冷储存的方法和装置 本发明涉及一种用于样品冷储存的方法,尤其是用于在冷藏或解冻状态下对生物样品的制造、储存和处理,例如用于生物细胞的冷藏方法。本发明还涉及读写数据的方法。本发明还涉及用于样品冷储存的装置,尤其是用于生物样品例如细胞或细胞组分的储存基质;以及用于在储存介质和冷库系统中读写数据的装置。本发明还涉及冷藏的生物样品的使用。
冷藏是用于保存(特别是)生物或医疗材料的公知方法。这些材料例如包括组织和器官、体液、或者单独的细胞或细胞组分。冷藏根据预定过程在容器中或基质上进行,该容器或基质的形状与材料或样品相适应。用于冷藏的容器已知例如用于组织和器官(见DE-OS1992231、EP-A0853238、DE-OS19725768、DE-OS19905163)、用于血液组分(例如见DE-OS19826350)以及用于细胞或液滴形冷样品(例如见美国专利No.5275016、EP-B0475409、DE-OS19921236、EP-B0804073)。
对于生物样品的冷藏,通常关心的是对样品的识别能力。冷样品必须能够在不需要解冻的情况下非常确定地识别它们的来源和特征。对于肉眼可见的样品,这并不是问题,因为器官或血液容器可以提供有标识(inscription)。冷样品根据相应冷库的储存系统而进行定位。
对于成冰冻悬浮液滴、细胞、细胞集合体或细胞组分形式的较小冰冻样品,冷样品的识别成为问题。与标识相比,冷样品较小,可能会忽视。通常,将对大量微小样品进行冷藏。通过标识对较小冷样品进行储存和识别是不现实的。此外,通过基于将细胞悬浮液喷洒到冷表面上地普通保存方法(例如见EP-B0475409),可能获得杂乱状态的冷藏细胞样品。只能使大量的单独样品共同和未指明地储存。
对于EP-B0804073和DE-OS19921236中所述的储存方法,在冷基质上,即使最小的样品也可以有布置位置和进行特定处理。例如,可以通过利用微滴发射装置来进行样品沉积,该装置根据预定目标坐标进行控制。样品布置在确定的基质位置上,在该基质位置上也可以进行样品特性的特定测量和样品的识别。该基质可以提供有标记,以便确定样品在基质上的位置。例如,在DE-OS19921236中,对于成直线和列的冷样品的矩阵形沉积,基质可以有列和直线的指示。该标记方法在图27(现有技术)中表示。
根据图27的冷基质普通标记有以下缺点。尽管可以识别样品,不过,只有关于位置的信息。不过,基质标记的有限信息容量是一个问题,因为除了样品识别,还应当可以获得其它数据,例如该样品的历史情况或测量结果。这些数据可以储存在平行操作的数据库中。不过,冷库和数据库的分开操作对于各个样品特性的可靠性有很大危险。尤其是当用于人体医疗时,该危险很关键,因为特定错误可能会使冷样品不能进一步使用。此外,基质标记的缺点是只有结合冷基质才能进行样品识别。当取出样品时,例如在DE-OS19921236中所述,在与冷基质分离后,样品识别只能通过在解冻状态下对特定特征进行昂贵的测量而进行。
由DE-OS19752085可知一种用于大量样品的微观分析的样品载体。该普通样品载体由具有大量样品接收空间的基质形成,如图28中的示意平面图(现有技术)所示。该基质例如为板储存介质(例如CD)形状。在基质中心的通道孔和相应的矩阵形样品接收空间之间形成有环形区域。由DE-OS19752085可知形成这些环形区域,用于储存样品数据。该普通样品载体的缺点是它只能用于接收液体样品,不能用于冷藏。此外,将样品数据储存在内部环中也有与上述基质标记相同的缺点。不过,当储存更多数据时,不能在没有错误的情况下与各样品相联系。
除了普通技术的所述缺点,对于冷藏的少数发展用途,也有下面情况,尤其是在细胞生物技术方面。当在液态冷却阶段(例如氮)中进行生物样品的直接冷冻时,有污染的危险。在冷却阶段,病毒可能传到样品上。为了避免该危险,必须避免与液相接触或必须密封覆盖该样品。直到现在,这仍然不能实际实现。
由实验室技术已知例如物品载体或微滴定度板形式的样品载体,它们装备有数据储存介质。这些普通样品载体并不适于冷藏。首先,它们只适于在室温或在高于水的冰点的制冷温度下使用。在低温下的用途并不能实现。第二,普通样品载体作为用于样品的基质。样品的处理、操作或培养都在该基质上进行。不过,为了在保藏状态下储存,普通的样品载体并不合适。这时,采用了用于冷藏的容器,如上所述。最后,普通样品载体并不适于有效的样品储存和处理。实际上,它们必须人工运送,因此不能进行高密度的储存。
