CN02827937.9
2002.12.06
CN1618119A
2005.05.18
撤回
无权
发明专利申请公布后的视为撤回|||实质审查的生效|||公开
H01L21/306; B08B3/00
SCP环球技术公司;
E·汉森; V·米姆肯; M·布勒克; R·M·亚拉曼基利; J·罗萨托
美国爱达荷州
2001.12.07 US 10/010,240
中国专利代理(香港)有限公司
肖春京
在一种用于对半导体衬底进行处理的方法中,一个或两个衬底被放置在衬底加工室中,并进行湿法蚀刻、清洗、冲洗和/或干燥步骤。在清洗或冲洗过程中,在所述加工室内产生一个兆赫级超声波能量带以产生主动冲洗或清洗区,且在所述室内进行的冲洗或清洗过程中,所述衬底平动通过所述主动区域。
1、 一种单个地处理衬底的方法,其特征在于,包括以下步骤:(a)设置一个一次可装入不多于两个衬底相应大小的加工室,并将一个或两个衬底装入所述加工室内;(b)将所述衬底暴露于所述加工室内的第一工艺流体中;和(c)在步骤(b)之后,将所述衬底暴露于所述加工室内的第二工艺流体中。2、 根据权利要求1所述的方法,其中步骤(b)或(c)包括减薄在衬底表面处的流体边界层这一步骤。3、 根据权利要求2所述的方法,其中所述第一工艺流体是蚀刻流体且所述第二工艺流体是冲洗流体。4、 根据权利要求2所述的方法,其中通过将兆赫级超声波能量引入所述室内的蚀刻流体中而进行边界层减薄这一步骤。5、 根据权利要求2所述的方法,其中边界层减薄这一步骤包括与所述衬底取向的方向横向地将蚀刻流体引入所述室。6、 根据权利要求3所述的方法,其中所述蚀刻流体包括氢氟酸、氟化铵和缓冲氧化物中的至少一种。7、 根据权利要求3所述的方法还包括从所述室中除去本体蚀刻流体这一步。8、 根据权利要求7所述的方法,其中所述室包括与所述室流体相连接的容器,且其中所述去除步骤包括将蚀刻流体吸入到所述容器中。9、 根据权利要求8所述的方法,其中在吸入步骤前,所述容器被密封并保持负压,且其中所述去除步骤包括打开在所述室和所述容器之间的阀门,使蚀刻流体被吸入所述容器中。10、 根据权利要求7所述的方法,其中所述去除步骤包括冲洗用水以阶流方式流过所述室以将蚀刻流体冲洗出来。11、 根据权利要求7所述的方法包括在冲洗步骤中将兆赫级超声波能量引入所述室内的冲洗流体中这一步骤。12、 根据权利要求11所述的方法,其中所述引导步骤包括形成一个向衬底表面传播的兆赫级超声波能量带,且其中所述方法还包括将所述衬底沿边缘方向移动通过所述带状区域,以致所述衬底的基本上整个表面通过所述带状区域。13、 根据权利要求12所述的方法,其中所述兆赫级超声波能量引起通过所述带状区域的衬底部分上的边界层的减薄。14、 根据权利要求12所述的方法,其中在步骤(c)中所述室的下部区域含有冲洗流体且所述室的上部区域含有气体,其中所述带状区域靠近在冲洗流体和气体之间的气体-液体界面。15、 根据权利要求12所述的方法,其中所述衬底包括一个具有表面积的端面,且其中在移动步骤中约30%或更小表面积的端面位于所述带状区域内。16、 根据权利要求12所述的方法,其中所述移动步骤包括使所述衬底多次通过所述带状区域。17、 根据权利要求14所述的方法,其中所述移动步骤包括使所述衬底通过气体-液体界面进入所述室的上部区域。18、 根据权利要求17所述的方法,包括使所述衬底多次通过气体-液体界面。19、 根据权利要求17所述的方法还包括将冲洗用水引入到所述衬底在所述室上部区域内的部分上这一步骤。20、 根据权利要求12所述的方法,其中所述兆赫级超声波能量沿正交于所述衬底表面的方向进行传播。21、 根据权利要求12所述的方法,其中所述兆赫级超声波能量以小于正交于所述衬底表面的一个角度进行传播。22、 根据权利要求1所述的方法,其中所述第一工艺流体是清洗流体且所述第二工艺流体是冲洗流体。23、 根据权利要求22所述的方法还包括将兆赫级超声波能量引入所述清洗流体中,形成一个向衬底表面传播的兆赫级超声波能量带,且其中所述方法还包括将所述衬底沿边缘方向移动通过所述带状区域,以致所述衬底的基本上整个表面通过所述带状区域。24、 根据权利要求23所述的方法,其中所述移动步骤包括使所述衬底多次通过所述带状区域。25、 根据权利要求23所述的方法,其中所述兆赫级超声波能量引起通过所述带状区域的衬底部分上的边界层的减薄。26、 根据权利要求23所述的方法,其中在步骤(c)中所述室的下部区域含有清洗流体且所述室的上部区域含有气体,其中所述带状区域靠近在清洗流体和气体之间的气体-液体界面。27、 根据权利要求23所述的方法,其中所述衬底包括一个具有表面积的端面,且其中在移动步骤中约30%或更小表面积的端面位于所述带状区域内。28、 根据权利要求26所述的方法,其中所述移动步骤包括使所述衬底通过气体-液体界面进入所述室的上部区域。29、 根据权利要求28所述的方法包括使所述衬底多次通过气体-液体界面。30、 根据权利要求23所述的方法,其中所述兆赫级超声波能量沿正交于所述衬底表面的方向进行传播。31、 根据权利要求23所述的方法,其中所述兆赫级超声波能量以小于正交于所述衬底表面的一个角度进行传播。32、 根据权利要求23所述的方法还包括使清洗流体流过所述室这一步骤。33、 根据权利要求32所述的方法,其中所述清洗流体从所述室的底部流向所述室的上部。34、 根据权利要求26所述的方法,其中所述兆赫级超声波能量在所述带状区域内引发微空穴,且其中所述方法还包括使气体扩散进入气体-液体界面处的清洗溶液中以增加微空穴生成的速度。35、 根据权利要求23所述的方法还包括通过将兆赫级超声波能量传入在所述带状区域下面区域内的清洗溶液中在所述清洗流体内引起声流。36、 根据权利要求22所述的方法,其中所述方法还包括将衬底暴露于所述室内的蚀刻流体中。37、 根据权利要求1所述的方法,其中所述第一工艺流体是冲洗流体,所述第二工艺流体是干燥蒸气,且其中步骤(c)是干燥步骤。38、 根据权利要求1所述的方法,其中所述第一工艺流体是化学处理流体,所述第二工艺流体是冲洗流体,且其中所述方法还包括以下步骤:(d),在步骤(c)之后,将所述衬底暴露于所述加工室内的干燥蒸气。