CN200410074886.0
2004.08.30
CN1597738A
2005.03.23
终止
无权
未缴年费专利权终止IPC(主分类):C08G 77/50申请日:20040830授权公告日:20090128终止日期:20090930|||授权|||实质审查的生效|||公开
C08G77/48; H01B3/46
三星电子株式会社;
林珍亨; 柳利烈; 宋基镕; 郑铉潭; 柳俊城
韩国京畿道
2003.09.01 KR 60811/2003
北京市柳沈律师事务所
张平元;赵仁临
具有新颖结构的硅氧烷基树脂和使用该树脂的半导体间层绝缘膜。硅氧烷基树脂除优异的机械性能以外具有低介电常数,并且是半导体器件互连层之间的绝缘膜中的有用材料。
1. 一种由如下方式制备的硅氧烷基树脂:在有机溶剂中在酸或碱性催化剂和水存在下,水解和缩合由通式1表示的硅烷基单体,该通式1的单体选择性地与至少一种选自通式2-6表示的化合物的单体混合:通式1其中,R1和R2独立地是氢原子、C1-C3烷基、C3-C10环烷基或C6-C15芳基;X1,X2,X3,X4,X5和X6独立地是卤素原子或C1-C5烷氧基;m是1-5的整数;n是1-3的整数;和p和q独立地是0-1的整数,通式2其中,R1,R2和R独立地是氢原子、C1-C3烷基、C3-C10环烷基或C6-C15芳基;X1,X2,X3和X4独立地是卤素原子或C1-C5烷氧基;n是1-3的整数;和p和q独立地是0-1的整数,通式3其中,R1和R2独立地是氢原子、C1-C3烷基、C3-C10环烷基或C6-C15芳基;Xs是卤素原子、或C1-C5烷氧基;r是0-10的整数;s是1-3的整数;和t是3-8的整数,和通式4 SiX1X2X3X4通式5 R1SiX1X2X3通式6 R1R2SiX1X2其中,R1和R2独立地是氢原子、C1-C3烷基、C3-C10环烷基或C6-C15芳基;和X1,X2,X3和X4独立地是卤素原子或C1-C5烷氧基。2. 根据权利要求1的硅氧烷基树脂,其中使用通式1的该单体和由通式7表示的单体制备该树脂:通式7其中,X是卤素原子、羟基或C1-5烷氧基;R是氢原子、C1-C3烷基、C3-C10环烷基或C6-C15芳基;1是2-10000的整数;m是1-5的整数;和n是1-3的整数。3. 根据权利要求1的硅氧烷基树脂,其中由通式1表示的单体对选自通式2-6的化合物的单体的摩尔比是1∶99-99∶1。4. 根据权利要求1的硅氧烷基树脂,其中树脂的重均分子量是3,000-300,000。5. 一种制备半导体间层绝缘膜的组合物,其包括根据权利要求1的硅氧烷基树脂和有机溶剂。6. 根据权利要求5的组合物,其进一步包括孔产生材料。7. 根据权利要求6的组合物,其中相对于总固体组分,孔产生材料的量是1~70重量%。8. 根据权利要求5的组合物,其中包含硅氧烷基树脂的固体组分和成孔剂的重量比是5-70重量%,基于总组合物。9. 根据权利要求6的组合物,其中成孔剂是环糊精、聚己内酯、或其衍生物。10. 一种制备半导体间层绝缘膜的方法,该方法包括:通过在有机溶剂中溶解根据权利要求1的硅氧烷基树脂,提供液体涂料组合物;采用液体涂料组合物涂敷硅晶片以形成涂料膜;和热固化涂料膜。11. 根据权利要求10的方法,其中在150-600℃的温度下进行热固化1-150分钟。12. 一种半导体间层绝缘膜,其包括权利要求1的硅氧烷基树脂。13. 根据权利要求12的半导体间层绝缘膜,其中通过使用成孔剂在整个膜中形成微孔。14. 根据权利要求13的半导体间层绝缘膜,其中成孔剂选自环糊精、聚己内酯及其衍生物。15. 一种包含间层绝缘膜的半导体器件,该间层绝缘膜包括权利要求1的硅氧烷基树脂。
