推荐词的展现方法和装置.pdf

上传人:zhu****_FC 文档编号:1750305 上传时间:2018-07-09 格式:PDF 页数:16 大小:1.39MB
返回 下载 相关 举报
摘要
申请专利号:

CN201510140722.1

申请日:

2015.03.27

公开号:

CN104731926A

公开日:

2015.06.24

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):G06F 17/30申请日:20150327|||公开

IPC分类号:

G06F17/30

主分类号:

G06F17/30

申请人:

百度在线网络技术(北京)有限公司

发明人:

黄世维; 张显; 张博; 王鹏; 潘发益; 张宇川; 任伟帅; 曹冰; 张晓婧; 苑雪冉

地址:

100085北京市海淀区上地十街10号百度大厦三层

优先权:

专利代理机构:

北京清亦华知识产权代理事务所(普通合伙)11201

代理人:

宋合成

PDF下载: PDF下载
内容摘要

本发明提出一种推荐词的展现方法和装置,该推荐词的展现方法包括:针对至少两个维度中的每个维度从基础数据中提取推荐词;从提取的推荐词中提取至少两种特征,并根据所述至少两种特征对所述推荐词进行处理;根据行为数据展现处理后的推荐词。本发明可以摆脱用户的知识背景以及检索词的局限性,真正地为用户推荐相关知识,引导用户搜索,可以很好地满足用户无法描述或者描述不精确的知识需求,并且通过用户行为挖掘以及历史大数据分析可以有效避免时滞问题,推荐的知识都具有很高的时效性。

权利要求书

权利要求书
1.  一种推荐词的展现方法,其特征在于,包括:
针对至少两个维度中的每个维度从基础数据中提取推荐词;
从提取的推荐词中提取至少两种特征,并根据所述至少两种特征对所述推荐词进行处 理;
根据行为数据展现处理后的推荐词。

2.  根据权利要求1所述的方法,其特征在于,所述根据所述至少两种特征对所述推荐 词进行处理包括:
根据每个维度的推荐词对每种特征的倚重程度,对所述推荐词中提取的至少两种特征 的权重进行调整;
根据调整权重后的特征对所述推荐词进行过滤,并对过滤后获得的推荐词进行排序。

3.  根据权利要求1所述的方法,其特征在于,所述根据行为数据展现处理后的推荐词 包括:
根据已登录用户的先验行为数据展现所述已登录用户的先验行为数据对应的推荐词。

4.  根据权利要求1所述的方法,其特征在于,所述根据行为数据展现处理后的推荐词 包括:
根据全部搜索用户的行为数据进行挖掘,获得所述处理后的推荐词中搜索热度高于预 定阈值的推荐词,展现获得的推荐词。

5.  根据权利要求1所述的方法,其特征在于,所述根据行为数据展现处理后的推荐词 包括:
根据用户的行为数据获得所述用户的学科类别偏好信息,根据所述用户的学科类别偏 好信息展现处理后的推荐词。

6.  根据权利要求1-5任意一项所述的方法,其特征在于,所述根据行为数据展现调整 后的推荐词之后,还包括:
接收用户通过点击展现的推荐词输入的选择指示,向所述用户展现所述用户选择的推 荐词对应的检索结果。

7.  根据权利要求1-5任意一项所述的方法,其特征在于,所述至少两种特征包括:学 术论文的引用量及引用的领域分布、推荐词的检索量、推荐词的领域分布信息和推荐词领 域相关及负相关。

8.  一种推荐词的展现装置,其特征在于,包括:
提取模块,用于针对至少两个维度中的每个维度从基础数据中提取推荐词,以及从提 取的推荐词中提取至少两种特征;
处理模块,用于根据所述提取模块提取的至少两种特征对所述推荐词进行处理;
展现模块,用于根据行为数据展现所述处理模块处理后的推荐词。

9.  根据权利要求8所述的装置,其特征在于,所述处理模块包括:
调整子模块,用于根据每个维度的推荐词对每种特征的倚重程度,对所述推荐词中提 取的至少两种特征的权重进行调整;
过滤子模块,用于根据所述调整子模块调整权重后的特征对所述推荐词进行过滤;
排序子模块,用于对所述过滤子模块过滤后获得的推荐词进行排序。