39、 根据权利要求37或38所述的方法,其中所述干燥步骤包括从所述室除去本体流体,并向所述室内引入干燥蒸气。40、 根据权利要求37或38所述的方法,其中在干燥步骤中所述室的下部区域含有冲洗流体,且其中所述干燥步骤包括在所述室的上部区域内形成干燥蒸气气氛,并从所述室下部区域内的本体流体中取出所述衬底送入所述室的上部区域。41、 根据权利要求40所述的方法还包括将兆赫级超声波能量引入所述冲洗流体中,形成一个向衬底表面传播的兆赫级超声波能量带,且其中所述取出步骤使所述衬底通过所述带状区域,且其中所述兆赫级超声波能量引起通过所述带状区域的衬底部分上的边界层的减薄。42、 根据权利要求41所述的方法,其中以约8-30毫米/秒的速度进行所述取出步骤。43、 根据权利要求41所述的方法,其中所述兆赫级超声波能量沿正交于所述衬底表面的方向进行传播。44、 根据权利要求41所述的方法,其中所述兆赫级超声波能量以小于正交于所述衬底表面的一个角度进行传播。45、 根据权利要求40所述的方法,其中缓慢进行所述取出步骤,利用表面张力梯度从所述衬底表面除去流体。46、 根据权利要求45所述的方法,其中所述取出步骤以约0.25-5毫米/秒的速度进行。47、 根据权利要求37或38所述的方法,其中所述干燥步骤包括以下一些步骤:将衬底暴露于所述室内的工艺流体中;快速倾倒以将所述工艺流体从所述室中排出;残留的工艺流体被留在衬底表面上;和向系统内引入干燥蒸气,所述干燥蒸气在衬底表面上凝结并减小残留工艺流体的表面张力,使残留的工艺流体流下所述表面。48、 根据权利要求47所述的方法,其中所述快速倾倒在少于约5秒的时间内排出所述工艺流体。49、 根据权利要求47所述的方法,其中所述干燥蒸气包括异丙醇蒸气。50、 根据权利要求47所述的方法还包括将受热气体引入所述室中以将凝结的干燥蒸气从衬底表面上挥发掉这一步骤。51、 根据权利要求1所述的方法,其中步骤(b)包括将衬底暴露于蚀刻流体中,且其中所述方法还包括将衬底暴露于清洗流体中这一步骤。52、 根据权利要求50所述的方法,其中将衬底暴露于清洗流体中这一步骤在步骤(c)之后及步骤(d)之前进行。53、 根据权利要求52所述的方法还包括在进行步骤(d)之前将清洗流体从衬底上冲去这一步骤。54、 根据权利要求46所述的方法,其中在工艺流体已被从所述室中排出之后,所述干燥蒸气被引入所述系统中。55、 一种单个地处理衬底的设备,其特征在于,包括:一次可装入不多于两个衬底相应大小的加工室;与所述加工室流体连接的第一工艺流体源;和与所述加工室流体连接的第二工艺流体源。56、 根据权利要求55所述的设备还包括与所述加工室流体连接的干燥蒸气源。57、 根据权利要求55所述的设备,还包括当所述衬底被放置在所述室内的流体中时用于减薄在衬底表面处的流体边界层的装置。58、 根据权利要求57所述的设备,其中所述用于减薄边界层的装置包括一个室和在所述室内的一个用于使流体流过所述壁和衬底的进口。59、 根据权利要求57所述的设备,其中所述用于减薄边界层的装置包括定位成将兆赫级超声波能量引入所述室内的流体中的兆赫级超声波换能器。60、 根据权利要求57所述的设备,其中所述用于减薄边界层的装置包括在所述室内的一个取向成将流体与所述衬底取向的方向横向地引入所述室内的进口。61、 根据权利要求55所述的设备还包括与所述室相连接的密封的负压容器,和在所述室和所述容器之间的关闭的阀门,所述阀门可移动至打开位置以使流体从所述室内被吸入到所述容器中。62、 根据权利要求61所述的设备包括与所述室相连接的密封的第二负压容器,和在所述室和所述容器之间的关闭的第二阀门,所述第二阀门可移动至打开位置以使流体从所述室内被吸入到第二容器中。63、 根据权利要求55所述的设备包括至少一个定位成将兆赫级超声波能量引入所述室内的流体中的兆赫级超声波换能器。64、 根据权利要求63所述的设备,其中兆赫级超声波能量取向成形成一个向所述室内的衬底表面传播的兆赫级超声波能量带,且其中所述设备还包括末端操纵装置,所述末端操纵装置在所述室的上部和下部区域之间可移动,用以将所述衬底沿边缘方向移动通过所述带状区域,以致所述衬底的基本上整个表面通过所述带状区域。65、 根据权利要求64所述的设备,其中所述兆赫级超声波能量引起通过所述带状区域的衬底部分上的边界层的减薄。66、 根据权利要求67所述的设备,其中所述室的下部区域被构造成含有流体且所述室的上部区域被构造成含有气体,且其中所述带状区域靠近在冲洗流体和气体之间的气体-液体界面。67、 根据权利要求64所述的设备,其中所述衬底包括一个具有表面积的端面,且其中所述带状区域成比例,使得当所述衬底通过所述带状区域时,最大约30%或更小表面积的端面位于所述带状区域内。68、 根据权利要求64所述的设备,其中所述末端操纵装置被构造成将所述衬底多次移动通过所述带状区域。69、 根据权利要求66所述的设备,其中所述末端操纵装置被构造成使所述衬底通过气体-液体界面进入所述室的上部区域。70、 根据权利要求66所述的设备,其中所述末端操纵装置被构造成使所述衬底多次通过气体-液体界面。71、 根据权利要求69所述的设备,其中所述室还包括与所述室的上部区域流体连接的冲洗用水源,所述源被构造成将冲洗用水引入在所述室上部区域内的衬底部分上。72、 根据权利要求64所述的设备,其中所述兆赫级超声波换能器被取向成沿正交于所述衬底表面的方向传播能量。73、 根据权利要求64所述的设备,其中所述兆赫级超声波换能器被取向成沿小于正交于所述衬底表面的一个角度传播能量。74、 根据权利要求55所述的设备,其中所述第一工艺流体是清洗溶液且所述第二工艺流体是冲洗流体。75、 根据权利要求55所述的设备,其中所述第一工艺流体是蚀刻流体且所述第二工艺流体是冲洗流体。76、 根据权利要求75所述的设备,其中所述蚀刻流体包括氢氟酸,氟化铵和缓冲氧化物中的至少一种。77、 根据权利要求66所述的设备,其中所述兆赫级超声波换能器还可被构造成在所述带状区域内引发微空穴,且其中所述设备还包括与所述室流体连接的气体源和在所述室内的气体出口,所述气体出口定位成使气体扩散进入气体-液体界面处的清洗流体中,以增加在所述带状区域内微空穴形成的速度。78、 根据权利要求64所述的设备还包括定位成将兆赫级超声波能量引入所述室内在所述带状区域下面区域内的流体中的第二兆赫级超声波换能器。