新颖的硅氧烷基树脂和使用 该树脂形成的间层绝缘膜 发明背景 此非临时申请在35 U.S.C.ξ119(a)下要求2003年9月1日提交的韩国专利申请No.2003-60811的优先权,该文献的主题在此引入作为参考。 发明领域 本发明涉及硅氧烷基树脂和使用该树脂形成的用于半导体器件的间层绝缘膜。更具体地,本发明涉及连接成多梯形形式的硅氧烷基树脂和用作半导体器件互连层之间的绝缘膜的树脂膜。 相关技术的描述 当多级集成电路器件的电路密度增加时,这种器件的性能依赖于线速率。故需要降低器件间层绝缘膜的电容以减少线中的电阻和容量。具体地,美国专利号3615272,4399266,4756977和4999397公开了由SOD(旋上沉积spin-on-deposition)方法,使用介电常数为2.5-3.1以及具有良好平面化性能的聚倍半硅氧烷来形成绝缘膜,作为介电常数为4.00的SiO2的替代物。 氢倍半硅氧烷以及其制备方法是本领域公知的。例如,美国专利号3615272公开了一种完全缩合的、溶解性氢倍半硅氧烷树脂的制备方法,该方法包括如下步骤:在硫酸介质中缩合三氯硅烷和采用水或含水硫酸洗涤获得的树脂。同样,美国专利号5010159公开了溶解性缩合氢倍半硅氧烷树脂的合成方法,该方法包括如下步骤:在含芳基硫酸水合物的水解介质中水解氢硅烷并使获得的树脂与中和剂接触。美国专利号6232424描述了具有优异溶解稳定性的高度溶解性硅树脂组合物及其制备方法,其是在水和催化剂存在下通过水解和缩聚四烷氧基硅烷、有机硅烷和有机三烷氧基硅烷单体制备得到的。美国专利号6000339描述的是二氧化硅基化合物用于改进耐氧等离子体的性能和物理性能以及涂料膜厚度,可以在水和催化剂存在下,通过使选自烷氧基硅烷、含氟烷氧基硅烷和烷基烷氧基硅烷的单体与钛-或锆-醇盐化合物反应,获得该化合物。美国专利号5835808描述的是可以从含有β-取代烷基的有机硅烷的水解和缩聚获得硅氧烷、倍半硅氧烷聚合物和包括该聚合物的组合物,它们用于形成富含SiO2的陶瓷涂层。EP0997497A1公开了包括单-、二-、三-、四烷氧基硅烷的烷氧基硅烷和三烷氧基硅烷二聚体的某些结合物的水解和缩聚可提供用于绝缘膜的树脂性材料。 发明概述 本发明的特征是提供连接成多梯形结构,具有优异溶解度和流动性以及良好机械性能的硅氧烷基树脂。 本发明的另一个特征是提供使用硅氧烷基树脂的低介电绝缘膜。 根据本发明的特征,提供一种由如下方式制备的硅氧烷基树脂:在有机溶剂中在酸或碱性催化剂和水存在下,水解和缩合由通式1表示的硅烷基单体,该通式1的单体选择性地与至少一种选自通式2-6表示的化合物的单体混合: 通式1 其中, R1和R2独立地是氢原子、C1-C3烷基、C3-C10环烷基或C6-C15芳基; X1,X2,X3,X4,X5和X6独立地是卤素原子或C1-C5烷氧基; m是1-5的整数; n是1-3的整数;和 p和q独立地是0-1的整数, 通式2 其中, R1,R2和R独立地是氢原子、C1-C3烷基、C3-C10环烷基或C6-C15芳基; X1,X2,X3和X4独立地是卤素原子或C1-C5烷氧基; n是1-3的整数;和 p和q独立地是0-1的整数, 通式3 其中, R1和R2独立地是氢原子、C1-C3烷基、C3-C10环烷基或C6-C15芳基; Xs是卤素原子、或C1-C5烷氧基; r是0-10的整数; s是1-3的整数;和 t是3-8的整数,和 通式4 SiX1X2X3X4 通式5 R1SiX1X2X3 通式6 R1R2SiX1X2其中, R1和R2独立地是氢原子、C1-C3烷基、C3-C10环烷基或C6-C15芳基;和 X1,X2,X3和X4独立地是卤素原子或C1-C5烷氧基。 根据本发明的另一个特征,其提供形成半导体间层绝缘膜的组合物。 根据本发明的仍然另一个特征,提供一种形成半导体间层绝缘膜的方法,该方法包括: 通过在有机溶剂中溶解硅氧烷基树脂,提供树脂溶液; 采用树脂溶液涂敷硅晶片;和 热固化涂料膜。 根据本发明的另一个特征,提供半导体间层绝缘膜,该绝缘膜包括使用本发明的硅氧烷基树脂。 优选实施方案的描述 以下,更详细描述本发明。 