10.  根据权利要求8所述的装置,其特征在于,
所述展现模块,具体用于根据已登录用户的先验行为数据展现所述已登录用户的先验 行为数据对应的推荐词。

11.  根据权利要求8所述的装置,其特征在于,
所述展现模块,具体用于根据全部搜索用户的行为数据进行挖掘,获得所述处理后的 推荐词中搜索热度高于预定阈值的推荐词,展现获得的推荐词。

12.  根据权利要求8所述的装置,其特征在于,
所述展现模块,具体用于根据用户的行为数据获得所述用户的学科类别偏好信息,根 据所述用户的学科类别偏好信息展现处理后的推荐词。

13.  根据权利要求8-12任意一项所述的装置,其特征在于,还包括:接收模块;
所述接收模块,用于在所述展现模块展现调整后的推荐词之后,接收用户通过点击展 现的推荐词输入的选择指示;
所述展现模块,还用于向所述用户展现所述用户选择的推荐词对应的检索结果。

14.  根据权利要求8-12任意一项所述的装置,其特征在于,所述提取模块从提取的推 荐词中提取的至少两种特征包括:学术论文的引用量及引用的领域分布、推荐词的检索量、 推荐词的领域分布信息和推荐词领域相关及负相关。

说明书

说明书推荐词的展现方法和装置
技术领域
本发明涉及互联网技术领域,尤其涉及一种推荐词的展现方法和装置。
背景技术
在学术科研领域,学者、学生或科研工作者等对某个领域有知识需求的时候,都会检 索相关文献,从传统的纸质文献到如今的电子文献,检索方式越来越方便。而用户的需求 有很多种,可以分为:
1)精确需求:精确的单篇论文和/或具体的某个作者等。
2)非精确需求:某个领域的研究热点和前沿、专家、权威机构、学术会议、学术期刊 等。
对于精确需求,可以通过标题、作者和/或关键词等检索手段检索到相关知识,满足需 求。而非精确需求则很难通过具体某个检索词(query)的检索来满足用户对知识的需求, 例如:检索“管理学专家”,用户的实际需求是管理学领域的学术专家,但检索得到的结果 往往却不是相关专家。
并且,通过具体某个检索词的检索也无法解决时效性的问题,例如:用户检索“历史 学研究热点”,用户的实际需求是当下历史学的研究热点,但检索得到的结果往往却是几年 之前的知识。
发明内容
本发明的目的旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明的第一个目的在于提出一种推荐词的展现方法。该方法可以摆脱用户的 知识背景以及检索词的局限性,真正地为用户推荐相关知识,引导用户搜索,可以很好地 满足用户无法描述或者描述不精确的知识需求,并且通过用户行为挖掘以及历史大数据分 析可以有效避免时滞问题,推荐的知识都具有很高的时效性。
本发明的第二个目的在于提出一种推荐词的展现装置。
为了实现上述目的,本发明第一方面实施例的推荐词的展现方法,包括:针对至少两 个维度中的每个维度从基础数据中提取推荐词;从提取的推荐词中提取至少两种特征,并 根据所述至少两种特征对所述推荐词进行处理;根据行为数据展现处理后的推荐词。
本发明实施例的推荐词的展现方法,针对至少两个维度中的每个维度从基础数据中提 取推荐词,然后从提取的推荐词中提取至少两种特征,并根据上述至少两种特征对上述推 荐词进行处理,最后根据行为数据展现处理后的推荐词,从而可以摆脱用户的知识背景以 及检索词的局限性,真正地为用户推荐相关知识,引导用户搜索,可以很好地满足用户无 法描述或者描述不精确的知识需求,并且通过用户行为挖掘以及历史大数据分析可以有效 避免时滞问题,推荐的知识都具有很高的时效性。
为了实现上述目的,本发明第二方面实施例的推荐词的展现装置,包括:提取模块, 用于针对至少两个维度中的每个维度从基础数据中提取推荐词,以及从提取的推荐词中提 取至少两种特征;处理模块,用于根据所述提取模块提取的至少两种特征对所述推荐词进 行处理;展现模块,用于根据行为数据展现所述处理模块处理后的推荐词。
本发明实施例的推荐词的展现装置,提取模块针对至少两个维度中的每个维度从基础 数据中提取推荐词,然后从提取的推荐词中提取至少两种特征,处理模块根据上述至少两 种特征对上述推荐词进行处理,最后展现模块根据行为数据展现处理后的推荐词,从而可 以摆脱用户的知识背景以及检索词的局限性,真正地为用户推荐相关知识,引导用户搜索, 可以很好地满足用户无法描述或者描述不精确的知识需求,并且通过用户行为挖掘以及历 史大数据分析可以有效避免时滞问题,推荐的知识都具有很高的时效性。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明 显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显 和容易理解,其中:
