一个细节部分的放大等视图;
【具体实施方式】
参考上述附图,根据本发明的一具有改进空气动力学性能构造的飞行器,尤其是教练机,通常表示为标记10,
飞行器10包括一机身12和两机翼,机身12具有一上侧壁14和一下侧壁16,两机翼分别为安装在机身12上的一右机翼18和一左机翼20。
右机翼18上有梢末端22,而左机翼20上有梢末端24。
飞行器10特征还在于有一方向舵34,其与垂直尾翼38和一水平稳定面44保持一致,该水平稳定面具有一右水平稳定面26和一左水平稳定面28和相应的梢末端30、32。
如上所述,在本发明优选或已实现的实例中,但并不是本发明的限制形式,该飞行器构造的类型为双引擎式,并给发动机48预留两进气口46,并带有相对的发动机喷管60。
最后,在可以集成一个适合于飞行器10使用方案的雷达的机身前半部区域52安装有一个具有一前一后两个座位、具有相互连接的飞行控制系统、由挡风板62保护的飞行员驾驶舱54。可预留一探测器58以使得可对飞行器10进行空中加油。
参考图2和图3,飞行器10的每个机翼18和20具有外部副翼56和起飞、降落双开缝襟翼64,这些部件分别集成在每个机翼18和20的后缘70上,以及集成在机翼前缘68上用于优化机翼曲面的其它装置(前缘下垂)66。它们的外形在上述一般空气动力设计基础之上遵循特别的几何学而形成。
尤其,根据本发明要获得的具有较高空气动力学性能的飞行器10其技术特点如下所述。
首先,该空气动力设计其特点在于,其具有一LVC(″LEX VortexController″,前缘伸展涡流控制器)设备以在中等/高的攻角时控制LEX(″Leading Edge Extension″,前缘伸展)涡流(参考图1中标记72)。
LEX,其哥特式平台等于参考机翼总面积的6.4%(按照本发明),允许在高攻角时产生涡流升力以及对LEX的设计作更进一步的改进:将LVC集成在其梢末端,从而保证当处于侧滑姿势时涡流在高攻角时能均衡地爆发以及防止失去横向稳定性。。
LEX涡流控制器72的尺寸大小取决于前部LEX的尺寸,无论何种情况下都是LEX越大则LVC必须越高;公差可由LEX面积和对应LVC高度的比值来限定。这个比值的设计点等于2.35m,公差在设计点的+100%到-50%之间。
飞行器10的机身前半部52的形状和尺寸还可以进行优化以减小在中等/高攻角时其对飞行器10空气动力特性的涡流干扰;上述特性还可减小高攻角时方向上的不对称,这对于标准圆形或椭圆形截面的前半部尤为典型。
根据本发明,飞行器10的机身前半部52表现为具有一系列不同几何形状的截面,从顶点74开始直到和LEX顶点会合的前半部边缘。
在附图8-17中依次表示出了在顶点74和标记为76的截面(位置差不多在双座位舱54的开始处)之间不同几何截面的几何形状和顺序的一个示例性、优选的、但并不构成限制的实施方式,由此由一个约略的低展弦比圆截面(附图8-11)可以得出脊形截面(附图12-17)。
从上述附图中可以很明显看出前半部52由纵向轴K开始的移动,从顶点74直到图17中示出的参考截面。
尤其,根据本发明的一个优选实施方式,前半部52长度之间的比值,从顶点74开始直到沿着XVII-XVII线(标记为L)的截面,也就是截面(图17中所示截面)两轴长度A和B的平均值,为1.873,公差为±10%。
构造特性及其对飞行状况的影响是上述参数(如果有的话,加上或减去公差)和前半部52从飞行器10的顶点74直到沿着XVII-XVII线参考截面的截面顺序共同作用的结果。
图18中还详细示意了标记为46的发动机进气口,其有助于保证飞行器10的性能,当然首先这是就其和相应的喷气发动机之间的流体动力学接口而言的。
进气口46具有一在其下部进行优化的可变前缘半径从而减少发动机正面在高攻角时的气流变形,在其边部进行优化从而减少超音速溢出阻力。