用于本发明的可多交联硅氧烷单体具有结构,其中硅原子通过碳原子连接,并且硅原子含有至少一个可水解官能团。它由通式1表示: 通式1 其中, R1和R2独立地是氢原子、C1-C3烷基、C3-C10环烷基或C6-C15芳基; X1,X2,X3,X4,X5和X6独立地是卤素原子或C1-C5烷氧基; m是1-5的整数; n是1-3的整数;和 p和q独立地是0-1的整数。 在本发明硅氧烷基树脂的制备中,可以进一步加入线性或环状硅氧烷单体。线性硅氧烷单体具有线性结构,其中在末端包含硅原子和至少一个可水解基团。它由通式2表示: 通式2 其中, R1,R2和R独立地是氢原子、C1-C3烷基、C3-C10环烷基或C6-C15芳基; X1,X2,X3和X4独立地是卤素原子或C1-C5烷氧基; n是1-3的整数;和 p和q独立地是0-1的整数。 环状硅氧烷单体具有环状结构,其中包含硅原子和至少一个可水解基团。它由通式3表示: 通式3 其中, R1和R2独立地是氢原子、C1-C3烷基、C3-C10环烷基或C6-C15芳基; Xs是卤素原子、或C1-C5烷氧基; r是0-10的整数; s是1-3的整数;和 t是3-8的整数。 此外,可以使用含有至少两个可水解官能团的硅烷化合物。硅烷化合物由通式4-6表示: 通式4 SiX1X2X3X4 通式5 R1SiX1X2X3 通式6 R1R2SiX1X2其中, R1和R2独立地是氢原子、C1-C3烷基、C3-C10环烷基或C6-C15芳基;和 X1,X2,X3和X4独立地是卤素原子或C1-C5烷氧基。 由如下方式制备根据本发明的硅氧烷基树脂:在有机溶剂中在酸或碱性催化剂和水存在下,水解和缩合由通式1表示的单体,该通式1的单体选择性地与至少一种选自通式2-6表示的化合物地单体混合。 在仅通式1的单体用于硅氧烷基树脂制备的情况下,提供在有机溶剂中具有优异溶解度和良好流动性能的多梯形类型的硅氧烷树脂。多梯形类型的硅氧烷树脂可以由如下通式7表示: 通式7 其中, X是卤素原子、羟基或C1-5烷氧基; R是氢原子、C1-C3烷基、C3-C10环烷基或C6-C15芳基; 1是2-10000的整数; m是1-5的整数;和 n是1-3的整数。 以上高分子具有梯形形式,其中硅原子与两个碳原子和两个氧原子连接,并显示线性硅氧烷高分子和网络硅氧烷高分子的性能。 具体地,多梯形类型的硅氧烷基树脂具有作为线性硅氧烷高分子的优异溶解度和流动性能和作为网络硅氧烷高分子的硅氧烷主链的良好刚性。因此在现有硅氧烷基高分子领域中,多梯形类型的硅氧烷基树脂不仅仅可用作绝缘体膜而且可用作具有高刚性的材料。 在以上硅氧烷基树脂的制备中,以1∶99-99∶1的摩尔比混合通式1的单体和选自通式2-6表示的化合物的单体。 用于本发明硅氧烷基树脂制备的酸催化剂,例如盐酸、硝酸、苯磺酸、草酸、甲酸等。作为碱催化剂,例如氢氧化钾、氢氧化钠、三乙胺、碳酸氢钠、吡啶等。催化剂对通式1-6的单体的摩尔比是0.000001∶1-10∶1。 用于本发明硅氧烷基树脂制备的水对通式1-6的单体的摩尔比是1∶1-1000∶1。 用于本发明硅氧烷基树脂制备的有机溶剂的非限制性例子包括脂族烃溶剂如己烷;芳族烃溶剂如苯甲醚、1,3,5-三甲基苯和二甲苯;酮基溶剂如甲基异丁基酮、1-甲基-2-吡咯烷酮、环己酮和丙酮;醚基溶剂如四氢呋喃和异丙醚;乙酸酯基溶剂如乙酸乙酯、乙酸丁酯和丙二醇甲基醚乙酸酯;醇基溶剂如异丙醇和丁醇;酰胺基溶剂如二甲基乙酰胺和二甲基甲酰胺;硅基溶剂;及其混合物。 根据本发明,在0-200℃,优选50-100℃下进行水解和缩聚反应0.1-100小时,优选0.5-24小时。 这样制备的硅氧烷基树脂的Mw为3,000-300,000。整个末端基团中的Si-OR含量优选等于5~50mol%。如果含量小于5mol%,薄膜的机械稳定性劣化。并且如果含量大于50mol%,组合物的贮存稳定性劣化。 本发明也提供使用本发明硅氧烷基树脂形成用于半导体器件的间层绝缘膜的组合物和方法。