图1为本发明推荐词的展现方法一个实施例的流程图;
图2为本发明推荐词的展现结果一个实施例的示意图;
图3为本发明推荐词的展现结果另一个实施例的示意图;
图4为本发明设置用户关注的领域和语言的页面一个实施例的示意图;
图5为本发明推荐词的展现结果再一个实施例的示意图;
图6为本发明推荐词的展现结果再一个实施例的示意图;
图7为本发明推荐词的展现结果再一个实施例的示意图;
图8为本发明推荐词的展现结果再一个实施例的示意图;
图9为本发明推荐词的展现装置一个实施例的结构示意图;
图10为本发明推荐词的展现装置另一个实施例的结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同 或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描 述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。相反,本发 明的实施例包括落入所附加权利要求书的精神和内涵范围内的所有变化、修改和等同物。
图1为本发明推荐词的展现方法一个实施例的流程图,如图1所示,该推荐词的展现 方法可以包括:
步骤101,针对至少两个维度中的每个维度从基础数据中提取推荐词。
其中,上述至少两个维度是指为用户挖掘的推荐词所涉及的至少两个不同维度,举例 来说,上述至少两个维度可以包括领域关键词、期刊、学者和会议等。
步骤102,从提取的推荐词中提取至少两种特征,并根据上述至少两种特征对上述推 荐词进行处理。
其中,上述至少两种特征是指能够衡量推荐词重要性和准确性的特征,上述至少两种 特征可以包括:学术论文的引用量及引用的领域分布、推荐词的检索量、推荐词的领域分 布信息和推荐词领域相关及负相关。
具体地,(1)学术论文的引用量及引用的领域分布:在期刊和/或学者挖掘中比较关键, 将期刊和/或学者的所有论文划分到各个领域中,再对各个领域的论文的引用量进行统计。
(2)推荐词检索量:这里的检索量指两个值,一个是每个推荐词在检索日志中的统计 量,另一个是推荐词在所有论文关键词中出现的频次。后者只用于领域关键词的挖掘中。
(3)推荐词领域分布:推荐词领域分布在不同维度的计算方式不一样,例如:在领域 关键词的挖掘中是指特定关键词在各个领域的论文中出现的频次;在期刊、学者、会议挖 掘中是指其包含的论文的领域分布数据。
(4)推荐词领域相关及负相关:主要是指某个推荐词在领域中出现的概率大小及概率 整体分布的情况,例如:“数据挖掘”在“计算机”领域出现概率大,则表示“数据挖掘” 与“计算机”领域的相关性大,“调研”在多个领域中出现概率差不多并且分布的领域很多, 则表示“调研”与各个领域的负相关性大。
本实施例中,根据上述至少两种特征对上述推荐词进行处理可以为:根据每个维度的 推荐词对每种特征的倚重程度,对上述推荐词中提取的至少两种特征的权重进行调整;然 后根据调整权重后的特征对上述推荐词进行过滤,并对过滤后获得的推荐词进行排序。其 中,权重调整的具体数值可以在具体实现时根据实现需求和/或系统性能等自行设定,本实 施例对此不作限定。
具体地,由于不同维度的推荐词对各种特征的倚重程度不一样,因此针对不同维度的 推荐词挖掘需要不同的特征权重值。例如:领域关键字这个维度的推荐词与领域分布和推 荐词检索量的相关性较大,那么就需要将这两种特征的权重调高而将其他特征的权重调低 一些。极端情况下,某个推荐词可能只依赖某几种特征,那么可以将该推荐词不依赖的特 征的权重调整为零或者直接去掉不依赖的特征。
进一步地,由于挖掘出来的推荐词会有一些质量不太好的,例如比较泛的词、比较冷 门的期刊、作者或会议等,因此,需要有一些补充策略对挖掘出来的数据进行再次过滤及 排序。当然过滤和排序的方法会因之前依赖的特征的不同而不同,例如:对领域关键词这 个维度中的推荐词进行过滤使用了领域分布超过8且每个领域大于10的过滤阈值,并使用 检索频次及关键字长度对过滤后获得的推荐词重新调整排序。
