基于超颖材料结构的空间光调制器及其制备方法.pdf

上传人:32 文档编号:1776722 上传时间:2018-07-12 格式:PDF 页数:10 大小:909.48KB
返回 下载 相关 举报
摘要
申请专利号:

CN201310476509.9

申请日:

2013.10.12

公开号:

CN104570402A

公开日:

2015.04.29

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):G02F 1/01申请日:20131012|||公开

IPC分类号:

G02F1/01

主分类号:

G02F1/01

申请人:

中国科学院苏州纳米技术与纳米仿生研究所

发明人:

陈沁; 宋世超

地址:

215000江苏省苏州市工业园区独墅湖高校区若水路398号

优先权:

专利代理机构:

南京利丰知识产权代理事务所(特殊普通合伙)32256

代理人:

王锋

PDF下载: PDF下载
内容摘要

本发明公开了一种基于超颖材料结构的空间光调制器及其制备方法。该空间光调制器包括光功能元件阵列和控制电路,所述光功能元件包含超颖材料结构,所述超颖材料结构至少包括金属纳米结构层和金属反射镜层,所述金属纳米结构层和金属反射镜层之间设有介质层与非金属导电材料层;其制备方法包括:在衬底上制备控制电路,然后制备金属反射镜层、介质层、非金属导电材料层,然后再加工形成金属纳米结构层和透明保护层,并进行电互联。本发明空间光调制器结构简单,集成度高,易于制作,成本低廉,能实现高速调制,调制深度易于调控,并且最低可以将驱动电压控制在1V以下。

权利要求书

权利要求书
1.   一种基于超颖材料结构的空间光调制器,包括光功能元件阵列和控制电路,其特征在于,所述光功能元件包含超颖材料结构,所述超颖材料结构至少包括金属纳米结构层和金属反射镜层,所述金属纳米结构层和金属反射镜层之间设有介质层与非金属导电材料层,并且所述超颖材料结构的阻抗Z等于或接近376.7Ω,其中                                               ,ε、μ分别是所述超颖材料结构的有效介电常数和磁导率。

2.   根据权利要求1所述的基于超颖材料结构的空间光调制器,其特征在于,所述超颖材料结构还包括衬底和/或透明保护层,并且,所述衬底、金属反射镜层、介质层、非金属导电材料层、金属纳米结构层和透明保护层沿设定方向依次分布。

3.   根据权利要求1所述的基于超颖材料结构的空间光调制器,其特征在于,所述金属纳米结构层和/或金属反射镜层至少包括金、铂、银、铜、铝、钛中的任意一种形成的单一金属层或任意两种以上形成的合金层。

4.   根据权利要求3所述的基于超颖材料结构的空间光调制器,其特征在于,所述金属纳米结构层和/或金属反射镜层包括两种以上单一金属层、两种以上合金层或一种以上单一金属层与一种以上合金层层叠形成的叠加结构。

5.   根据权利要求1-4中任一项所述的基于超颖材料结构的空间光调制器,其特征在于,所述金属纳米结构层包括一维或者二维光栅,所述光栅的周期为100-2000纳米,厚度为5-100纳米。

6.   根据权利要求1-4中任一项所述的基于超颖材料结构的空间光调制器,其特征在于,所述金属反射镜层的厚度在50纳米以上。

7.   根据权利要求1-4中任一项所述的基于超颖材料结构的空间光调制器,其特征在于,所述介质层的厚度为5-100纳米,材质包括二氧化硅、氮化硅、氟化镁或硒化锌。

8.   根据权利要求1-4中任一项所述的基于超颖材料结构的空间光调制器,其特征在于,用于形成所述非金属导电材料层的材料包括铟锡氧化物、氧化锌、氧化锡、氧化铟、氮化钛、氮化锆、单层或多层石墨烯。