绝缘膜具有小于3.0的低介电性能并显示优异的机械性能和耐热性。根据本发明,可以由如下方式获得这样的绝缘膜:采用包含本发明硅氧烷基树脂的溶液涂敷硅晶片并热固化获得的涂料膜。即,将溶于有机溶剂的本发明硅氧烷基树脂涂敷到衬底上。然后,在如下热固化步骤开始时,通过简单的空气干燥或将衬底经受真空条件或经受在200℃或更低温度下的中等加热蒸发溶剂,使得可以在衬底表面上沉积树脂涂料膜。其后,通过在150-600℃,优选200-450℃的温度下加热衬底1-150分钟固化树脂涂料膜,以提供不溶性、无裂缝膜。在此使用的“无裂缝膜”表示没有任何裂缝的膜,可以采用光学显微镜在1000X的放大率下观察该膜。在此使用的“不溶性膜”表示基本不溶于用于溶解本发明硅氧烷基树脂的上述任何溶剂的膜。 根据本发明,成孔剂(porogen)与本发明硅氧烷基树脂的结合使用可使最终绝缘膜的介电常数进一步降低到2.50或更小。在此使用的“成孔剂”表示任何孔产生化合物。在使用成孔剂的情况下,要求在成孔剂的分解温度以上加热树脂膜的另外步骤使得可以分解成孔剂。 用于本发明的成孔剂可以是本领域公知的任何化合物,它们可以例示为,但不限于,环糊精、聚己内酯、及其衍生物。以1-70重量%的含量混合成孔剂,基于总固体含量。 用于溶解硅氧烷基树脂和成孔剂以提供液体涂料组合物的优选有机溶剂可以例示为,但不限于,脂族烃溶剂如己烷;芳族烃溶剂如苯甲醚、1,3,5-三甲基苯和二甲苯;酮基溶剂如甲基异丁基酮、1-甲基-2-吡咯烷酮、环己酮和丙酮;醚基溶剂如四氢呋喃和异丙醚;乙酸酯基溶剂如乙酸乙酯、乙酸丁酯和丙二醇甲基醚乙酸酯;醇基溶剂如异丙醇和丁醇;酰胺基溶剂如二甲基乙酰胺和二甲基甲酰胺;硅基溶剂;及其混合物。 在液体涂料组合物的制备中,应当以足够的数量使用有机溶剂以均匀地涂敷包括硅氧烷基树脂和成孔剂的固体组分到晶片表面。因此,有机溶剂应当等于包括如下物质的总组合物的5-70重量%,该总组合物包括所述硅氧烷基树脂、成孔剂和有机溶剂。如果液体涂料组合物的有机溶剂含量小于5重量%,一部分硅氧烷基树脂不溶解。另一方面,如果有机溶剂含量大于50重量%,最终树脂膜薄至1000埃或更小。 在本发明中,可以将这样制备的液体涂料组合物根据本领域公知的各种涂敷方法涂敷到硅晶片上。尽管最优选是旋涂,用于本发明的涂敷方法的非限制性例子包括旋涂、浸涂、喷涂、淋涂和丝网印刷。 以下,参考如下实施例更详细描述本发明。然而,给出这些实施例仅用于说明的目的,并不应当解释为限制本发明的范围。 实施例1:单体的合成 实施例1-1:环状单体(A)的合成 单体(A) 将29.014mmol(10.0g)2,4,6,8-四甲基-2,4,6,8-四乙烯基四硅氧烷和0.164g铂(0)-1,3-二乙烯基-1,1,3,3-四甲基二硅氧烷络合物(在二甲苯溶液中)引入烧瓶中,并然后采用300ml醚稀释。然后,将烧瓶冷却到-78℃,并将127.66mmol(17.29g)三氯硅烷缓慢加入到其中,其后将反应温度逐渐升高到室温。反应在室温下持续40小时,并然后在约0.1托的减压下,从反应混合物中除去挥发性材料。向反应混合物中,加入100ml己烷并搅拌1小时,随后通过硅藻土过滤以生产无色、清彻溶液。并然后在0.1托的减压下除去己烷,以生产由如下通式表示的液体化合物: 将11.28mmol(10.0g)的以上液体化合物采用500ml四氢呋喃稀释,向其中加入136.71mmol(13.83g)三乙胺。然后,将反应温度冷却到-78℃,并将136.71mmol(4.38g)甲醇缓慢加入到反应溶液中,其后将反应温度逐渐升高到室温。反应在室温下持续15小时,随后通过硅藻土过滤,并然后在约0.1托的减压下从滤液中蒸发挥发性材料。 向获得的溶液中加入100ml己烷,并搅拌1小时,随后通过硅藻土过滤。将从搅拌溶液的过滤获得的滤液与5g活性炭混合。并将这样获得的滤液经受减压以从其中除去己烷,并生产为无色液体的单体(A)。