79、 根据权利要求78所述的设备,其中所述第二兆赫级超声波换能器被构造成在流体内引发声流。80、 根据权利要求56所述的设备,其中干燥蒸气源将干燥蒸气引入所述室的上部区域中,且其中所述末端操纵装置被构造成从所述室下部区域内的流体中取出所述衬底,并将其送入所述室上部区域内的干燥蒸气中。81、 根据权利要求80所述的设备,其中所述末端操纵装置被构造成约8-30毫米/秒的速度取出所述衬底。82、 根据权利要求80所述的设备,其中所述末端操纵装置被构造成约0.25-5毫米/秒的速度取出所述衬底。83、 根据权利要求56所述的设备,其中第一或第二工艺流体是冲洗流体,且其中所述设备还包括排出管,所述排出管被构造成进行快速倾倒以将冲洗流体从所述室内排出,在所述衬底表面上剩下残留的工艺流体,其中干燥蒸气源用于在已进行完快速倾倒后将干燥蒸气引入所述室内,使得所述干燥蒸气在衬底表面上凝结并减小残留工艺流体的表面张力,使残留的工艺流体流下所述表面。84、 根据权利要求83所述的设备,其中所述快速倾倒在少于约5秒的时间内排出所述工艺流体。85、 根据权利要求56所述的设备,其中所述干燥蒸气包括异丙醇蒸气。86、 根据权利要求56所述的设备还包括与所述室流体连接以将凝结的干燥蒸气从所述衬底表面蒸发掉的受热气体源。87、 根据权利要求86所述的设备还包括在所述室内的出口,所述出口用于将受热气体引入所述室内,且末端操纵装置可移动以使所述衬底平动通过所述出口以加速蒸发。88、 根据权利要求56所述的设备,其中所述第一工艺流体是蚀刻流体,所述第二工艺流体是冲洗流体,且其中所述设备还包括与所述室流体连接的清洗流体源。89、 根据权利要求55所述的设备,其中所述室包括衬底接收构件,所述衬底接收构件具有一个切口,切口大小与衬底的下边缘相当,且其中所述设备还包括:末端操纵装置,所述末端操纵装置包括一对衬底接收构件,每一衬底接收构件具有至少一个稳定元件和至少一个接合元件,所述末端操纵装置在第一位置和第二位置之间可移动,在加工室内的所述第一位置,其中衬底的下边缘与所述切口接触且其中每一个稳定元件位于所述衬底的侧边缘以限制所述衬底的移动;和所述第二位置,其中衬底的下边缘与切口脱离接触,且其中每一接合元件支承所述衬底的侧边缘。90、 根据权利要求89所述的设备,其中所述至少一个稳定元件包括一个槽,所述槽取向成将衬底边缘容纳在所述槽内以限制所述衬底与含有所述衬底的平面的方向横向的移动,且稳定构件朝向衬底边缘延伸以限制衬底在侧向内的移动。
用于单衬底或双衬底加工的设备和方法 技术领域 本发明涉及半导体衬底的表面制备系统和方法等领域。 背景技术 在一些行业领域中,存在一些必须被用以将目标物达到超高洁净度的工艺。例如在半导体衬底的制造中,通常需要进行多个清洗步骤以在进行随后的加工步骤前将杂质从衬底表面上除去。衬底的清洗即通常所说的表面制备,多年来通过以下方式而实施的,即收集多个衬底形成一组,将该组衬底经过一系列化学品处理和冲洗步骤并最终进行干燥步骤。典型的表面制备工序可包括蚀刻、清洗、冲洗和干燥步骤。蚀刻步骤可包括将衬底浸入氢氟酸(HF)蚀刻溶液中以除去表面氧化和金属杂质,然后在高纯度去离子水(DI)中冲洗该衬底以从所述衬底上除去蚀刻化学物质。在典型的清洗步骤中,衬底暴露于清洗溶液中,所述清洗溶液包括水、氨或盐酸和过氧化氢。在进行完清洗之后,使用超纯水冲洗衬底,然后使用数种已知干燥工艺中的一种进行干燥。 目前,行业中使用多种类型的工具和方法以实施表面制备工艺。在传统清洗应用中最常使用的工具是浸湿清洗平台,或“湿式机台”。在湿式机台加工中,通常在衬底装载盒上布置一组衬底。所述盒被浸入一系列工艺容器中,其中一些容器中含有清洗或蚀刻功能所需的化学品,而其它容器中含有用于将这些化学品从所述衬底表面上冲洗掉的去离子水(“DI”)。所述清洗容器可设有将兆赫级超声波能量传入清洗溶液中的压电式换能器。所述兆赫级超声波能量通过在清洗溶液中的微空穴加强了清洗效果,所述微空穴有助于从衬底表面去除颗粒。衬底在经过蚀刻和/或清洗,然后冲洗之后,进行干燥。通常使用溶剂例如异丙醇(IPA)利于干燥,所述溶剂减小了附着在衬底表面上的水的表面张力。 在半导体工业中使用的另一种类型的表面制备工具和方法是:在单个容器内可在一组衬底上进行若干表面制备步骤(例如清洗、蚀刻、冲洗和/或干燥)。这种类型的工具可去除如前述湿式机台技术中所需要的衬底-传送步骤,并由于降低了发生破裂、颗粒污染的风险和减小了基底面尺寸,因此在行业中赢得认可。 然而此外所希望的是,与一组衬底相反的,可在一个或两个衬底(例如200毫米,300毫米,或450毫米直径的衬底)上进行多个表面制备步骤的室和方法。因此,本发明的目的在于提供一种用于在单个衬底上进行多个表面制备步骤的室和方法。 发明内容 在本发明的一个方面,单个衬底被定位在单衬底或双衬底加工室中,并进行湿法蚀刻、冲洗、清洗和/或干燥步骤。根据本发明的另一个方面,在衬底加工室中一个或两个衬底被暴露于蚀刻或清洗化学品中。根据本发明所述方法的另外一个方面,在清洗或冲洗过程中,在加工室内产生一定带宽的兆赫级超声波能量,以产生主动冲洗或清洗区,并且在冲洗或清洗过程中所述衬底在所述室内被平动通过该主动区。 附图说明 图1A是单衬底加工室的示意图,图中示出了位于所述室的下内部区域中的衬底; 图1B是单衬底加工室的示意图,图中示出了位于所述室的上内部区域中的衬底; 图1C是示出了图1A中的所述室可使用的流体处理系统的一个实例的框图; 图1D是示出了图1A中的所述室可使用的流体处理系统的第二个实例的框图; 图1D是单衬底加工室的另一种可选构形的示意图; 图2A-2C是所述室内部的一系列截面图,图中示出了衬底在上内部区域和下内部区域之间的移动; 图3A是示出了流体歧管处于关闭位置时的单衬底加工室的第二实施例的截面透视图,该图还示出了为了将衬底传输进、传输出所述室和置于所述室内而设置的自动装置; 图3B是示出了流体歧管处于打开位置时图3A中的单衬底加工室的截面透视图,在图3B中未示出图3A中所示的自动传输装置; 图4是上歧管和图3A中所示第二实施例的槽的一部分的截面透视图; 图5是图3A中所示第二实施例的截面透视图; 图6是图3A中所示第二实施例的末端操纵装置的透视图,如图所示该末端操纵装置上装载有一个衬底; 图7A是在衬底传输过程中末端操纵装置第二实施例的一个叉股的透视图; 图7B是示出了在将衬底传输进或传输出所述室的过程中图7A中的末端操纵装置的透视图; 图7C是示出了在将衬底传输进或传输出所述室的过程中的末端操纵装置、衬底和所述室的透视图,其中所述衬底开始接触所述室的底部槽口; 图7D是示出了衬底在所述室内加工过程中的末端操纵装置、衬底和所述室的透视图; 图7E与图7A相类似,是示出了衬底在所述室内加工过程中地末端操纵装置的一个叉股的透视图; 图8是根据第三实施例所述的室的截面图; 图9A是根据第四实施例所述的双衬底加工室的示意图; 图9B与图9A相类似,是示出了倾斜取向的衬底的示意图。 