步骤103,根据行为数据展现处理后的推荐词。
本实施例的一种实现方式中,根据行为数据展现处理后的推荐词可以为:根据已登录 用户的先验行为数据展现上述已登录用户的先验行为数据对应的推荐词。也就是说,对于 已登录用户,已登录用户由于有一些先验行为数据,因此首先展现的就是与其先验行为数 据相关的推荐词结果,用户可以点击不同的卡片/标签而不需要输入检索词就可以获取想要 的检索结果。例如:一个关注“法学”、“社会学”的用户,在登录之后点击了“法学”标 签,推荐词的展现结果可以如图2所示。图2为本发明推荐词的展现结果一个实施例的示 意图。
本实施例的另一种实现方式中,根据行为数据展现处理后的推荐词可以为:根据全部 搜索用户的行为数据进行挖掘,获得上述处理后的推荐词中搜索热度高于预定阈值的推荐 词,展现获得的推荐词。其中,上述预定阈值的大小可以在具体实现时根据实现需求和/ 或系统性能等自行设定,本实施例对上述预定阈值的大小不作限定。也就是说,对于未登 录用户,由于无法获得未登录用户的先验行为数据,因此可以根据全部搜索用户的行为数 据进行挖掘,获得处理后的推荐词中搜索热度高于预定阈值的推荐词,即“热搜词”,然后 向未登录用户展现“热搜词”卡片,在未登录用户点击“热搜词”卡片中的卡片之后,向 未登录用户展现相应的检索结果,例如:未登录用户点击“热搜词”卡片中的期刊卡片之 后,向未登录用户展现推荐期刊,如图3所示。图3为本发明推荐词的展现结果另一个实 施例的示意图。
从图2和图3可以看出,不管是登录用户还是非登录用户,都可以通过点击这种直观 的推荐词跳转到检索结果页,从而实现无检索词的检索。
本实施例的再一种实现方式中,根据行为数据展现处理后的推荐词可以为:根据用户 的行为数据获得上述用户的学科类别偏好信息,根据上述用户的学科类别偏好信息展现处 理后的推荐词。
具体地,可以根据用户的行为数据对用户的历史关注学科类别进行记录,只展示一种 最直观的用户关注学科类别的数据收集方式。其中,用户的行为数据可以为用户的论文收 藏数据和/或历史点击行为数据,也就是说,可以根据用户的论文收藏数据和/或历史点击 行为数据在各个领域上的分布,获得用户的学科类别偏好信息。在展现推荐词时,对推荐 词的展现可以结合用户的学科类别偏好信息进行更加合理的推荐调整,避免不符合用户偏 好的推荐词被展现。
进一步地,步骤103,根据行为数据展现调整后的推荐词之后,还可以接收用户通过 点击展现的推荐词输入的选择指示,向上述用户展现上述用户选择的推荐词对应的检索结 果。
上述推荐词的展现方法,针对至少两个维度中的每个维度从基础数据中提取推荐词, 然后从提取的推荐词中提取至少两种特征,并根据上述至少两种特征对上述推荐词进行处 理,最后根据行为数据展现处理后的推荐词,从而可以摆脱用户的知识背景以及检索词的 局限性,真正地为用户推荐相关知识,引导用户搜索,可以很好地满足用户无法描述或者 描述不精确的知识需求,并且通过用户行为挖掘以及历史大数据分析可以有效避免时滞问 题,推荐的知识都具有很高的时效性。上述方法结合我国学科分类体系,细分到具体每个 学科,可以精准命中具体学科进行知识推荐,推荐知识涵盖范围广,准确性高。
本发明图1所示实施例提供的方法通过对用户检索行为数据进行分析,可以从以 下几个维度来满足用户对某领域的知识需求:关键词、期刊、会议和学者。
从用户的角度来看,分为登录和未登录两种状态。在未登录状态下,推荐给用户 所有领域综合的热点和前沿知识。在用户登录并且设置了学科领域之后,则推荐用户 关注学科的相关知识。
其中,用户登录之后,设置用户关注的领域和语言的页面可以如图4所示,图4 为本发明设置用户关注的领域和语言的页面一个实施例的示意图。参见图4,用户关注 的领域可以多选,在用户登录状态下,可以同步设置。
本发明图1所示实施例提供的方法可以从领域关键词的维度展现推荐词,展现的每个 推荐词之后有相应的搜索热度,点击具体的推荐词,则展现该推荐词对应的检索结果,如 图5所示,图5为本发明推荐词的展现结果再一个实施例的示意图。参见图5,在未登录 状态下,推荐词包括所有领域的综合热点和前沿关键词;登录并且设置了关注领域的状态 下,推荐词包括哟过户关注领域之下的关键词。多个领域可以通过切换Tab键显示不同领 域下的内容,在每个领域下都可以通过点击“换一换”显示更多。