从溶于CDCl3的此单体的NMR分析获得的结果如下: 1H NMR(300MHz)数据;δ0.09(s,12H,4×-CH3),0.52-0.64(m,16H,4×-CH2CH2-),3.58(s,36H,4×[OCH3]8)。 实施例1-2:单体(B)~(E)的合成 使用购自韩国SII.Co的2,4,4,6-四甲氧基-2,2,6,6-四甲基-2,4,6-三硅庚烷单体(B)和2,2,4,4,6,6-六甲氧基-2,6-二甲基-2,4,6-三硅庚烷单体(C)(US5075477)。 使用购自Sigma.Aldrich Co.,USA的三甲氧基硅烷单体(D)和四甲氧基二甲基硅氧烷单体(E)。 单体(B):2,4,4,6-四甲氧基-2,2,6,6-四甲基-2,4,6-三硅庚烷 单体(C):2,2,4,4,6,6-六甲氧基-2,6-二甲基-2,4,6-三硅庚烷 单体(D):三甲氧基硅烷 H-Si(OMe)3 单体(E):四甲氧基二甲基硅氧烷 实施例2:硅氧烷树脂的合成 将单体以表1所示的数量放入烧瓶,并采用烧瓶中单体总数量15倍的四氢呋喃稀释。然后,将烧瓶冷却到-78℃。在-78℃下,将盐酸(HCl)和水以表1所示的数量加入到烧瓶中,其后将反应温度逐渐升高到70℃。反应在70℃下持续20小时。在反应完成时,将反应混合物转移到分液漏斗中,随后加入乙醚和用于单体先前稀释一样多的四氢呋喃。然后,进行3次洗涤,每次采用分液漏斗中总溶液十分之一的水进行。在洗涤之后,从剩余的溶液中蒸发挥发性材料以生产白色粉状聚合物。将粉末完全溶于少量丙酮中,以获得清彻溶液,并通过0.2μm注射器过滤器过滤此溶液以除去杂质获得清彻滤液,然后向其中缓慢加入去离子水。结果是,形成白色粉状材料,然后将该粉状材料从液相(丙酮和水的混合溶液)中分离,并在0-20℃的温度下在约0.1托的减压下干燥10小时,以生产分级的硅氧烷基树脂。在表1中给出单体、酸催化剂、水和所需的硅氧烷基树脂数量。 表1 硅氧烷 树脂 单体(mmol) HCl (mmol) H2O(mmol) 最终树 脂(g) (A) (B) (C) (D) (E) (a) - - 39.610 - - 0.238 663 4.5 (b) - - 24.550 24.550 - 0.221 616 4.9 (c) - 32.733 - 32.733 - 0.229 639 5.2 (d) 8.399 - 19.597 - - 0.218 609 6.5 (e) 8.399 - 8.399 - - 0.151 422 5.9 (f) 11.898 - 5.412 - - 0.175 488 6.9 (g) 8.399 19.597 - - - 0.179 500 6.4 (h) 8.399 8.399 - - - 0.134 375 5.7 (i) 11.898 5.142 - - - 0.164 459 6.8 (j) - - 30.950 - 13.264 0.239 667 4.7 (k) - - 22.107 - 22.107 0.221 617 4.6 (l) - - 13.264 - 30.950 0.203 567 5.4实施例3:树脂的分析 如下所述,分析从以上实施例2获得的各自硅氧烷基树脂的Si-OH,Si-OCH3和Si-CH3含量。结果见表2。 表2 硅氧烷树脂 Si-OH(%) Si-OCH3(%) Si-CH3(%) Si-H(%) (a) 18.3 0.0 81.7 0.0 (b) 9.9 0.0 60.5 29.6 (c) 0.0 0.0 80.5 19.5 (d) 28.6 1.1 70.3 0.0 (e) 32.2 0.8 66.7 0.0 (f) 35.6 1.0 63.4 0.0 (g) 23.3 0.7 76.0 0.0 (h) 30.7 2.3 67.0 0.0 (i) 33.5 1.0 65.5 0.0 (j) 25.7 0.0 74.3 0.0 (k) 23.7 0.3 76.4 0.0 (l) 19.5 0.5 80.0 0.0备注:Si-OH含量,Si-OCH3含量,和Si-CH3含量通过使用核磁共振分析仪(Bruker Co.)