具体实施方式 在此对单衬底或双衬底加工室的四个实施例和相关工艺进行描述。每一所述室/方法都使用单独的一个室在一个或两个衬底(象例如半导体晶片衬底)上进行湿法加工步骤(但不限于)蚀刻、清洗、冲洗和/或干燥。从后面的说明书中可理解,这种室和方法有利于:将使用该室/方法进行处理的每一衬底暴露在与加工其它衬底所暴露的条件相同的加工条件下。与在批量处理系统中看到的相比,这样产生更高精度的加工,在所述批量处理系统中与被放置在一批衬底的不同部分中的衬底相比,被放置在该批衬底的一个部分中的衬底可暴露在略微不同的加工条件(如流体流动条件、化学浓度、温度等)下。例如,处于衬底纵列端部处的衬底可能与在同一列中央位置的衬底的条件有所不同。这种条件上的变化可造成成批衬底在衬底之间缺少均匀性。 如在此所述的室/方法还有利于:每一衬底被暴露在工艺流体中的时间比进行批量加工所需要的时间更短。此外,对于仅少量衬底需要进行加工的应用(例如在样本工程范围内)来说,需要经过加工的衬底的个数仅需要等几分钟以得到经过处理的衬底,而不是为在批量室中进行加工的衬底等上整整一个小时或更长时间。此外,在此所述的这些室/方法可通过使用一定量(以每个衬底为依据)的工艺流体进行实施,所述工艺流体的体积相同于或小于进行相应批量加工所要使用的工艺流体的体积。 第一实施例-结构 单衬底加工室的第一实施例的特征示意性地如图1A-1D所示。参考图1A,单衬底加工室的第一实施例2包括一个具有侧壁11和端壁(图2A)的室10,所述侧壁和端壁限定了一个用于容纳与待加工的衬底S成比例的下内部区域12a、上内部区域12b和在上内部区域12a中的开口14。侧壁11的间距较小并留有单个衬底大小的空间,所述空间在衬底各表面和其相邻的侧壁之间有大约5-25毫米的间隙。在一个实施例中,侧壁11隔开约9.5毫米的距离。端壁13(图2A)的间距也较小,在衬底边缘和相邻的侧壁13之间设有大约5-25毫米的间隙。 如结合第四实施例进行讨论的,与室10相似的室也可被用于同时对一对衬底进行加工处理。 该第一实施例包括衬底传送装置28。所述传送装置包括一个末端操纵装置30,所述末端操纵装置被构造成与衬底S相接合,且由常规自动装置(未示出)驱动以沿边缘方向将衬底S经开口14移入或移出室10。传送装置28还被构造成致使末端操纵装置30将衬底S移至下内部区域12a和上内部区域12b之间,如下所述与该装置的操作有关。 传送装置28还可以带有一个盖子29,当降低末端操纵装置30时所述盖子紧靠在开口14上。即便在加工过程中末端操纵装置在区域12a和12b之间移动衬底时,所述盖子29也可保持在适当的位置,之后盖子29被取出,以使末端操纵装置30可从所述室中移去衬底S。 下内部区域12a的上端部可变窄而包括喉部,以增大从所述室的下部流经所述喉部的流体速度。所述室10的底部可以是平的或其外形与所述衬底的下边缘的形状相一致。 流体处理系统 第一实施例2最好设有流体处理系统26,所述流体处理系统被构造成输送多种工艺流体(例如蚀刻流体、清洗流体、冲洗流体等)进入所述室10的下内部区域12b中。 所述流体处理系统26可按照不同的方式进行构造。例如,如图1A和1B所示,在下内部区域12b中可形成一个窗口16并且一个或多个歧管能够可移动进入窗口16的特定位置处,以将工艺流体引入室10中。歧管和窗口16最好被密封在密闭壳26内以减少烟气排入周围环境中的机会,所述密闭壳26是一个排放可从歧管中排出的烟气等的封闭外壳。 流体歧管18可被安置以将工艺流体(例如蚀刻用化学品、和冲洗用去离子水)经窗口16引入室10的下内部12a。流体歧管18包括至少一个,但最好是多个开口20,流体通过该开口被引入室10中。该流体歧管18在关闭位置(图1A)和开启位置(图1B)之间是可移动的,处于关闭位置时,歧管被定向以将流体经过开口20引入窗口16中;处于开启位置时,开口被定位远离窗口16。使用标准自动装置,该流体歧管18在所述关闭和开启位置之间是可移动的。流体歧管18可有选择地包括兆赫级超声波换能器(未示出),所述兆赫级超声波换能器具有一个或多个换能器,用于将兆赫级超声波能量引入所述室中的流体中,如下详述。为简单起见,在此所使用的术语“兆赫级超声波换能器”包括含有单个换能器或多个换能器的阵列的换能器组件。 设置第二流体歧管,又被称作兆赫级超声波歧管22,其包括一个或多个入口24。与流体歧管18相同,该兆赫级超声波歧管22在关闭位置(图1B)和开启位置(图1A)之间是可移动的,处于关闭位置时,入口24被定向以引导来自兆赫级超声波歧管22的流体通过窗口16;处于开启位置时,入口24与窗口16隔开一定距离,该距离允许歧管18达到关闭位置。该兆赫级超声波歧管22在所述关闭和开启位置之间是可移动的。 该兆赫级超声波歧管22包括兆赫级超声波换能器,所述兆赫级超声波换能器可包括定向以将兆赫级超声波能量经过窗口引入所述室内部的单个换能器或多个换能器的阵列。当兆赫级超声波换能器将兆赫级超声波能量引入所述室中的流体中时,兆赫级超声波换能器在所述流体内引起声流-即微泡流,其有助于从衬底中去除污染物并保持颗粒在所述工艺流体内运动着以避免颗粒附着在衬底上。 当然,若加工要求不需要分开的歧管,则所述室可设有一个最好包括兆赫级超声波换能器的单个歧管。 参见框图1C,该流体处理系统26可包括用于将流体引入歧管18、22的阀门和管道系统。去离子水源和蚀刻流体源与歧管18流体连接,且阀门19a,19b控制这些流体进入歧管18的流量。