本发明的目的是提供一种改进的冷藏方法,通过该方法能够克服普通技术的缺点,且该方法能够广泛使用,尤其是适于自动保藏和储存。尤其是,用于冷藏的新方法能够以更大量和具有更高数据可靠性(也就是,提高样品数据与确定样品之间的联系的可靠性)的方式容纳样品数据。本发明还可以使数据非常明确地与各个冷样品相连。本发明的还一目的是提供一种用于实现上述改进冷藏方法的装置。
该目的通过具有权利要求1、12、21和22的特征的方法或装置来实现。本发明的优选实施例和用途在从属权利要求中提供。
本发明的基本思想是将至少一个样品布置在基质上,并在基质上储存样品数据,该样品数据表示冷样品的特征。优选是,样品数据在相应样品的储存位置处储存于样品数据存储介质中的特定位置。通过将样品和样品数据储存在基质的公共或紧邻或邻接位置,可以获得一系列的优点。样品数据可通过它们的储存位置而清楚地与相应样品联系。在样品联系中不会发生错误。当取出样品时,相应数据同时读出或与储存介质一起从基质中取出,因此,在取出样品并进一步处理后,可以保证样品的识别以及与样品数据的联系。可以将各样品在合适温度下取出,尤其是在冰冻状态下取出。
本发明的改进是,首先,可以提供方法和合适装置,该方法和装置可以使生物样品在很长时间(数月和数年)内在较低温度下(例如低于-50℃)进行直接优化储存。通过本发明,对于数据存储器的使用,可以获得在工作温度下的新使用领域,而这在本发明之前不能实现。
根据用途,样品存放和数据储存可以在室温下进行,并随后冷冻到所需的保存温度,或者也可以在冷冻状态下进行。本发明人惊讶地发现,可以在低于水的冰点的保存温度下使数据在已知储存介质(例如光学存储器、磁存储器、电磁存储器、FLASH存储器)中写入和读出,或者在用于冷藏目的的特定储存介质中写入和读出。样品数据组能在冷藏处理的所有阶段可靠读出。数据存储器在该类低温下的可读性(除了数据写入)是本发明人知道的优点,它表示了本发明冷藏的更广泛的可用性。
本发明特别有利的是,大量样品储存在公共储存基质上,同时多个样品数据组有特定储存位置。储存基质同时作为具有样品载体的冷基质和作为数据载体,该样品载体用于接收、保持和释放冷样品,而该数据载体将大量数据储存在与相应样品位置相对应的基质位置,象在计算机技术中已知的储存介质那样。样品部分在冷基质的样品载体施加,并作为细胞悬浮液容积而隔离(例如,作为细胞悬浮液液滴)。各样品载体与样品数据储存介质相连,相连数据储存在样品数据储存介质中。样品和样品数据同时储存,这样,它可以长时间保持稳定,并保证防止混合。本发明的冷藏称为“冷储存”,因为与电子数据储存类似。
根据本发明的优选实施例,冷储存通过至少一个冷储存元件而在储存基质上进行。各冷储存元件包括样品载体和样品数据存储器,它们彼此形成整体部件,该整体部件可逆或不可逆地从基质上除去。样品载体和数据存储器形成有固定连接件,该固定连接件可拆卸地安装在用于冷储存的储存基质上。为了从储存基质上取下样品,整个冷储存元件从储存基质上取下。本发明的主题还有冷储存元件,该冷储存元件包括:样品载体,用于接收冷样品;样品数据存储器,用于储存相应样品数据。根据本发明的优选实施例,储存基质由基体形成,该基体优选是为扁平形状,并有多个冷储存元件。根据用途,该储存基质可以有预定的两维或三维几何形状。根据本发明的优选实施例,储存基质的基体有光储存盘(CD-ROM)形状,其中组合有冷储存元件,或者为至少一个线路板形状,冷储存元件象电路(芯片)一样布置在该线路板上。
本发明的主题还有一种用于操作有多个储存基质的冷库的方法。在至少一个储存基质上,储存有多个样品,这些样品例如属于有机物(测试主题)。该样品例如包括至少一个测试主题的特定细胞(例如干细胞、组织细胞)。首先,样品的储存与特定样品数据一起进行,尤其是与样品类型和测试主题的标识数据、储存时间点的标识数据以及在储存时间点的测量的标识数据一起储存。在冷库工作时,样品与相应样品数据一起取出,以便用于测量目的、诊断目的或治疗方法,和/或进一步补充样品或样品数据。样品数据包括样品和样品供体(donor)的基本所有特征和参数,需要时,可以是用于在储存基质上储存信息的附加数据。例如,本发明使用的样品数据存储器有至少4兆字节的储存容量。
通过本发明冷储存的以下优选特征,可以克服普通平面或三维基质的缺点。样品(例如冰冻细胞悬浮液)可在任何时间点接近。这也可以在低温条件下进行。最小样品容积可以布置在确定基质位置,它们的特性尺寸在mm的范围内或者更小,不过,优选是,通常的量为103μm3(10×10×10μm3)至几个10nm3。样品例如可以包含一个或多个细胞(105至106)、细胞成分、相关生物物质(例如膜囊、DNA材料、大分子)和/或细胞粘合体(cell bond)。样品可以高密度地布置,冷储存的效率提高。