分析,并从如下公式计算: Si-OH(%)=面积(Si-OH)÷[面积(Si-H)+面积(Si-OH)+面积(Si-OCH3)/3+面积(Si-CH3)/3]×100, Si-OCH3(%)=面积(Si-OCH3)/3÷[面积(Si-H)+面积(Si-OH)+面积(Si-OCH3)/3+面积(Si-CH3)/3]×100, Si-CH3(%)=面积(Si-CH3)/3÷[面积(Si-H)+面积(Si-OH)+面积(Si-OCH3)/3+面积(Si-CH3)/3]×100,和 Si-H(%)=面积(Si-H)÷[面积(Si-H)+面积(Si-OH)+面积(Si-OCH3)/3+面积(Si-CH3)/3]×100。 实施例4:薄膜厚度和折光率的测量 将从以上实施例2获得的硅氧烷基树脂和七(2,3,6-三-O-甲氧基)-β-环糊精分别溶于丙二醇甲基醚乙酸酯(PGMEA)中,使得获得的液体涂料组合物中固体物质的最终浓度是25重量%。然后将每种涂料组合物旋涂到硅晶片上30秒,同时保持3,000rpm的旋转速率。在氮气气氛中,将涂敷的晶片经受在热板上的按顺序焙烘(在100℃下1分钟和在250℃下另一分钟),以足够蒸发有机溶剂。其后,将温度以3℃份钟的速率在真空条件下升高到420℃,在该温度下将涂料膜固化1小时以生产试件。 分析这样制备的每个试件的膜厚度和折光率。在每个试件5个不同的点分别使用断面仪和棱镜耦合器测量膜厚度和折光率。在表3中说明平均厚度和折光率以及它们的均匀性。 表3 树脂膜的组成 厚度 (埃) 折光率 (R.I.) R.I.的均 匀性(%) 厚度的均 匀性(%) 硅氧烷 树脂 硅氧烷树脂 (重量%) 成孔剂 (重量%) (a) 100 - 6889 1.4257 0.064 1.09 (a) 70 30 4725 1.3725 0.058 1.31 (b) 100 - 12648 1.4406 0.090 0.45 (b) 70 30 11273 1.3292 0.037 0.99 (c) 100 - 10193 1.4299 0.131 0.62 (c) 70 30 8983 1.3298 0.105 1.01 (d) 100 - 16142 1.4350 0.110 0.45 (d) 70 30 10940 1.3392 0.161 1.20 (e) 100 - 14360 1.4385 0.048 1.56 (e) 70 30 11397 1.3284 0.160 1.34 (f) 100 - 12767 1.4397 0.081 1.37 (f) 70 30 11397 1.3283 0.097 0.57 (g) 100 - 10193 1.4367 0.048 0.92 (g) 70 30 9126 1.3416 0.091 1.51 (h) 100 - 11225 1.4399 0.073 1.51 (h) 70 30 9724 1.3290 0.029 0.97 (i) 100 - 12553 1.4397 0.092 1.57 (i) 70 30 9950 1.3311 0.106 1.18 (j) 100 - 8270 1.4129 0.031 0.22 (j) 70 30 5914 1.3729 0.087 0.77 (k) 100 - 8206 1.4051 0.101 1.91 (k) 70 30 6089 1.3577 0.039 1.87 (l) 100 - 7071 1.3977 0.067 1.31 (l) 70 30 5564 1.3250 0.080 0.14实施例5:介电常数的测量 将由硼掺杂的P型硅晶片采用3000埃热氧化硅膜涂敷,随后使用金属蒸发器按顺序沉积100埃钛层,2000埃铝层和100埃钛层。