应认识到当蚀刻管道如图所示被构造用于注入去离子水流时,蚀刻流体可以有选择地独立被引入歧管18中。相似地,阀门23a,23b和相关的管道将去离子水和清洗流体源与兆赫级超声波歧管22连接在一起。 如图1C所示的流体处理系统的构造提供了两种将流体从室10中排空的方式。第一种方式是,设置用于将流体从所述室中快速抽出的专用密封容器31a,31b。每一密封容器最好专用于特定类型的流体,例如蚀刻流体或清洗流体,以便减小工艺流体发生交叉污染的机会。 每一容器31a,31b通过阀门27a,27b和相关引流管道与所述室10相连接。另一种选择是,所述阀门和引流管道可将容器31a,31b和歧管18,22(未示出)连接在一起。密封容器31a,31b保持负压,并且除了当打开它们用于排空所述室外,阀门27a,27b保持关闭。在蚀刻工艺结尾,阀门27a可被打开,导致蚀刻流体快速去除进入负压容器31a中以待后用。去除过程最好快至0.8-1.5秒,用于从下内部区域12a中完全除去流体,所述下内部区域12a通常含有大约600ml流体用于加工200毫米的衬底,约1100ml流体用于加工300毫米的衬底。这种流体的快速去除有助于将蚀刻溶液从衬底表面剪切去除。通过在衬底暴露在蚀刻溶液中和衬底从本体蚀刻溶液中分离出来之间的急剧变化,由此使衬底顶部和衬底下部之间的表面变化最小化,这样还使衬底整个表面的均匀性得到了优化。还可使这种变化更加剧烈,且通过在流体快速去除过程中通过使用末端操纵装置将衬底拉入上内部区域12b中,可加强蚀刻溶液对衬底的剪切作用。 还可以使用泵将流体快速从容器31a,31b引入到所述室中。可使用这种方法在约1-2秒内充满所述室。 如图1C所示的实施例中提供的第二种排空方式利用了兆赫级超声波歧管18,22,所述兆赫级超声波歧管被移动至打开位置以将流体从所述室中排入排出管(未示出)中。 作为流体分配系统的另一个实例,如框图1D所示的流体歧管23可设有多个将工艺流体注入歧管23的专用阀门33a、33b和33c。在这种构造中,其中一个阀门可用于向所述歧管中注入蚀刻溶液,另一个可用于向所述歧管中注入清洗溶液,另外一个可用于向所述歧管中注入冲洗溶液。这种专用构造是合乎需要的,是因为这种专用构造将公共管道部件(即那些暴露于多种工艺化学品中的部件)的数量减到最少,并由此将在加工步骤之间管道所需要的冲洗量减到最少。 在这一实例中,歧管23可包括兆赫级超声波换能器,或兆赫级超声波换能器可被放置在所述室10的下部区域中。歧管23可被固定在或可移动至打开位置用以快速排空所述室10。密封负压容器31a,31b还可提供相对于如图1C实施例中所述的其它排空方式。 上部兆赫级超声波换能器 在此参考图1A和1B,在下内部区域12a的顶部沿所述室的周边形成溢流堰34。从歧管18,22流入所述室的工艺流体以阶流方式流动进入溢流堰34并进入溢流管道35用于回流或排出。一对兆赫级超声波换能器32a,32b被放置在溢流堰34下面的隆起处,并取向成将兆赫级超声波能量引入所述室10的下内部区域12a的上部中,其中每一个所述兆赫级超声波换能器可包括单个换能器或多个换能器的阵列。换能器32a将兆赫级超声波能量引向衬底的前表面,而换能器32b将兆赫级超声波能量引向衬底的后表面。 最好放置所述换能器,以使能量束在气体/液体界面处或刚刚在气体/液体界面以下,例如在下内部12a中液体顶部0-20%的范围内的水平与衬底表面产生相互作用。所述换能器可被构造成沿正交于衬底表面的方向或与所述正交方向成一角度引导兆赫级超声波能量。引导兆赫级超声波能量与所述正交方向所成的角度最好约为0-30度,最佳为5-30度。与所述正交于衬底表面的方向成一角度引导来自换能器32a,32b的兆赫级超声波能量可具有许多优点。例如,以一个角度将所述能量引向衬底使被发射的能量和经衬底表面反射而返回的能量波之间的干涉减到最小,由此使传输给溶液的能量达到最大。这样还允许在更大程度上对传输给溶液的能量进行控制。已发现当换能器与衬底表面平行时,传输给溶液的能量对于衬底表面和换能器之间距离上的变化高度敏感。调节换能器的安装角度降低了这一敏感性并由此使得能够更精确地对能量级进行调节。所述倾斜的换能器还有利于:其能量易于打破在衬底和本体流体之间延伸的流体的弯液面-(特别是当向上拉动衬底通过由换能器发射的能量带时)-由此减少朝向衬底表面的颗粒移动。 另外,以一定角度将兆赫级超声波能量引向衬底表面产生了一个朝向溢流堰34的速度矢量,所述速度矢量有助于将颗粒从衬底上移去并进入溢流堰。然而对于具有细微特征的衬底,必须选择所述能量朝向衬底前表面传播的角度,以便减少由兆赫级超声波能量传递的侧向力破坏细微结构的机会。 所希望的是设置可独立对相对于法线的角度和/或功率进行调节的换能器32a,32b。例如,若带有一定角度的兆赫级超声波能量被换能器32a引向衬底前表面时,所希望的是使来自换能器32b的所述能量沿正交于衬底表面的方向朝向背面进行传播。这样做可通过反作用于由所述带有一定角度的能量传递给前表面的力减少或防止前表面特征的破损。此外,在衬底前表面上需要相对较低的能量或没有能量以避免损坏细微特征,可将较高的能量传送到背面(以一定角度或沿正交于衬底的方向)。所述较高的能量可通过所述衬底产生谐振并增强在衬底前表面上沟槽中的微空穴,由此有助于将杂质从沟槽空穴中冲出。 另外,设置换能器32a,32b以具有可调节的角度使得该角度随衬底的特性(例如细微特征),同时也随着被实施的加工步骤而变化。例如,所希望的是使换能器32a,32b中的一个或两个换能器32a,32b都在清洗步骤中相对于衬底以一个角度传播能量,且然后在干燥步骤中沿正交于衬底表面的方向传播能量(参见下文)。在一些实例中,还需要具有单个换能器,或是超过两个换能器,而不是一对换能器32a,32b。 蒸气入口36、流体喷嘴37和供气支管38延伸进入所述室10的上内部区域12b。每一个上述部件在加工过程中与根据所需向端口输送适量蒸气和气体的管道系统流体连接。流体喷嘴37最好被构造成向上内部区域12b中注入一股或多股工艺流体流。被注射的流体流最好共同延伸一个宽度,所述宽度至少是所述衬底直径大小,以便当衬底移动通过所述流体流时,流体可高速均匀地被施加在整个衬底宽度上。为此,流体喷嘴可包括一对在所述室上部区域12b的壁中的窄长开槽。