样品可以在储存基质的深冷状态下可选择地取出,同时不会防碍其余样品的冷冻。为了还原样品和读出数据,并不需要使整个储存基质解冻。
样品数据可以通过计算机自动读写。样品数据存储器和样品载体的联系是唯一的。样品储存,这样它们保证不会错误识别。取出的样品与样品数据的联系以及与储存基质的联系都得以保持,这样,可以概括样品的历史。这对于本发明的医疗用途有特殊的优点。
优选是,本发明的冷储存元件利用可低温相容的塑料材料形成,该塑料材料一方面形成样品载体,另一方面使样品数据存储器嵌入。塑料材料可以在没有变化和损坏的情况下承受重复的温度变化。优选是,所用塑料材料的吸水能力小于死重的1%,尤其是小于死重的0.1%。例如,本发明的冷储存元件基于聚氨基甲酸酯、聚四氟乙烯或聚乙烯。本发明的储存基质的优点是具有很高的机械稳定性和很长的使用寿命。本发明的冷储存首先可以保证储存生物试样超过几十年。冷库可以在供体(测试主题)的整个较长寿命中可靠工作,例如在人的整个寿命过程中。储存基质有相对简单的结构,这使得可以在冷库中大量使用储存基质。
本发明在所述污染的危险方面也很有利。本发明的储存基质可以有下面介绍的一系列特征,通过这些特征,可以防止液体冷冻介质与样品接触。在冷冻状态下避免病毒污染。还有,水或其它物质不会在样品上凝结。
本发明的储存基质的还一重要优点是可以在与测量和分析方法(例如光学测量、微观分析)相同且同时可读取数据的冷藏或解冻状态下接近储存样品。在样品数据存储器中的数据也通过多个冷冻或解冻处理来保持。
冷储存通过根据用途而选择的储存条件来进行。冷储存的温度以及温度降低和增加的循环顺序可以根据保存物体和材料来进行选择。保存温度在低于室温的区域内,优选是低于水在常压下的冰点,优选是在低于-80℃的温度下长期使用。优选是,冷藏温度通过液体冷冻介质(氮)或该冷冻介质的蒸气来进行调节。
本发明的优点是可以冷储存最小容积的样品。这可以加快温度变化、使保存条件可再现,并进行单个样品的操作、处理或测量。
下面将参考附图介绍本发明的其它优点和特征。附图中:
图1是根据本发明第一实施例的本发明储存基质的一部分的示意剖视图;
图2是表示从图1的储存基质中取出样品的示意图;
图3至7是在储存基质上的各种形式的样品和储存结构的示意平面图;
图8是根据本发明第二实施例的储存基质的一部分的示意剖视图;
图9是冷储存元件的各种几何结构的示意图;
图10是根据本发明第三实施例的储存基质的一部分的示意剖视图;
图11是从本发明第四实施例的本发明储存基质中取出的特定冷储存元件的视图;
图12是在本发明的储存基质上的膜状盖体的示意图;
图13是根据本发明第五实施例的储存基质的一部分的示意剖视图;
图14是根据本发明第六实施例的储存基质的示意透视图;
图15是图14的储存基质的冷储存元件的示意透视图;
图16是图15的冷储存元件的变化形式的示意透视图;
图17至20是根据本发明还一实施例的本发明冷储存元件的示意透视图;
图21和22是样品载体的装载以及样品的取出的示意图;
图23至26是根据本发明还一实施例的本发明储存基质的示意透视图;以及
图27和28是普通样品载体的平面图(现有技术)。
根据本发明,至少一个样品布置在基质上的样品载体中,且在基质上储存有样品数据,该样品数据表示冷样品的特征。样品数据储存在样品数据存储器的特定位置,优选是在相应样品的储存位置。用于接收冷样品的样品载体和用于储存相应储存数据的样品数据存储器一起称为“冷储存元件”。本发明的储存基质优选是形成为底座体,该底座体优选是为扁平形状,具有多个冷储存元件。
对于如图1所示的本发明的储存基质100的第一实施例,提供有基体110,该基体110支承多个冷储存元件120。基体110(以剖开方式表示)有普通尺寸,例如可光读/写储存盘(下面称为:CD,直径例如大约12cm)。为了接收冷储存元件120,该基体110有通道开口111,冷储存元件以压配合形式置于该通道孔111中。基体110的一侧上布置于薄膜形储存介质112。储存介质112是数据层,例如它的类型为已知的普通CD类型,并适于读写数据。优选是,该储存介质112设计成用于光写入(“烧制(burning)”)和读出数据。不过,它也可以为磁储存介质或地形(topographic)储存介质。需要时,在储存介质112上提供有保护层(未示出)。