在这些晶片的每个表面上采用与以上实施例4相同的方式形成树脂膜。随后,在树脂膜上通过硬掩模沉积1m直径的盘式电极,该电极由100埃厚钛层和5000埃厚铝层组成,以提供具有MIM(金属-绝缘体-金属)结构的试件。在100kHz下使用具有Micromanipulator 6200探针的PRECISION LCR METER(HP4284A),将这样制备的试件经受电容测量。从如下公式计算每个测试膜的介电常数,其中“d”值通过使用椭圆滤计获得。 k=C×d/εo×A 其中, k:介电常数 C:电容 εo:真空中的介电常数 d:低介电膜的厚度 A:电极的接触面积 在表4中给出计算的介电常数。 表4 薄膜组合物 介电常数硅氧烷树脂 硅氧烷树脂(重量%) 成孔剂(重量%) (a) 100 - 2.72 (a) 70 30 2.53 (b) 100 - 2.59 (b) 70 30 2.18 (c) 100 - 2.75 (c) 70 30 2.23 (d) 100 - 2.70 (d) 70 30 2.20 (e) 100 - 2.66 (e) 70 30 2.19 (f) 100 - 2.73 (f) 70 30 2.16 (g) 100 - 2.70 (g) 70 30 2.20 (h) 100 - 2.65 (h) 70 30 2.15 (i) 100 - 2.60 (i) 70 30 2.14 (j) 100 - 2.72 (j) 70 30 2.42 (k) 100 - 2.76 (k) 70 30 2.33 (l) 100 - 2.71 (l) 70 30 2.26实施例6:硬度和模量的测量 使用Nanoindenter II(MTS Co.)分析如上实施例4中制备的试件的硬度和弹性模量。将每个试件的树脂膜压痕直到压痕深度达到它总厚度的10%。此时,为保证此测量的可靠性,每个试件压6个点,并取平均硬度和模量。结果见表5。 表5 薄膜组成 硬度 (GPa) 模量 (GPa) 硅氧烷树脂 硅氧烷树脂(重量%) 成孔剂(重量%) (a) 100 - 0.43 4.77 (a) 70 30 0.27 4.10 (b) 100 - 1.08 7.00 (b) 70 30 0.58 4.20 (c) 100 - 0.94 6.55 (c) 70 30 0.51 4.00 (d) 100 - 1.04 6.53 (d) 70 30 0.51 3.62 (e) 100 - 0.98 7.01 (e) 70 30 0.50 3.80 (f) 100 - 1.12 7.34 (f) 70 30 0.59 3.91 (g) 100 - 0.71 5.10 (g) 70 30 0.38 2.93 (h) 100 - 0.46 5.52 (h) 70 30 0.45 3.01 (i) 100 - 0.44 5.23 (i) 70 30 0.31 2.97 (j) 100 - 0.49 4.44 (j) 70 30 0.27 3.53 (k) 100 - 0.52 5.01 (k) 70 30 0.34 3.61 (l) 100 - 0.61 5.53 (l) 70 30 0.39 3.81尽管为了说明的目的已经公开了本发明的优选实施方案,本领域技术人员应当理解各种改进,增加和替代是可能的,而不背离所附权利要求中公开的本发明范围和本质。
《新颖的硅氧烷基树脂和使用该树脂形成的间层绝缘膜.pdf》由会员分享,可在线阅读,更多相关《新颖的硅氧烷基树脂和使用该树脂形成的间层绝缘膜.pdf(22页珍藏版)》请在专利查询网上搜索。
具有新颖结构的硅氧烷基树脂和使用该树脂的半导体间层绝缘膜。硅氧烷基树脂除优异的机械性能以外具有低介电常数,并且是半导体器件互连层之间的绝缘膜中的有用材料。。
copyright@ 2017-2020 zhuanlichaxun.net网站版权所有经营许可证编号:粤ICP备2021068784号-1