尤其,内唇平均前缘半径76A为7mm,而下唇平均前缘半径78为17.5mm,外唇80的平均前缘半径则为14mm,因此进气口的有效面积大约为0.322m2,进气口的喷口面积大约为0.257m2,发动机端面面积大约为0.273m2(这些数值都是对于一个进气口而言的)。
进气口46在每个进气口端面的上部都是无偏向的,并且集成有一个LEX,由于LEX长度和形状之间的特殊比例,在高攻角时LEX可有效地担当起防护物的作用。
还可预见进气口可以有两个附加的喷气内门(图中未示出),其位于两机翼18、20和机身12之间机翼机身接合处的上部。由于施加在喷气内门铰链轴上预载弹簧的作用,当输送管内压力低于机翼机身结合处上部的压力时,喷气内门会打开。
这些喷气内门的作用是,当它们打开时,减小高攻角时进气口唇缘46的局部攻角,同时减少通过上述进气口46的气体总流量。
保证飞行器10高性能、稳定性和空气动力学构造的特征之一是交错式尾翼44和38。这样可以减少机身尾部产生的气动阻力,从而优化飞行器10的旋转动作以及提高其在高攻角时的整体空气动力设计。
具有梯形平台的垂直尾翼包括方向舵34,并和机翼连在一起。这意味着在图1中标记为36的方向舵的前缘和每一机翼18,20的后缘70重叠,从而使得飞行器可从旋转状态恢复出来以及优化飞行器10在高攻角时的动作。
具有梯形平台的水平尾翼由两台独立的、允许有均衡或不均衡偏向的发动机驱动。该水平尾翼有一在图2中标记为86的铰链轴,其方向相对于横轴88在右边和左边各偏离大约7.5°以优化铰链(hinge)和惯性力矩。
交错式尾翼的特点还在于,其具有一个相当于图1中C段之间比例的公差和尾部支柱,该公差被定义为垂直尾翼根部弦的顶点和水平尾翼根部弦44的顶点之间的距离,该斜支柱为4181mm。该尾翼遵循上面给出的参考比值:1932/4181mm=0.462,并有10%的适用公差。
考虑到具有薄翼和变曲面的低展弦比机翼的特点,和传统的教练机相比,对机翼形状也进行了改进和优化,以减少“振动”效应。
与此相反地,根据本发明,使用了带有梯形平台和中等展弦比(AR=4)的机翼18、20,其特征在于在总翼展的67.5%处有一锯齿(图2中表示为S)。和标准机翼相比,其改进首先和在图6中表示为S的边缘半径有关,考虑到在中等攻角时前缘68和“前缘下垂”66的偏转,将现有技术中圆形的该边缘半径改变为三角形,以优化其临界点位置。
从图2沿着VI-VI线的放大剖面图6中可以很清楚地看出,每一机翼18,20都表现为在副翼56附近具有沿着前缘66(“前缘下垂”)和后缘70的变曲面外形。副翼计划只是在超音速状况下才使用,计划其曲度有所减小以降低压缩效应。
在数值上,前缘68的弦伸展百分比的设计点等于0.36%,公差在标称值的+0.5%和-0.2%之间。和标准的解决方案相比较,施加了弦伸展的总翼展的设计点为8.2%,公差在标称值的+10%和-5%之间。
飞行器10的其它特征包括机身12,可以预见到在机身的后半部16可集成有发动器喷管以及在图3中标识为90的机身尾部。
对发动机喷管附近区域也进行了优化以减少由机身侧壁12和水平尾翼44附近的发动机气流产生的、在阻力和纵向稳定性/控制方面的负效应。
飞行器10的特点还在于其具有一三轮起落架,包括一前端起落架和一主起落架。前端起落架为一柱式支架,有四个封闭机舱的门,在使用后可收回。
主起落架可正面收回以使得机身可以满负荷。
本发明的飞行器10安装有一套可优化性能和飞行安全的数字四路冗余自动飞行控制系统(“Fly By Wire”,能遥控的自动驾驶仪);此系统可以通过对可能会让飞行员感到不适或者可能导致失控(“CarefreeHandling”无人值守操纵)的飞行方式进行限制以改进飞行安全。
从上述描述可以很清楚地得知本发明条件下具有改进空气动力学性能飞行器构造的特点,例如其优点。
同样也很清楚,在不超出本发明概念的新颖性范围内,对本发明的飞行器构造进行多种其它改进。同时也很清楚的是,在应用本发明时,上述提及元件的材质、形状和尺寸可以根据需要而变化,也可用具有同样技术特点的其它元件替换。