本发明图1所示实施例提供的方法还可以从期刊的维度展现推荐词,同时展现期刊的 名称、发文总量、总被引和/或研究领域等信息,点击具体期刊则展现刊登在该期刊上的优 质文章,如图6所示,图6为本发明推荐词的展现结果再一个实施例的示意图。参见图6, 在未登录状态下,推荐所有领域综合排名的期刊;登录并且设置了关注领域的情况下,推 荐关注领域之下的期刊。多个领域可以通过切换Tab按键显示不同领域下的内容。
本发明图1所示实施例提供的方法还可以从学者的维度为用户展现推荐词,同时展现 学者的姓名、机构、成果总量和/或被引总量等信息,点击具学者则展现该学者发表的科研 成果,如图7所示,图7为本发明推荐词的展现结果再一个实施例的示意图。参见图7, 在未登录状态下,显示所有领域综合推荐的学者;登录并且设置了关注领域的情况下,推 荐关注领域之下的优质学者。多个领域可以通过切换Tab按键显示不同领域下的内容,在 每个领域下都可以点击“换一换”显示更多。
本发明图1所示实施例提供的方法还可以从学术会议的维度为用户展现推荐词,同时 展现会议的名称、最新开会时间、开会地点、文献总量和/或被引总量等信息,点击具体会 议则展现该会议上发表的学术论文,如图8所示,图8为本发明推荐词的展现结果再一个 实施例的示意图。参见图8,在未登录状态下,显示所有领域综合推荐的会议;登录并且 设置了关注领域的情况下,推荐关注领域之下的优质会议。多个领域可以通过切换Tab按 键显示不同领域下的内容,在每个领域下都可以通过点击“换一换”显示更多。
图9为本发明推荐词的展现装置一个实施例的结构示意图,本实施例中的推荐词的展 现装置可以实现本发明图1所示实施例的流程,如图9所示,该推荐词的展现装置可以包 括:提取模块91、处理模块92和展现模块93;
其中,提取模块91,用于针对至少两个维度中的每个维度从基础数据中提取推荐词, 以及从提取的推荐词中提取至少两种特征;其中,上述至少两个维度是指为用户挖掘的推 荐词所涉及的至少两个不同维度,举例来说,上述至少两个维度可以包括领域关键词、期 刊、学者和会议等。
其中,上述至少两种特征是指能够衡量推荐词重要性和准确性的特征,提取模块91从 提取的推荐词中提取的至少两种特征可以包括:学术论文的引用量及引用的领域分布、推 荐词的检索量、推荐词的领域分布信息和推荐词领域相关及负相关。
具体地,(1)学术论文的引用量及引用的领域分布:在期刊和/或学者挖掘中比较关键, 将期刊和/或学者的所有论文划分到各个领域中,再对各个领域的论文的引用量进行统计。
(2)推荐词检索量:这里的检索量指两个值,一个是每个推荐词在检索日志中的统计 量,另一个是推荐词在所有论文关键词中出现的频次。后者只用于领域关键词的挖掘中。
(3)推荐词领域分布:推荐词领域分布在不同维度的计算方式不一样,例如:在领域 关键词的挖掘中是指特定关键词在各个领域的论文中出现的频次;在期刊、学者、会议挖 掘中是指其包含的论文的领域分布数据。
(4)推荐词领域相关及负相关:主要是指某个推荐词在领域中出现的概率大小及概率 整体分布的情况,例如:“数据挖掘”在“计算机”领域出现概率大,则表示“数据挖掘” 与“计算机”领域的相关性大,“调研”在多个领域中出现概率差不多并且分布的领域很多, 则表示“调研”与各个领域的负相关性大。
处理模块92,用于根据提取模块91提取的至少两种特征对上述推荐词进行处理;
展现模块93,用于根据行为数据展现处理模块92处理后的推荐词。
上述推荐词的展现装置中,提取模块91针对至少两个维度中的每个维度从基础数据中 提取推荐词,然后从提取的推荐词中提取至少两种特征,处理模块92根据上述至少两种特 征对上述推荐词进行处理,最后展现模块93根据行为数据展现处理后的推荐词,从而可以 摆脱用户的知识背景以及检索词的局限性,真正地为用户推荐相关知识,引导用户搜索, 可以很好地满足用户无法描述或者描述不精确的知识需求,并且通过用户行为挖掘以及历 史大数据分析可以有效避免时滞问题,推荐的知识都具有很高的时效性。
图10为本发明推荐词的展现装置另一个实施例的结构示意图,与图9所示的推荐词的 展现装置相比,不同之处在于,图10所示的推荐词的展现装置中,处理模块92可以包括: 调整子模块921、过滤子模块922和排序子模块923;