流体喷嘴37最好还与衬底间隔一段非常近的距离。 气体入口39和/或41可被设置在下内部区域12a内或靠近下内部区域12a处,最好是靠近上部兆赫级超声波换能器32a,32b处。入口39可以是略微位于流体从所述室10朝向溢流管道进行阶流这一高度之上的端口、喷嘴或其它类型的气体引入装置,以使通过端口39引入的气体易于扩散进入所述室10内的流体中和/或增强由安装在侧向的换能器产生的兆赫级超声波能量而造成的扩散。 入口41最好是喷洒歧管,其可包括形成在所述室壁上的切口、细孔或多孔材料,或具有设置在下内部区域12a中的细孔的浸没管道。入口41被定位在上部兆赫级超声波换能器32a,32b处或略微位于上部兆赫级超声波换能器32a,32b之下,以在被上部兆赫级超声波换能器供给能量的流体区域中将气体引入工艺流体中。 图1E示意性地示出了一种进行微小改变的具有图1A实施例特征的可选实施例。为简单起见,未示出衬底输送工具。 第一实施例-操作 系统2可被用于多种工艺中,所述工艺包括那些需要进行湿法蚀刻、清洗、冲洗和干燥步骤中的一步或多步的工艺。将在蚀刻、清洗和干燥工艺范围内对其用途进行描述,其中在蚀刻和清洗之后进行冲洗。进行这种步骤组合是有效的,原因在于这样使得可在单个室内进行多个步骤,且由于衬底离开所述室时是干燥的,这样就使后处理颗粒发生再附着减到最少。此外,由于每一次衬底经过一系列工艺处理时所述室自身是干净和干燥的,因此在单个室内进行多个步骤将加工室中颗粒和残留物的累积减到最少。自然地,在不偏离本发明范围的条件下,这些或其它工艺步骤可进行多种其它组合。 蚀刻 若加工始于蚀刻工序,那么第一实施例的操作就始于如图1A所示的处于关闭位置的流体歧管18。所述室10的下部12a被蚀刻工序所需的工艺流体(例如氢氟酸(HF),氟化铵和HF,或缓冲氧化物)充满。这些流体可被注入到进入流体歧管18的去离子水流中(例如使用如图1C所示的流体处理布置),使所述流体与去离子水一起流入所述室10中。另一种选择是,蚀刻溶液可直接流入歧管18和所述室中,或者若使用如图1D所示的流体处理布置,那么溶液可通过专用阀门33b进入歧管23和所述室10中。在每一种情况下,在整个蚀刻加工过程中例如通过将其收集进入(最好是)温度控制的容器中并使其流回至歧管18用于重新引流至所述10中,可使以阶流方式在溢流堰34上流动的溶液回流到所述室10中。另一种选择是,所述蚀刻工艺可以是“一次完成的”工艺,其中溢出的蚀刻溶液被引至引流管而排出。作为第三种可选实施方式,一旦所述室的下部12a已被充满时,蚀刻溶液流被终止。 衬底S与末端操纵装置30接合,并通过衬底传输装置28被移入蚀刻溶液中。衬底S位于所述室的下部12a中,即在溢流堰34下面的高度处,以便衬底完全浸没在蚀刻溶液中。 在湿法加工中,通常在衬底表面存在一个被称为“边界层”的相对停滞的流体层。较厚的边界层可抑制蚀刻溶液或清洗溶液到达并与要从所述衬底表面上除去的物质进行反应的能力。尽管不要求边界层减薄,在一些实例中,所希望的是将附着在衬底表面上的流体边界层的厚度减到最小以使蚀刻化学物质能够更有效地接触衬底表面。可通过利用在所述室侧壁中形成的扰动在蚀刻流体中引起紊流而实现边界层减薄。例如侧壁可被机加工出不规则的或形成图案的外形,以使自歧管流经所述室10的流体是紊流的,而不是层流的。可通过相对较高的流速和温度进一步增强紊流。作为另一种可选实施方式,可在侧壁中形成附加入口(未示出)且工艺流体可通过这些端口以及通过歧管18进入所述室,以扰乱来自歧管18的流体流。作为又一种可选实施方式,可将能够耐蚀刻流体这种类型的兆赫级超声波换能器(例如蓝宝石、氟塑料、PFA、海拉尔(Halar)、ECTFE、带有涂层的金属或以特氟隆(Teflon)为商品名进行销售的聚四氟乙烯(PTFE))定位在所述室10中以引起蚀刻溶液的紊流流动,并由此引起或有助于边界层的减薄。快速充满和/或排空所述室,和/或使流体以相对较高的速度通过所述室也有助于边界层减薄。 蚀刻后骤冷和冲洗 在蚀刻工序结尾,蚀刻溶液的流动被终止,并可进行蚀刻后冲洗步骤以从所述衬底和所述室中除去蚀刻溶液。可以多种方式起动该蚀刻后冲洗步骤。在一个实例中,歧管18被移至打开位置(图1B),将蚀刻溶液从所述室10中排入引流管(未示出)中,蚀刻溶液自所述引流管被引流用于收集或排出。然后所述歧管关闭并且去离子冲洗水通过流体歧管18被引入所述室中并以阶流方式流经所述室和溢流堰34之上。另一种方式是,打开歧管18这一步可被去除,在这种情况下,允许去离子水继续流动直至蚀刻溶液被完全从衬底、歧管和所述室中冲洗掉。 作为另一种实施方式,可通过打开阀门27a(图1C)使流体被吸入密封的负压容器31a中以备以后再使用或排放,而将蚀刻溶液快速从室10上除去。如在以上“结构”部分所述,这种类型的蚀刻溶液快速去除通过更突然地结束衬底暴露于本体蚀刻流体中使得衬底整个表面上的蚀刻变化减至最小。这还有助于将蚀刻溶液从衬底表面上剪切去除。最好通过同时使用末端操纵装置30以将末端操纵装置30从所述室的下部12a取出进入上部12b而改进这种工艺。虽然已发现速度为25-300毫米/秒时是最有利,但是可以任意所需速度进行取出操作。 所述蚀刻后冲洗工艺最好包括边界层减薄工艺以加速来自衬底表面的蚀刻化学物质扩散出附着在衬底上的流体边界层并进入环境本体流体中。这一扩散过程在技术中被称为“骤冷”,且有助于衬底表面的蚀刻终止。位于衬底底部处或靠近衬底底部的兆赫级超声波换能器(例如设置作为部分流体歧管18的换能器,或独立安装在所述室内的换能器,或兆赫级超声波歧管22的换能器)也可被用于这一目的。 加速骤冷最好与本体蚀刻溶液的快速去除(例如在大约少于1.0秒的时间内)结合进行,例如通过将流体吸入所述负压容器31a(图1C)中并同时将所述衬底取出至所述室的上部12b中可实现本体蚀刻溶液的快速去除。然而,任何如上所述的排空过程例如歧管18的打开最好可与从所述室10提升衬底共同使用。 随后,所述室10快速充满骤冷剂例如去离子水。由于这时衬底位于所述室的上部12b,因此进行快速充注时可不考虑衬底被溅到而造成衬底整个表面缺少均匀性。随着对所述室开始进行充注,在所述室底部的兆赫级超声波换能器(即根据流体处理系统,可以是歧管22、歧管18或下部室的换能器)以较低功率进行操作。