用于协同定位PZT微致动器的悬架设计 背景技术
本发明涉及到磁硬盘驱动器。更具体地,本发明涉及到微致动器的电连接。
在现在的技术中,采用不同方法提高硬盘驱动器的记录密度。图1给出一个具有典型的驱动臂102的典型磁盘驱动器,驱动臂102设定为读写磁硬盘104。典型地,音圈马达(VCM)106用于控制硬盘驱动器臂102在磁硬盘106上的运动。由于只用VCM106时在记录头108的布置存在固有容差(动态播放),因此现在使用微致动器110微调头108位置。VCM106用于粗调,然后微致动器110以小得多的尺度修正该位置以补偿VCM106的容差。这可以实现较小的可记录轨道宽度,增加硬盘驱动器的“每英寸轨道”(TPI)的值(增加了驱动器密度)。
图2给出了本领域使用的微致动器的示意图。典型地,滑块202(包含读/写磁头;未示出)用于保持在磁盘表面104上的规定的浮动高度(见图1)。微致动器可以具有将支撑装置206连接到滑块容器单元208的柔性梁204,它使滑块202的运动独立于驱动臂102(见图1)。可以利用电磁组件或电磁/铁磁组件(未示出)微调滑块/头202相对于臂102的取向/位置(见图1)。
将微致动器连接到印刷电路组件的电线路连接现在越过悬架组件或悬架舌(suspension tongue)。这种设计由于电线路连接而导致悬架组件刚性增加。而且,使用诸如金球焊接或焊料块焊接的方法焊接微致动器很困难,因为焊盘位于微致动器移动梁上。没有足够地支撑空间连接微致动器。而且,焊接工艺可能由于压力或接合力而损坏微致动器。电连接线路的较低的刚性也使线路连接更容易变形。
【附图说明】
图1给出本领域中使用的包括配置用于读写硬盘的驱动臂的硬盘驱动器的内部视图。
图2示出了本领域所使用的微致动器。
图3a-b描述了硬盘驱动器磁头万向架组件(HGA),它具有根据本发明原理的U形微致动器。
图4a-d给出了一个微致动器实施例的示意图,微致动器的电臂接触垫位于微致动器的基片(base piece)附近。
图5a-c是头万向架组件和微致动器组成部分的一个实施例的示意图,其中微致动器的电动臂接触垫远离微致动器的基片放置。
图6是组装好的头万向架组件微致动器的一个实施例的示意图,其中微致动器的电臂接触垫远离微致动器的基片放置。
公开了减小悬架舌刚性的微致动器的悬架设计和制造具有HGA的微致动器的方法。在一个实施例中,微致动器的基片具有从该基片伸出的两支臂。用于这些臂的电接触垫位于和基片相对一端的臂的外部。在一个实施例中,电接触垫电耦合到和磁读/写头相同的连接板上。这种设计为微致动器以及磁读/写头的电耦合提供足够的空间,防止了焊接处理期间导致的损坏。用于微致动器的电连接迹线在悬架舌的外伸支架上与读/写磁头的迹线合并为一体,减小了悬架舌本身的刚性。
图3a以倒置的方向描述了具有U形微致动器的硬盘头万向架组件(HGA)的一个实施例。在一个实施例中,磁读/写头302或滑块耦合到U形微致动器304。在另一个实施例中,U形微致动器具有从基片308的每侧伸出的压电锆钛酸铅(PZT)梁(臂)306。在另一个实施例中,U形微致动器基片308通过局部灌封连接到HGA312的悬架舌310。该舌在悬架舌和PZT梁306的底部以及滑块302的下表面之间产生平行的间隙。在一个实施例中,平行间隙为25-50μm。在一个实施例中,印刷电路组件314电耦合到滑块302以控制读和写功能。一对外伸支架316支撑悬架舌310并保持悬架舌310和负载梁320之间的平行间隙,每个外伸支架316均带有弯曲318。在一个实施例中,弯曲高度为50μm。在HGA312中切割第一孔322以减轻重量。第二孔324使HGA312安装在枢轴上。图3b以反方向表示本实施例。
图4a-d表示结合到已知的HGA312(例如,象日本专利2002-133803中描述那种)的微致动器302的实施例。图4a表示连接板402的一个实施例。在一个实施例中,连接板具有一组和连接板402相连接的电头板(electric head plate)接触垫404。在另一个实施例中,该组电头板接触垫404包括读电板接触垫和写电板接触垫。在一个实施例中,第一组的一个或多个连接迹线406将该组电头板接触垫404和印刷电路组件314连接。图4b示出了耦合到微致动器304和连接板402的头302的一个实施例的后沿顶视图。头302电耦合到电头板接触垫404。在一个实施例中,通过焊料块焊接或金球焊接法电耦合头302。一组电臂接触垫(electric arm contact pad)408连接到悬架组件310。第二组的一个或多个连接迹线406将该组电臂接触垫408和印刷电路组件314连接。用于电头板接触垫的连接迹线406暴露并且容易变形。图4c表示耦合到微致动器304和连接板402的头302的一个实施例的前缘顶视图。图4d表示负载梁320和悬架舌310的一个实施例的底视图。只有少量的支撑空间412可用于微致动器的电焊接,导致微致动器易损坏。
图5a-c表示本发明的一个实施例的组成部分。图5a表示连接板402的一个实施例。在一个实施例中,连接板402具有连接到连接板402的一组电头板接触垫404和一组电臂板接触垫(electric armplat econtact pad)502。在一个实施例中,第一组的一个或多个独立的连接迹线504将第一组电头板接触垫404和第一组电臂板接触垫502连接到印刷电路组件314。在一个可供选择的实施例中,第二组独立的连接迹线506将第二组电头板接触垫404和第二组电臂板接触垫502连接到印刷电路组件314。在一个实施例中,左侧的电臂板接触垫502和右侧的电臂板接触垫可以互连。
图5b表示微致动器304和磁读/写头302的一个实施例。在一个实施例中,磁读/写头耦合在微致动器304的两个臂306之间。在另一个实施例中,一组一个或多个电臂接触垫508在与基片308相对的端连接到每个臂306的外部。
图5c表示悬架舌310的一个实施例。连接板402插入负载梁320和两个限制器510之间。在一个实施例中,第一组的一个或多个连接迹线504和第二组的一个或多个连接迹线506通过HGA312将连接板402连接到印刷电路组件314。第一组的独立连接迹线504和第二组的独立连接迹线506已经增加了刚性,因为它们包含用于磁读/写头302和微致动器308的连接线路。
图6表示与连接板402和HGA312组装的微致动器304的一个实施例。微致动器304的基片308固定到HGA312的悬架组件310。在一个实施例中,基片308通过局部灌封(potting)耦合到悬架组件310。在一个实施例中,磁读/写头302位于微致动器304的臂306之间。在一个实施例中,磁读/写头302电耦合到和连接板402相连接的电头板接触垫404。在另一个实施例中,和微致动器的臂306连接的该组电臂接触垫508电耦合到和连接板402相连接的该组电臂板接触垫502。这样的耦合使印刷电路组件314控制微致动器臂306的移动。在另一个实施例中,连接板402的电臂板接触垫502和电头板接触垫404提供足够的空间来支持磁头302和微致动器304二者的焊接。
虽然此处具体图解说明并描述了几个实施例,但是应该明白对本发明的修改和改变包含在上述示范中,并属于附件权利要求的范围,而不背离本发明的电臂板接触垫的组的宗旨和预期的范围。