储存介质112包括:位于基体100上的层区域,该层区域作为基座存储器113;以及与冷储存元件120相连的区域,该区域用作样品数据存储器122。基座存储器113和样品数据存储器122首先形成储存介质112的闭合层,当需要时,该闭合层在取出样品后被破坏。基座存储器113优选是装有基质数据,该基质数据例如涉及冷储存元件的结构类型和基质的识别。样品数据存储器122装有样品数据(见下面)。
冷储存元件120包括样品载体121和样品数据存储器122。该样品载体121是由T形、板形或蘑菇形塑料制成的成形部件。该样品载体也可以不由塑料制成,而是可以包括生物相容的插入材料(例如半导体材料)。样品载体121包括板形的样品接收器123和载体销124。通道开口111的内部形状和载体销124的外部形状互补,以便彼此形成压配合。在样品接收器123的边缘之间形成间隙125。该间隙125减小了样品之间交叉污染的危险。此外,它们能简化冷储存元件的取下。相应样品存储器122与载体销124固定连接。
冷样品130布置在样品接收器123上,尤其是,该冷样品130成冷冻液滴的形式。该液滴是细胞悬浮液,或者还有参考样品,例如有培养介质、标记染料溶液或探测样品的试样。探测样品是参考样品,它含有能对关键环境条件灵敏反应的物质。作为探测试样,例如可以采用对放射性辐射或不希望的温升敏感的化学化合物,探测样品的控制可以监测储存介质在冷库中从储存情况。
盖体膜114布置成覆盖冷样品130,该盖体膜114用于防止来自冷却介质或来自环境中的污染物。样品接收器123的普通尺寸例如为0.1至3mm。储存基质100的总厚度例如为大约2mm。
对于本发明的样品冷藏,储存基质100(没有盖体膜114)首先装载冷样品和参考样品(需要时)。该装载例如通过微滴发射装置进行,该微滴发射装置例如在EP-B0804073中所述。在储存基质100处于冷冻状态下,样品作为微滴对准样品接收器123发射,当样品撞在该样品接收器123上时,它们将冷冻。同样,在储存基质100处于深冷状态下时,在样品数据存储器122中进行第一样品数据的写入(例如烧制)。在基质装载后,在冷藏系统的相应冷冻条件下进行盖体膜114涂覆和将储存基质插入支承件中。
在图2中,表示了样品从储存基质100中的取出。根据本发明,通过使相应冷储存元件120与基体110分离而进行样品取出。分离通过切割装置140与冲压装置150配合而进行。该切割装置有空心切割工具141,该切割工具141的刀片与样品接收器123的外形相适应。切割工具例如可以形成为具有磨尖端头的空心细管。冲压装置150包括冲头151,通过该冲头151,样品数据存储器122与其余的储存介质112分离,并可以将载体销124从通道开口111中压出。需要时,在冲头151的一端还提供有切割工具,用于改善储存介质112的横切。该切割和冲压装置140、150可以进行主动或被动冷却,以便使储存基质100保持预定温度。
图2表示了本发明的特殊优点。通过切割装置140,样品130与冷储存元件120一起取出,不会打开其它储存样品。在取出后,样品130还与样品数据存储器122相连。样品可以在冷藏条件下或在升高温度情况下转移到另外储存基质和/或测量装置中。例如根据测量结果,可以在样品数据存储器122上补充样品数据(数据积累)。
图3至7表示了本发明储存基质(例如根据图1)的示意平面图。储存基质100形成为类似普通CD,特别是在中心有通道开口101,用于将储存基质安装在冷藏装置和/或读写系统中。在本实施例中,样品载体的样品接收器123形成为矩形。它们的通常表面尺寸为大约0.1至30mm2。样品接收器123在扇形102中成组布置。当样品与相应冷储存元件一起取出时,基体110保留有空闲的通道开口111。
图4表示了具有圆形样品接收器123的变化实施例。在各个样品接收器123中,储存有几个mm3体积的液滴。每滴可以包含有直到105个细胞。因此,在直径为大约12cm的整个储存基质上可以储存直到108个细胞。
图5表示了具有圆形样品接收器123的一种变化形式,与图4相比,该样品接收器123的直径更小(例如0.01至1mm)。因此,在储存基质100上的冷储存元件的总数将增加。变化性随着样品的取出而增加。
图1中所示的基座存储器113可选择地根据储存介质中的确定通道来进行布置。这如图6(环形储存通道)和7(辐射状布置的储存通道)中所示。通过基座存储器113,储存基质进行另外分区。
图8剖视表示了储存基质200的一种变化形式,该储存基质200有基体210,该基体210由冷储存元件的样品载体221形成。样品载体221有在一侧的样品数据存储器222以及在另一侧的样品接收器223。样品载体221是例如由塑料或半导体材料制成的成形部件,其中,样品接收器223形成为凹口。样品载体221通过断开点彼此连接。样品数据存储器222形成布置在基体210底侧的一层储存介质。在储存基质的上侧提供有盖体膜214,样品230由该盖体膜214覆盖。盖体膜214在基体210的外边缘上包围基体210,并有环绕的凸起215。