9.   根据权利要求1-4中任一项所述的基于超颖材料结构的空间光调制器,其特征在于,所述透明保护层主要由对入射波低吸收的材料形成,所述对入射波低吸收的材料包括二氧化硅、氮化硅或氧化铝。

10.   权利要求1-9中任一项所述基于超颖材料结构的空间光调制器的制备方法,其特征在于,包括如下步骤:
(1)利用标准CMOS工艺在硅片上制备包括控制电路的衬底;
(2)通过金属薄膜沉积法在衬底上制备金属反射镜层;
(3)通过薄膜沉积法在金属反射镜层上制备介质层和非金属导电材料层;
(4)通过薄膜沉积法和微纳加工方法在非金属导电材料层上制作金属纳米结构层;
(5)通过薄膜沉积方法在金属纳米结构层上制备透明保护层;
(6)通过微纳加工方法制备互联电极。

说明书

说明书基于超颖材料结构的空间光调制器及其制备方法
技术领域
本发明涉及一种空间光调制器及其制备方法,尤其涉及一种基于超颖材料和导电氧化物的反射式空间光调制器及其制备方法,属于空间光调制器技术领域。
背景技术
光信息处理是近年来发展的一种新兴技术,具有处理速度快、信息流量大等优点,尤其是光波的抗干扰性很好,可以以并行方式传输和处理所荷载的信息,因此在信息和国防等领域具有重大应用价值。空间光调制器是一种对光波的空间分布进行调制的器件,具体地说,就是在信号源的控制下,对光波的某种特性(如振幅、相位、偏振和频率等)的一维或二维分布进行空间和时间的变换或调制,从而将源信号所载荷的信息写进入射光之中的器件。目前空间光调制器的实现技术主要包括电吸收调制、电光调制、液晶和MEMs等技术。其中,液晶和MEMs调制的低速操作不能满足高速调制的应用;电吸收型调制一般基于砷化镓量子阱材料,成本高,而且由于整体结构往往需要数十层异质材料的外延,工艺复杂,而多层材料均匀性问题亦限制了阵列大小,调制深度也受到限制;电光调制一般基于非线性晶体材料或聚合物,器件体积大,驱动电压高。
发明内容
本发明的目的在于提供一种基于超颖材料结构的空间光调制 器及其制备方法,以克服现有技术中的不足。
为实现上述发明目的,本发明采用了如下技术方案:
一种基于超颖材料结构的空间光调制器,包括光功能元件阵列和控制电路,所述光功能元件包含超颖材料结构,所述超颖材料结构包括金属纳米结构层和金属反射镜层,所述金属纳米结构层和金属反射镜层之间设有介质层与非金属导电材料层,并且所述超颖材料结构的阻抗Z等于或接近(<±5%)376.7Ω,其中ε、μ分别是所述超颖材料结构的有效介电常数和磁导率。
作为可行的实施方案之一,所述超颖材料结构还包括衬底和/或透明保护层,并且所述衬底、金属反射镜层、介质层、非金属导电材料层、金属纳米结构层和透明保护层沿设定方向依次分布。
进一步的,所述金属纳米结构层和/或金属反射镜层可包括且不限于金、铂、银、铜、铝、钛中的任意一种形成的单一金属层或任意两种以上形成的合金层。
进一步的,所述金属纳米结构层和/或金属反射镜层包括两种以上单一金属层、两种以上合金层或一种以上单一金属层与一种以上合金层层叠形成的叠加结构。
进一步的,所述金属纳米结构层包括一维或者二维光栅,所述光栅的周期为100-2000纳米,厚度为5-100纳米。
进一步的,所述金属反射镜层的厚度在50纳米以上,优选在200nm以下。
进一步的,所述介质层的厚度为5-100纳米,材质包括二氧化硅、氮化硅、氟化镁或硒化锌。
进一步的,用于形成所述非金属导电材料层的材料可选自且不限于铟锡氧化物、氧化锌、氧化锡、氧化铟、氮化钛、氮化锆、单层或多层石墨烯。