其中,调整子模块921,用于根据每个维度的推荐词对每种特征的倚重程度,对上述 推荐词中提取的至少两种特征的权重进行调整;其中,权重调整的具体数值可以在具体实 现时根据实现需求和/或系统性能等自行设定,本实施例对此不作限定。
过滤子模块922,用于根据调整子模块921调整权重后的特征对上述推荐词进行过滤。
排序子模块923,用于对过滤子模块922过滤后获得的推荐词进行排序。
具体地,由于不同维度的推荐词对各种特征的倚重程度不一样,因此针对不同维度的 推荐词挖掘需要不同的特征权重值。例如:领域关键字这个维度的推荐词与领域分布和推 荐词检索量的相关性较大,那么调整子模块921就需要将这两种特征的权重调高而将其他 特征的权重调低一些。极端情况下,某个推荐词可能只依赖某几种特征,那么调整子模块 921可以将该推荐词不依赖的特征的权重调整为零或者直接去掉不依赖的特征。
进一步地,由于挖掘出来的推荐词会有一些质量不太好的,例如比较泛的词、比较冷 门的期刊、作者或会议等,因此,需要有一些补充策略对挖掘出来的数据进行再次过滤及 排序。当然过滤和排序的方法会因之前依赖的特征的不同而不同,例如:对领域关键词这 个维度中的推荐词进行过滤使用了领域分布超过8且每个领域大于10的过滤阈值,并使用 检索频次及关键字长度对过滤后获得的推荐词重新调整排序。
本实施例的一种实现方式中,展现模块93,具体用于根据已登录用户的先验行为数据 展现上述已登录用户的先验行为数据对应的推荐词。也就是说,对于已登录用户,已登录 用户由于有一些先验行为数据,因此展现模块93首先展现的就是与其先验行为数据相关的 推荐词结果,用户可以点击不同的卡片/标签而不需要输入检索词就可以获取想要的检索结 果。例如:一个关注“法学”、“社会学”的用户,在登录之后点击了“法学”标签,推荐 词的展现结果可以如图2所示。
本实施例的另一种实现方式中,展现模块93,具体用于根据全部搜索用户的行为数据 进行挖掘,获得上述处理后的推荐词中搜索热度高于预定阈值的推荐词,展现获得的推荐 词。其中,上述预定阈值的大小可以在具体实现时根据实现需求和/或系统性能等自行设定, 本实施例对上述预定阈值的大小不作限定。也就是说,对于未登录用户,由于无法获得未 登录用户的先验行为数据,因此可以根据全部搜索用户的行为数据进行挖掘,获得处理后 的推荐词中搜索热度高于预定阈值的推荐词,即“热搜词”,然后展现模块93向未登录用 户展现“热搜词”卡片,在未登录用户点击“热搜词”卡片中的卡片之后,向未登录用户 展现相应的检索结果,例如:未登录用户点击“热搜词”卡片中的期刊卡片之后,向未登 录用户展现推荐期刊,如图3所示。
本实施例的再一种实现方式中,展现模块93,具体用于根据用户的行为数据获得上述 用户的学科类别偏好信息,根据上述用户的学科类别偏好信息展现处理后的推荐词。具体 地,可以根据用户的行为数据对用户的历史关注学科类别进行记录,展现模块93只展示一 种最直观的用户关注学科类别的数据收集方式。其中,用户的行为数据可以为用户的论文 收藏数据和/或历史点击行为数据,也就是说,可以根据用户的论文收藏数据和/或历史点 击行为数据在各个领域上的分布,获得用户的学科类别偏好信息。在展现模块93展现推荐 词时,对推荐词的展现可以结合用户的学科类别偏好信息进行更加合理的推荐调整,避免 不符合用户偏好的推荐词被展现。
进一步地,上述推荐词的展现装置还可以包括:接收模块94;
接收模块94,用于在展现模块93展现调整后的推荐词之后,接收用户通过点击展现 的推荐词输入的选择指示;这时,展现模块93,还用于向上述用户展现上述用户选择的推 荐词对应的检索结果。
上述推荐词的展现装置可以摆脱用户的知识背景以及检索词的局限性,真正地为用户 推荐相关知识,引导用户搜索,可以很好地满足用户无法描述或者描述不精确的知识需求, 并且通过用户行为挖掘以及历史大数据分析可以有效避免时滞问题,推荐的知识都具有很 高的时效性。上述方法结合我国学科分类体系,细分到具体每个学科,可以精准命中具体 学科进行知识推荐,推荐知识涵盖范围广,准确性高。