储存基质200的使用,尤其是装载和数据储存根据上述原理进行。为了除去数据,冷储存元件220与载体221以及样品数据存储器222一起通过合适的工具从储存基质220上分离(例如折断、切断等)。根据用途,断开点224设计成有预定几何形状,如图9所示。
在图9中,白线表示断开点224的分布。尤其是,在各个框架块区域中布置了具有样品接收器的样品载体。样品接收器在储存基质200中有各种几何形状,例如朝着内部,它们能够更紧凑(左图部分)或更狭窄(右图部分)。
图10中表示了本发明的储存基质300的第三实施例。该储存基质有均匀板形状的盘形基体310。在本实施例中没有接头或断开点。在本实施例中,只要样品230布置在储存基质300上,冷储存元件320就形成一个单元。对于样品载体321,提供了用于各个样品的样品容纳层。该样品容纳层包括塑料材料,它有与基体310的最小粘接强度(例如由PTFE或橡胶制成)。尤其是,在低温范围内提供最小粘接强度。
为了分开样品330,该样品通过合适工具与样品容纳层一起从基体上分离(例如拆下、刨去、推开或拉开)。样品数据存储器322保留在基质底侧。
在本实施例中,样品330通过盖314防止受到污染。该盖314由盖体形成,该盖体通过环形密封件315抵靠基体310密封。
在图11中,在上部的透视图部分,表示了根据本发明还一实施例的储存基质400。通过该储存基质,在基体410中以预穿孔或压配合的形式提供有冷储存元件420。基体410和冷储存元件420形成平板,在它的底侧布置有一层储存介质412。该储存介质412(数据载体膜)同样可以预穿孔,且布置在基体410的底侧,并有所需的平面度,以便光写入和读出数据。
在图11的底侧图部分中,以放大形式表示了冷储存元件420。在基体410的、形成样品载体421的顶侧提供有凹口,作为样品接收器423。冷样品(例如悬浮液滴)布置在该样品接收器中。样品430通过盖体膜414而防止污染。还有,在盖体膜414上,可以提供有与冷储存元件420的外形相对应的孔。通常,根据本发明,盖体或盖体膜也可以形成为储存介质。通过利用类似于图2中所示的工具来将冷储存元件420从储存基质400上取下,样品430可以与样品载体420、样品数据存储器422和切开的盖体膜414一起取下。储存基质400固定在支承件上,并通过冲头451(或者在需要时有刀片)和切割装置440而与基体410分离。切割装置440提供有活动冲头441,在冷储存元件420分离之后,该活动冲头441将该冷储存元件420压出切割装置。
图12通过实例表示了图11实施例的单个冷储存元件420的一种变化形式,该冷储存元件420有样品载体421和样品接收器423。对于该变化形式,盖体414形成为两层膜。多孔层415覆盖样品载体421作为盖体。在它上面提供有具有延伸部分417的密封层416,该延伸部分从基质平面向上延伸。该延伸部分417可以人工或通过合适工具从基质平面上拉开。这样,在样品载体20上的底侧415打开。该过程可以在深冷冻情况下进行,或者也可以在解冻情况下进行。在样品接收器423中的液体可以进行快速交换。例如,可以从细胞悬浮液洗去冷保护剂。
盖体414也可以包含用于识别样品的数据或标记。根据变化形式,盖体414的另一结构可以形成为附加层。
在图13中还通过本发明的另一实施例表示了多层盖体的原理。储存基质500包括基体510,该基体510有蘑菇形凸起511,样品载体521置于该蘑菇形凸起511上。样品载体521是成形部件,有在上侧的样品接收器523和在底侧的固定凹口524。固定凹口524和凸起511一起象按钮那样工作,作为可释放的机械连接件。作为储存介质512的数据载体层位于样品载体521的相对侧,该数据载体层形成样品数据存储器522,该样品数据存储器522与相应的样品载体521相连。盖514采用如图12所示的双层原理。
为了在储存基质500处于冰冻状态时取下样品载体521,在样品载体521下面猛推平面或楔形工具。通过该工具,使相应凸起511和固定凹口524之间的连接松开。因此,样品和样品载体521以及盖体514的一部分一起与储存基质500分离。还对于该实施例,当分离时,样品数据存储器522的连接将失去。但是,样品数据也可以提供在盖体514的合适部分中。