进一步的,所述透明保护层主要由对入射波低吸收的材料形成,例如,二氧化硅、氮化硅或氧化铝。
作为较为优选的实施方案之一,前述基于超颖材料结构的空间光调制器的制备方法可以包括如下步骤:
(1)利用标准CMOS工艺在硅片上制备包括控制电路的衬底;
(2)通过金属薄膜沉积法在衬底上制备金属反射镜层;
(3)通过薄膜沉积法在金属反射镜层上制备介质层和非金属导电材料层;
(4)通过薄膜沉积法和微纳加工方法在非金属导电材料层上制作金属纳米结构层;
(5)通过薄膜沉积方法在金属纳米结构层上制备透明保护层;
(6)通过微纳加工方法制备互联电极。
本发明基于超颖材料构建了一种新型的空间光调制器,其中,超颖材料的电磁特性主要依赖于亚波长结构本身,具有很大的设计自由度,可以在较大波长范围实现吸收峰的控制。
而且,通过优化设计亚波长结构可以使得超颖材料的有效介电常数和磁导率在特定波长都接近于自由空间的介电常数和磁导率,进而获得零反射。
优选的,通过将前述亚波长结构和反射镜结合,还可以实现特定波段电磁波的完全局域。
又及,根据Drude模型,
&epsiv;=&epsiv;-ωp2ω2+iωΓ]]>
ωp2=Ne2ω0m*]]>
前式中,ε∞为材料高频时的介电常数,ωp为等离子体共振频率,ω为角频率,Г为自由电子的平均散射时间,N为电子浓度,e为电子电量,ε0为真空中的介电常数,m*为电子的有效质量,材 料的介电常数与电子浓度有关。
在本发明中,通过外加电压,可以在非金属导电材料层中形成载流子积累层,并且载流子浓度随电压大小改变,从而获得非金属导电材料折射率的电调控,进而实现反射光强的调制,并获得极低的驱动电压(<1V)。
同时,通过在非金属导电材料层的两侧加偏压,可以迅速的形成载流子积累层,即获得极高的响应速度;
此外,本发明的空间光调制器不需要类似电吸收调制器的材料外延和倒装焊工艺,可以通过薄膜沉积和微纳加工集成在控制电路上,实现完全的集成,因此可以获得大阵列空间光调制器的低成本制作。
附图说明
为了更清楚地说明本发明的内容,下面将对实施例做简单的介绍。本发明提供优选实施例,但不应该被认为仅限于在此阐述的实施例。附图是本发明的理想化实施例的示意图,作为示意图不应该被认为严格反映了几何尺寸的比例关系。本发明所示的实施例不应该被认为仅限于图中所示的区域的特定形状。图中的表示是示意性的,不应该被认为限制本发明的范围。
图1为本发明一可选实施方案中基于超颖材料结构的空间光调制器的纵向剖面图;
图2为本发明另一可选实施方案中基于超颖材料结构的空间光调制器的纵向剖面图;
图3为本发明一可选实施方案中基于采用一维光栅结构的超颖材料结构的空间光调制器的俯视图;
图4为本发明一可选实施方案中基于采用二维光栅结构的超颖材料结构的空间光调制器的俯视图;
图5为一可选实施方案中基于超颖材料结构的高调制率空间 光调制器的工作状态图;
图6为又一可选实施方案中基于超颖材料结构的高调制率空间光调制器的工作状态图。
具体实施方式
本发明的一个方面提供了一种基于超颖材料结构的空间光调制器,其主要由光功能元件阵列和控制电路组成,其中,光功能元件包含超颖材料结构,所述超颖材料结构至少包括金属纳米结构层和金属反射镜层以及两者之间的介质层与非金属导电材料层。
通过优化设计该超颖材料结构,可使其具有窄频带的高吸收特性。
本发明的空间光调制器的调制原理是基于偏压下非金属导电材料层中形成的载流子积累对材料折射率的改变,从而调制窄带吸收峰的位置,实现特定波长光波在高反射与高吸收间的连续变化,进而获得反射光强的调制。