随着所述室被注入去离子水,所述兆赫级超声波功率增大。一旦所述室的下部12a已被部分注入,衬底被降落而进入骤冷剂中。由兆赫级超声波能量产生的紊流利于边界层减薄,由此利于蚀刻化学物质从边界层向本体冲洗水中的扩散。 所述兆赫级超声波功率随在所述室中骤冷剂体积的增加而增大。以较低功率开始并当所述室进行充注时增大功率将产生造成骤冷剂溅到所述衬底上的高功率兆赫级超声波能量的机会减至最小,同时也将在所述衬底上和在槽中残留的蚀刻溶液侵蚀浸没在水中的衬底的底部的可能性减至最小。 即使在衬底完全浸没之后最好还继续去离子水或其它骤冷剂的流动。上部兆赫级超声波换能器32a,32b被接通。这些换能器将兆赫级超声波能量传入去离子水的相邻区域。该能量产生区域Z(图2A-2C),其中由兆赫级超声波能量产生的紊流致使边界层减薄并由此有利于从衬底上蚀刻下的蚀刻材料吸气并进入骤冷剂中。区域Z是一个延伸穿过所述室的兆赫级超声波能量带。衬底传输装置28牵引衬底通过区域Z以将整个衬底暴露于区域Z中。最好选择该带状区域的面积,使得当衬底通过该区域时,衬底端面最高达30%的表面积位于该带状区域内。最好是,当衬底中心通过该区域时,衬底端面仅约3-30%的表面积位于该带状区域内。 为了彻底骤冷,一次或多次升高或降低所述衬底通过区域Z。虽然已发现速度约为25-300毫米/秒时是有利的,但是可以任意所需速度进行所述升高或降低操作。当衬底从上部区域12b进入本体冲洗流体时,衬底表面夹带的颗粒被排到气体/液体界面处并经溢流堰之上被冲出所述室。在此使用的用语“气体/液体界面”指的是在存在于所述室中的空气(和/或引入所述室中的气体和蒸气)和在所述室下部区域12a中的流体之间的界面。区域Z最好略微在所述气体/液体界面下面一点儿形成。 应注意的是,当衬底平动通过区域Z时,较低的兆赫级超声波换能器可保持接通。 通过最好是经流体喷嘴37将去离子水流直接引入上部区域12b中可改进所述骤冷工艺。当衬底传输装置28牵引所述衬底通过所述室时,该衬底通过区域Z和新水流。在衬底向上移动通过流体流的过程中,所述流体流将新的冲洗流体薄层应用在部分衬底上,在这部分衬底处边界层恰好被区域Z减薄。为进行彻底骤冷,所述衬底可一次或多次向上和向下移动通过区域Z和流体流。根据工艺目标或物质表面特性(例如疏水性的或亲水性的)可对换能器32a,32b接通计时进行选择。在一些实例中,可能所希望的是仅在将衬底从下部区域12a中取出进入上部区域12b中,或仅在将衬底插入下部区域12a中,或在取出和插入两种过程中接通换能器32a,32b。 在骤冷后,去离子水可继续在所述室中循环直至所述室、末端操纵装置和衬底已被彻底冲洗。 骤冷后冲洗可包括一次或多次快速将流体从所述室中抽出并快速再充满所述室的循环,以便在短时间内完全冲洗所述衬底和所述室。在一个实例中,在初始骤冷(通常使用冷却的/环境温度的去离子水)之后,最好使用快速抽出容器之一如容器31b将去离子水快速从所述室中除去。随后,所述室再次快速充满最好已被加热到50℃温度范围内的去离子水。为此目的使用加温流体通过减薄边界层使冲洗工艺加速。冲洗工艺的加速是由于加温流体的粘度下降而造成的。 然后,最好在一段简短的停留之后使用负压快速抽出容器或其它装置快速抽出这一加温冲洗流体。为达到彻底冲洗可进行1-3或更多次快速再充注和抽出循环。因为再充注和冲洗进行得非常快,所以可在30秒内或更短时间内为体积约为1升的所述室进行三次循环。 在蚀刻后冲洗过程中,所述物质可暴露于所述室内的臭氧中。在此,臭氧起到钝化衬底表面的作用,使表面亲水更快并由此快速进入工艺中要进行的下一步操作(清洗)。例如若要在所述室内接着进行SCI清洗时,这可能是所需要的。可采用多种方式引入臭氧。例如,若进行阶流式冲洗,可将臭氧引入到流入所述室的去离子冲洗水中,或可终止去离子冲洗水的流动并从独立来源引入臭氧。作为另一种实施方式,可通过气体端口38,39和/或41引入臭氧,在气体端口处,臭氧将溶解在所述室内的去离子水中,并且使用末端操纵装置衬底S可在所述室内平动,以便将衬底表面移动通过臭氧浓度最高的区域。作为又一种实施方式,若使用如上所述的快速抽出/再充注循环进行冲洗,那么可将臭氧加入到在那些循环中引入的加温去离子水中。可利用或不利用来自换能器32a,32b的兆赫级超声波能量进行臭氧中暴露。 清洗 还可以利用第一实施例进行衬底清洗步骤。若进行蚀刻,那么该清洗步骤可发生在蚀刻工艺之前和/或之后。在进行清洗前,通过移动流体歧管18远离窗口16而排空所述室。若使用图1C所示的流体处理构造,兆赫级超声波歧管22被移至盖住开口的关闭位置。在清洗工艺过程中,通过兆赫级超声波歧管22将清洗溶液(例如在行业中被称为“SC1”的由水、NH4OH和H2O2组成的溶液)引入所述室10中并使其以阶流方式在溢流堰34上流动。另一种选择是,若使用例如如图1D所示的流体处理构造,清洗溶液通过一个适当的专用阀门33c进入歧管23和室10中。 在清洗过程中接通兆赫级超声波换能器32a,b,以便将兆赫级超声波能量传入工艺流体的邻近区域中,且这样做在所述室内产生最佳操作特性的区域Z(图2A-2C)。对于清洗来说,这一区域也被称作主动清洗区。 如有必要防止或减少细微特征受到损害,换能器之一可以低功率或零功率进行操作。 在整个清洗过程中,衬底传输装置28向上和向下移动衬底一次或多次(根据工艺的具体要求),以将整个衬底移动通过最佳操作特性的区域Z。虽然已发现速度约为25-150毫米/秒时是有利的,但是衬底可以任意所需速度平动通过所述区域。 与骤冷工艺一样,可根据工艺目标对换能器32a,32b的接通计时进行选择。在一些实例中,可能所希望的是仅在将衬底从下部区域12a中取出进入上部区域12b中,或仅在将衬底插入下部区域12a中,或在取出和插入两种过程中接通换能器32a,32b。 区域Z是一个延伸穿过所述室的兆赫级超声波能量带,最好位于略微在所述气体/液体界面下面一点的地方。衬底传输装置28牵引衬底通过所述带状区域以将整个衬底暴露于区域Z中。最好选择该带状区域的面积,使得当衬底通过该区域时,衬底端面最高达30%的表面积位于该带状区域内。最好是,当衬底中心通过该区域时,衬底端面仅约3-30%的表面积位于该带状区域内。 