在图14至26中所示的实施例表示了储存基质600通过至少一个线路板610而形成,该线路板610对应于基体,一个或单个冷储存元件620象电路(芯片)那样布置在该线路板上。线路板610支承电连接件611(导电通路)或光连接件(光导纤维),该电连接件或光连接件分别与接收器安装件612相连,该接收器安装件612用于通过外部控制装置(未示出)接收冷储存元件。该接收器安装件基本相当于普通电路安装件的插座,冷储存元件的联系在该安装件中进行(例如图15)。在接收器安装件612上可以提供有附加线路,用于进行信号调制、信号转换或检测来自连接线611或光通路的数据信号。
连接线611可以在具有接收器安装件612的线路板610的顶侧(图14的上图部分),或者在相对侧(图14的下图部分)。在后一种情况下,接收器安装件612可以更紧密的布置。图14的下图部分还在线路板610上表示了用于冷储存元件控制的计算电路613,同时在需要时可以提供所需的RAM存储器。
各接收器安装件612用于接收冷储存元件620。各冷储存元件620包括样品载体621,与上述功能类似,该样品载体621与样品数据存储器622相连。根据本发明的特殊优选实施例,冷储存元件由同样已知的集成电路(例如储存部件)形成。该电路包含作为样品数据存储器622的至少一个RAM存储器。该冷储存元件620也可以包含完整的计算电路,通过该计算电路可以实现冷储存元件的功能,且冷储存元件可以通过该计算电路而与外部连通。优选是,样品载体621形成于集成电路的塑料盖或封装中,或与它们相连。
例如,样品接收器623是在塑料盖体中的凹口,如图15所示。普通芯片的尺寸为7×14mm,样品接收器423可以有大约4×10mm且深度为1mm的底部表面。通过这些措施,在冷储存元件620中可以容纳直到5百万个细胞。
在样品接收器623的底部可以提供有用于操作样品传感器和/或显示单元624的附加控制装置。需要时,该控制装置包括冷却和加热元件,例如Peltier元件、电阻加热元件,它们用于控制样品的冷却或加热,或者控制具有增大热容的材料的冷却或加热,以便减小样品在芯片运输过程中的热负载。作为显示装置,可以提供光源,该光源例如对冷储存元件或样品的预定状态发出信号,或者该光源作为测量光源,用于对样品630的测量。此外,冷储存元件620有盖体614,该盖体保护样品免受污染、蒸发和升华。盖体614是塑料帽,例如焊上的膜,或者另外的层形部件,它与样品载体621进行密封和可释放的连接。
样品载体621也用作冷储存元件的接触连接器625的引导件。特别是,该接触连接器与样品数据存储器622相连,且需要时与控制和显示装置624相连。
与由细胞生物技术已知的诊断芯片相反,对于冷储存元件620,在样品630与样品数据存储器622、控制和/或显示装置624之间并不连接,该控制和/或显示装置624用于检测在样品中冰冻的细胞的电参数。
图15的盖体614也可以由图16的冷容器615代替。通过该冷容器61S,样品载体621的顶侧与柱形容器本体617进行密封螺钉连接。该冷容器615包括抗冷塑料材料。图16中表示的本发明实施例的优点是冷容器615也可以人工装载,例如通过吸管。
图17至26表示了本发明的冷储存元件620的其它详细实施例。图17的冷储存元件620包括样品载体621和样品数据存储器622。该样品数据存储器622构成为类似具有接触电极625和封装626的已知电子储存芯片,其中布置有储存电路,需要时还有计算电路。封装626包括普通的塑料材料。
样品载体621安装在封装626的顶侧,或者作为封装626的一部分。样品载体621包括塑料框架627,在该塑料框架627中,为了接收样品,结合有至少一个冷容器615。该塑料框架627是注射模制部件,它的尺寸例如与封装626的表面相对应。侧部框架部分提供有孔,冷容器615布置在该孔中。
各冷容器615形成至少一个细长样品室。至少一个样品室为细长形,这样,内部横截面远远小于它的长度。对于样品室,例如可以提供有软管、空心针、细管等。样品室的内径例如处在5μm至4mm的范围内。长度可以在0.5cm至10cm范围内选择。样品室的横截面直径与长度的比值优选是小于1/10。至少一个成管或软管形状的冷容器615设置成具有利于快速装载或倒空样品室、具有很高的小型化能力,并有很高的冷冻速度。
对于在图17中所示的本发明实施例,第一冷容器615由布置在框架627中的弯曲形软管(部分表示)形成。在通过软管对冷容器615进行装载后(见箭头),切去由虚线表示的软管部分,这样,留下画出的部分作为单独的冷容器(例如616)。所有的冷容器615作为一个单元装载有相同的样品630。这有利于细分样品部分。对于医疗分离装置400,样品部分616可以以冷冻或解冻状态与冷储存元件620分离,同时不会影响其余的样品部分。