在本发明的一较为优选的实施方式中,参阅图1,该基于超颖材料结构的空间光调制器包括衬底11、金属反射镜层22、介质层33、非金属导电材料层44、金属纳米结构层55和透明保护层66。根据不同情况可以分别或者同时去掉衬底11和透明保护层66,构成整个器件(参阅图2)。另外,介质层33和非金属导电材料层44的位置可以互换。通过设计超颖材料结构使其在入射波的波长位置在调制器不加偏压时具有低反射。
光功能元件形成一维(图3)或者二维(图4)阵列单元,并且可以独立寻址,每个单元的反射光强调制由控制电路控制。
其工作原理是,特定波长的入射电磁波77入射到光功能元件阵列,光功能元件上的超颖材料结构优化在此波长处近100%的吸收,此单元的反射光近似为零;在金属纳米结构层55和金属反射镜层22加上偏压后,非金属导电材料层44中形成载流子积累层, 此层中的载流子浓度随外加偏压的提高而增加,从而引起非金属导电材料层折射率的改变,进而改变了入射光波长处的吸收值,并且吸收值的变化随外加偏压的大小变化,从而获得从光功能元件反射光强度的调制,或者,也可理解为,超颖材料结构的低反射峰位因此发生改变,在入射波的波长位置的反射光实现了强度调制,继而,通过独立控制光功能元件阵列上每个单元的偏压,可以获得空间的光调制能力。
优选的,该空间光调制器可包括衬底11、金属反射镜层22、介质层33、非金属导电材料层44、金属纳米结构层55与透明保护层66,其中金属反射镜层22、介质层33和非金属导电材料层44以及金属纳米结构层55构成超颖材料结构,其阻抗Z等于或接近376.7Ω,其中ε、μ分别是超颖材料结构的介电常数和磁导率。
进一步的,所述衬底11优选硅,并制备了控制电路。
进一步的,所述金属纳米结构层55和金属反射镜层22的金属材料可选用但不限于金、铂、银、铜、铝、钛等单一金属层、合金层或多种单一金属层或合金层的叠加结构。
进一步的,所述金属纳米结构层55为一维光栅或者二维光栅,周期为100-2000纳米,厚度为5-100纳米。
进一步的,所述金属反射镜层22的厚度不少于50纳米。
进一步的,所述介质层33可选用但不限于二氧化硅、氮化硅、氟化镁和硒化锌等,厚度为5-100纳米。
进一步的,所述非金属导电材料层44可选用但不限于铟锡氧化物、氧化锌、氧化锡、氧化铟、氮化钛和氮化锆以及单层或多层石墨烯等。
进一步的,所述透明保护层66为入射光低吸收材料,如氮化硅、二氧化硅、氧化铝等。
本发明的另一个方面提供了一种制备前述空间光调制器的方 法,包括:在衬底上制备控制电路,然后制备金属反射镜、介质层、非金属导电材料层,然后再加工形成金属纳米结构层和透明保护层,并进行电互联。
进一步的,作为较为优选的实施方案之一,该制备方法可以包括如下步骤:
(1)利用标准CMOS工艺在硅片上制备包括控制电路的衬底;
(2)通过金属薄膜沉积的方法在衬底上制备金属反射镜层;
(3)在金属反射镜层上通过薄膜沉积方法制备介质层和非金属导电材料层;
(4)在非金属导电材料层上通过薄膜沉积和微纳加工方法制作金属纳米结构层;
(5)在金属纳米结构层上通过薄膜沉积方法制备透明保护层;
(6)通过微纳加工方法制备互联电极。
综述之,本发明空间光调制器结构简单,集成度高,易于制作,成本低廉,能实现高速调制,调制深度易于调控,并且驱动电压可控制在1V以下。
下面结合若干具体实施例及相关附图对本发明的技术方案进行详细说明。