需要说明的是,在本发明的描述中,术语“第一”、“第二”等仅用于描述目的,而 不能理解为指示或暗示相对重要性。此外,在本发明的描述中,除非另有说明,“多个” 的含义是两个或两个以上。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个 或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分, 并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序, 包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的 实施例所属技术领域的技术人员所理解。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实 施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或 固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下 列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路 的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列 (Programmable Gate Array;以下简称:PGA),现场可编程门阵列(Field Programmable  Gate Array;以下简称:FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可 以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中, 该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,本发明各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个 模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可 以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软 件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取 存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、 或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点 包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一 定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何 的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的, 不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例 进行变化、修改、替换和变型。

推荐词的展现方法和装置.pdf_第1页
第1页 / 共16页
推荐词的展现方法和装置.pdf_第2页
第2页 / 共16页
推荐词的展现方法和装置.pdf_第3页
第3页 / 共16页
点击查看更多>>
资源描述

《推荐词的展现方法和装置.pdf》由会员分享,可在线阅读,更多相关《推荐词的展现方法和装置.pdf(16页珍藏版)》请在专利查询网上搜索。

本发明提出一种推荐词的展现方法和装置,该推荐词的展现方法包括:针对至少两个维度中的每个维度从基础数据中提取推荐词;从提取的推荐词中提取至少两种特征,并根据所述至少两种特征对所述推荐词进行处理;根据行为数据展现处理后的推荐词。本发明可以摆脱用户的知识背景以及检索词的局限性,真正地为用户推荐相关知识,引导用户搜索,可以很好地满足用户无法描述或者描述不精确的知识需求,并且通过用户行为挖掘以及历史大数据分。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 物理 > 计算;推算;计数


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1