在封装626的表面上和/或在样品接收器623的框架627上可以提供有附加的控制装置和/或显示单元624,该控制装置用于操作样品和/或传感器。需要时,该控制装置包括冷却和加热元件,例如Peltier元件、电阻加热元件等。它们用于控制样品的冷却或加热,或者控制具有增大热容的材料的冷却和加热,以便减小样品例如在芯片运输过程中的热负载。传感器和/或显示器可以有光源,该光源例如对冷储存元件620或样品的预定状态发出信号,或者该光源作为测量光源,用于对样品630的测量。
此外,冷容器615的各端可以提供有盖体614,该盖体保护样品免受污染、蒸发和升华。盖体614例如是塑料帽、焊上的膜或者另外部件,它与相应冷容器的端头进行密封连接。当软管作为冷容器时,该盖体也可以由该软管自身的一部分形成,该软管在它的端头夹在一起。
根据图17,也可以代替穿过和在需要时切割软管,而是可以提供有多个由刚性材料制成的管形冷容器615作为样品接收器623,这些样品接收器623布置成与冷储存元件620的纵向方向垂直(图17)或平行(图18)。例如,对于图18的实施例,五个冷容器615可以结合在封装626中(封入)。这可以通过将冷容器615注入封装材料内而实现,或通过粘接剂粘接而实现。冷容器615由空心针或细管形成。
在对冷容器615进行装载时,使该冷容器615的一端有低压,并通过相对的进口端617接收冷样品。也可以不提供低压,而是样品接收器可以在冷容器615内提供毛细作用力。特别是,对于图18的实施例,相同或不同的冷样品631、632…可以装入各冷容器615中。冷容器615优选是彼此间隔开,这样,供给端617布置成微型或极小滴定板形式。
根据图19中所示的本发明冷储存元件620的可选实施例,样品载体622的冷容器形成为软管,该软管的直径沿它的纵向方向可变。部分618具有较小直径,而在腔室部分619中,该软管大大加宽。冷容器615包括多个腔室部分619,该腔室部分能够有利地通过机械分离装置400来与冷储存元件分离。冷容器安装在样品存储器622的封装626上(例如粘接或局部注入)。冷容器615的装载可以在形成低压的情况下进行,通过该低压,可以从冷容器615的进口端617吸收悬浮的冷样品。
根据图20,冷容器615也可以由软管形成,它只有一个腔室部分619,如图所示,该冷容器通过软管部分618进行装载或倒空,或者也可选择通过多个软管部分进行装载或倒空。图20的腔室部分619由膜材料形成,它粘在封装626上。
与由细胞生物技术已知的诊断芯片相反,对于冷储存元件620,在样品630和样品数据存储器622和/或控制、传感器和/或显示装置624之间没有连接,该显示装置624表示了在样品中的冷冻细胞的预定电参数。
在图21和22中,进一步详细表示了样品的装载以从冷储存元件620中的取出。根据图21,装载例如通过装载装置进行,该装载装置有在一侧的多个样品储器710和在另一侧的压力装置。冷储存元件620包括框架形样品载体621,与图17所示实施例类似,在该样品载体621上布置有成细管或软管形状的多个冷容器615,这些冷容器615的供给端617伸入样品储器710中。该样品储器710是储存槽,在提取样品后将样品置于该储存槽中。压力装置720包括压力附件721和连接管路722,该压力附件721可以以压力密封的方式布置在冷容器615的相对端上,而通过该连接管路722,所有的冷容器615可以加压成低压。优选是,冷容器615的端头安装成为在框架部分上的、压力附件721的公共接收件。例如它们可以开口于框架627的表面内。在低压作用下,样品630装入冷容器615内。
在样品载体621进行装载后,冷储存元件620与装载装置分开。需要时,将输入端617缩短到框架627上。冷储存元件620布置在储存基质610上(见图14),并与该储存基质610一起转移到具有较低温度的环境中,例如冷库里的冷容器内。
在图22中,表示了将样品从具有弯曲形冷容器615的冷储存元件620中取出的一种可行方法。样品部分616通过机械分离装置400而分开,该机械分离装置400例如切割装置。这可以在较低温度状态下有利的进行,因此其余样品可以保持不变。