实施例1:请继续参阅图1和图3,本实施例基于超颖材料结构的空间光调制器包括带有控制电路的衬底11(硅)、金属反射镜22(金)、介质层33(SiO2)、非金属导电材料层44(ITO)、金属纳米结构层55(金)和透明保护层66(SiO2)。器件结构选取如下:金属纳米结构层55厚度为50纳米,并且是一维光栅结构,金属栅宽度为240纳米,周期为300纳米;非金属导电材料层44厚度为10纳米;介质层33厚度为15纳米;金属反射镜22厚度为55纳米;透明保护层66厚度为70纳米。如图5所示,0V偏压时,当入射光偏振方向垂直于光栅时,在工作波长1.135微米处,光功能元件的反射率为0.86;1V偏压时,反射率为4×10-4。调制深度达 到33dB。当调制电压在0V到1V之间变化时,光功能元件的反射率在0.86到4×10-4之间变化,可以实现灰度调节。由于光功能元件阵列中各单元可独立寻址,因此整个空间光调制器可以获得反射光强度的空间调制。
本实施例由如下制备方法实现:
(1)利用标准CMOS工艺在硅片上制备包括控制电路的衬底;
(2)通过金属薄膜沉积的方法在衬底上制备金属反射镜层;
(3)在金属反射镜层上通过薄膜沉积方法制备介质层和非金属导电材料层;
(4)在非金属导电材料层上通过薄膜沉积和微纳加工方法制作金属纳米结构层;
(5)在金属纳米结构层上通过薄膜沉积方法制备透明保护层;
(6)通过微纳加工方法制备互联电极。
实施例二:不同于实施例1,本实施例采用二维周期结构的金属纳米结构层55,请再参阅图2,4。该器件结构选取如下:金属纳米结构层55厚度为50纳米,且为二维光栅结构,金属栅宽度为270纳米,周期为300纳米;非金属导电材料层44厚度为10纳米;介质层33厚度为15纳米;金属反射镜22厚度为55纳米。由于金属纳米结构层55具有对称性,因此本实施例的空间光调制器对于正入射的各偏振光都具有同样的效果,即,如图6所示,0V偏压时,当入射光偏振方向垂直于光栅时,在工作波长1.135微米处,光功能元件的反射率为0.85;1V偏压时,反射率为8×10-5。调制深度达到40dB。当调制电压在0V到1V之间变化时,光功能元件的反射率在0.85到8×10-5之间变化,可以实现灰度调节。
本发明所揭示的乃较佳实施例的一种或多种,凡是局部的变更或修饰而源于本发明的技术思想而为熟悉该项技术的人所易于推知的,俱不脱离本发明的专利权范围。

基于超颖材料结构的空间光调制器及其制备方法.pdf_第1页
第1页 / 共10页
基于超颖材料结构的空间光调制器及其制备方法.pdf_第2页
第2页 / 共10页
基于超颖材料结构的空间光调制器及其制备方法.pdf_第3页
第3页 / 共10页
点击查看更多>>
资源描述

《基于超颖材料结构的空间光调制器及其制备方法.pdf》由会员分享,可在线阅读,更多相关《基于超颖材料结构的空间光调制器及其制备方法.pdf(10页珍藏版)》请在专利查询网上搜索。

本发明公开了一种基于超颖材料结构的空间光调制器及其制备方法。该空间光调制器包括光功能元件阵列和控制电路,所述光功能元件包含超颖材料结构,所述超颖材料结构至少包括金属纳米结构层和金属反射镜层,所述金属纳米结构层和金属反射镜层之间设有介质层与非金属导电材料层;其制备方法包括:在衬底上制备控制电路,然后制备金属反射镜层、介质层、非金属导电材料层,然后再加工形成金属纳米结构层和透明保护层,并进行电互联。本。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 物理 > 光学


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1