在图23至26中,表示了采用冷储存元件620的本发明实施例,与样品保持器621的上述实施例相反,该冷储存元件620并不结合在储存电路(storage circuit)的封装中,而是在它的基质材料中。例如,图23表示了冷储存元件620的一部分(没有表示封装和接触连接器)。图中以剖视形式表示了具有基质810和集成部件820的储存电路800。该基质例如为半导体晶片,与普通用于制造集成电路的相同。在基质810的上侧,通过已知的半导体技术对部件820进行处理。在基质810的底侧,槽道状样品室623形成为样品接收器,该样品接收器由盖体层820封闭。样品室623的测量尺寸为400μm(例如横截面尺寸)和20mm(长度)。样品室623也可以形成于布置在基质上的基质结构层中(见图24)。盖体层830包括塑料材料、玻璃或半导体材料。
此外,可以在多个平面中提供有样品室623,如图24所示。在该结构810中,可以提供具有样品室623的第一基质结构层811和第一盖体层830。在第一盖体层830上,可以提供具有样品室623的至少另一基质结构层812和另一盖体层831。通过该实施例,优选是在相应的样品数据存储器上可以吸收较大样品容积。根据图23和24,在冷储存元件620上吸收填料或样品通过软管连接件进行,该软管连接件结合在样品数据载体622的封装内,并在使用后切断或夹断。
在图25和26中,示意表示了在基质810中的槽道形样品接收器623的各种几何形状。例如,可以提供具有各种截面尺寸的弯曲或U形槽道形状,当需要是,它们可以布置成彼此嵌套。
图14至26所示的本发明实施例有一系列优点。冷储存元件由电子芯片形成,该电子芯片包括可外部读写的电子存储器,作为样品数据存储器。因此不需要依靠温度调节的读写头,象CD存储器中那样。在芯片中布置有至少一个与一个或多个样品相对应的样品接收器。该芯片和/或接收器安装件可以有电子开关,用于控制附加的功能元件、传感器和/或警告系统。图14中所示的结构能够形成为三维多平面的冷基质,其中,多个线路板610与多个冷储存元件堆叠成一个在另一个上面。
芯片型储存元件可以毫无问题地以冰冻状态从线路板上取下,并转移到处理站的另外线路板、测量装置上,同时不会失去样品数据。冷储存元件可外部电子寻址。
此外,对于多重安全措施,冷储存元件可以提供有一个或多个标识、可自动读取或可视觉控制的彩色标记。根据图15,与普通集成电路的尺寸相比,该冷储存元件还可以最小化。通过最小化,优选是可以进行最佳控制,以代替电接触。
储存基质的至少一个线路板可以与计算机母线系统相连,通过该计算机母线系统,各冷储存元件可以进行单独查询和控制。图15中所示的冷储存元件可以根据用途和变化(例如圆形或多边形样品载体)。
本发明的重要特征将集中在下面的说明中。
本发明的储存基质组合了材料接收器和特定样品的数据接收器。在低温储存过程中,可以选择性地取出材料(细胞、细胞悬浮液)和读出/储存数据和/或数据材料。
多重保证了数据识别,其中,样品和样品数据存储器布置在相同基质位置或紧邻的基质位置。此外,储存基质可以染色,这样,基于冷储存元件和基体的颜色,可以判断各个样品来自哪部分储存基质。
冷储存元件可以很容易地消毒和重新使用。而且,它们形成有样品的保护装置,以避免该样品受到本发明冷藏的环境条件的影响。
还可以使储存基质的基体和冷储存元件形成为具有彩色或数字或模拟标识试样的一个单元,这使得两部件在任何时候都有清楚的结构。这有利于自动、光学控制(例如染色和编码检测)。
首先,样品数据可以在千字节到兆字节的范围内储存在本发明的冷存储器上。这特别有利于储存测量结果。
在储存基质的预计使用寿命过程中,可能在任何时候进行数据补充(数据积累)。这样,样品的所有数据以及所有进行的操作、测量、处理等都可以无中断地完全记录在特定样品的文件中。
尤其是,在芯片形储存元件中,样品的特定处理可以选择性地通过预定程序进行并储存。例如,在冷藏框架中,可以进行预定的加热、冷却、测量、控制和警告/显示程序,并可以在程序数据存储器中进行记录。在冰冻状态,不同温度和测量程序可以用于不同冷储存元件。例如,可以引发局部解冻,以便进行样品测量。上述加热元件可以用于本发明储存基质的所有实施例,以便局部加热储存介质。在储存介质上可以进行局部加热,同时使相应样品保持冷藏状态。
根据本发明,储存基质可以与一个电子数据库组合操作,在该电子数据库中,以镜像方式储存了储存基质的样品数据。
样品接收器的盖可以部分透明或完全透明。通过该层,可以在样品接收器中结合光学和其它测量方法。例如,样品可以用插图表示。也可以进行荧光测量、电介质测量和/或超声波表示。
本发明的冷库包括多个上述储存基质、控制装置和处理装置,该处理装置用于操作储存基质和用于取出样品。
重要的是,在前述说明、权利要求和附图中所述的本发明特征可以在本发明的各种实施例中单独实施以及合适组合地实施。