基于以下若干原因,区域Z的产生最适于进行清洗。首先,通过将附着于衬底表面上的流体边界层的厚度减至最小,使得清洗溶液能更加有效地接触衬底表面且使得反应副产物能够脱附,从而提高了清洗效率。来自换能器32a,32b的兆赫级超声波能量通过在靠近衬底处产生区域性紊流而减薄边界层。由于换能器32a,32b指向所述衬底的前表面和后表面,因此边界层减薄发生在前表面和后表面上。该兆赫级超声波能量还在所述流体内引起微空穴-即形成随后向内破裂的微泡,排放出使颗粒脱离衬底的能量。兆赫级超声波紊流使流体中的颗粒在本体流体中保持悬浮,且几乎不可能与衬底相接触。最后,通过所述室和在溢流堰之上流动的高速流体流动将颗粒从所述区域移开并由此将再附着减至最小。如所述利用在所述室上端变窄的喉部区,或利用主动机构例如风箱型装置以加速流经该区域的流体,可对这一高速流动进行改进。 可通过进气口38(或进气口39或41)将气体例如氮、氧、氦或氩引入上内部区域12b中对在区域Z处的清洗进一步优化。所述气体扩散进入靠近清洗溶液表面的一部分清洗溶液体积中,并增强了在最佳操作特性区域Z中的兆赫级超声波换能器的微空穴作用。 此外,可通过进气口39和/或41将气体或蒸气例如氮、氧、氦、氩、氨、臭氧、无水HF、氯气或HCl蒸气引入上内部区域12b靠近主动清洗区Z的清洗溶液中进一步增强清洗作用。例如,引入的靠近所述衬底表面和主动清洗区Z的气体在衬底表面处可放出较大的气泡,所述气泡在可衰减所述表面处的兆赫级超声波能量-防止或减少细微特征受到损害。此外,经位于主动清洗区处或附近的入口引入气体允许在产生最强清洗作用的主动清洗区中调节清洗溶液中的化学物质。 例如,在SC1清洗工艺中不循环SC1溶液经过所述室,去离子水和H2O2可以循环经过所述室,可通过进气口39和/或41引入氨气以在主动清洗区中形成SC1溶液。当那些区域经常不在主动清洗区Z内时,氨的关键引入使衬底表面区域与SC1化学品之间的接触减至最小。这是具有长时间暴露于清洗溶液中时可被损害的细微特征的衬底所特别需要的。 在清洗过程中,与歧管22相连的下部兆赫级超声波换能器(或在图1D所示的实施例中,与歧管23相连的兆赫级超声波换能器或被独立地位于所述室下部的兆赫级超声波换能器)可被启动,以在所述室中产生声流效应,其中形成微泡流,所述微泡流使被排放的颗粒悬浮在本体流体中直至所述颗粒被冲到溢流堰34之上,以使再附着到所述衬底上的颗粒减至最少。已发现在上部兆赫级超声波换能器32也被启动时和在衬底平动通过区域Z时对下部兆赫级超声波换能器进行操作是所希望的,而不是被要求的。 应该注意的是虽然下部换能器的启动可造成最低限度的边界层减薄,但是边界层减薄并不是与这一换能器相关联的兆赫级超声波启用的目的。产生区域Z,其中边界层如上所述被减薄而不是依靠用于整个衬底表面的边界层减薄的声流过程,是有利的,其原因在于通过保持在所述区域外的边界层相对较厚可使颗粒产生再附着的机会减至最小。 为了进一步使颗粒产生再附着的机会减至最小,颗粒的吸气表面(未示出)可位于所述室内靠近区域Z处。在清洗过程中,在所述吸气表面上会感应出电荷,以使衬底表面所排放出的颗粒被吸至所述吸气表面并由此远离所述衬底。在衬底已通过区域Z之后,所述吸气表面的极性发生反转,造成来自所述吸气表面的颗粒的排放。这些被排放的颗粒被流动的清洗流体冲洗出所述室10并进入溢流堰中。 在末端操纵装置30上也可感应出电荷,以使当所述末端操纵装置与所述衬底相接触时,将颗粒从所述衬底上取出。之后,所述末端操纵装置的极性发生反转,造成吸气进入末端操纵装置中的颗粒被排放进入所述室中的清洗流体中并被冲入溢流堰中。 所述清洗过程将造成气体自清洗溶液中排放进入上内部区域12b中,一些被排放的气体可接触到所述衬底被暴露的区域,并在衬底表面产生点蚀。为了避免这种暴露,通过蒸气进气口36向上内部区域12b中引入经过选择的蒸气。所述蒸气在衬底表面凝结以形成保护膜。若任何被排放的气体应当在衬底表面凝结,那么所述气体会与保护模而不是与衬底的硅表面发生反应。例如,SC1清洗溶液会造成将氨气排入所述室中。在这一实例中,过氧化氢蒸气被引入到上部区域12b中以在所述衬底上形成保护膜。清洗溶液排放的氨会与保护膜反应,而不是点蚀衬底表面。 在已将所述衬底暴露于清洗溶液中所要求的一段处理时间之后,使用冲洗溶液对所述衬底进行冲洗。所述冲洗溶液自然由所进行的清洗工艺而定。紧跟管路后端的清洗(BEOL),可进行异丙醇或稀酸冲洗。在前端清洗工艺例如SC1清洗之后,最好进行去离子水冲洗。可以不同方式完成冲洗。例如,随着衬底优选地升高至所述室中的清洗溶液之上,可以所述的与蚀刻工艺相关的方式通过歧管22将清洗溶液吸回至下部压力容器中。紧接着,冲洗流体(例如经过图1C所示的歧管22,图1D所示的歧管23)被引入所述室10中并以阶流方式流动于溢流堰34之上。 降低所述衬底进入冲洗用水中且所述水冲洗来自所述室10和衬底表面的清洗溶液。另一种选择是,当衬底保持在清洗溶液中时,冲洗流体可被引入所述室的下部区域,由此在冲洗所述室和衬底时,清洗溶液从所述室10冲洗进入溢流堰34中。 来自侧部换能器32a,32b和/或下部换能器的兆赫级超声波能量被有选择地引入冲洗水箱中,以改进冲洗工艺。所述衬底可多次通过区域Z(再一次以一定速度,所述速度可在,也可不在25-300毫米/秒的范围内)以彻底进行冲洗。气体例如氮、氧、氦或氩可通过气体进口38被引入上内部区域12b中。所述气体扩散进靠近气体/液体界面处(即在冲洗流体上表面和气体或在其上的空气之间的界面)和冲洗流体表面的冲洗流体体积中,并增强了区域Z中的兆赫级超声波换能器的微空穴作用。 根据冲洗工艺阶段和衬底的表面状态选择适当的所述换能器的能量状态。在将衬底插入冲洗流体的过程中,两个侧部换能器32a,32b和下部换能器最好被置于“开”。根据所述衬底的表面状态(例如亲水性的还是憎水性的),在将衬底抽入上部区域12b的过程中,侧部换能器32a,32b的状态可为开或关。 活性气体冲洗 在湿法加工过程中的某些点上,衬底可暴露于活性气体(例如臭氧、氯气或氨)中以与衬底表面产生相互作用。例如这可能是从衬底上去除金属所希望的。活性气体最好溶于冲洗流体中且衬底暴露于冲洗流体中适当长的时间。 可利用兆赫级超声波能量进行所述活性气体冲洗,所述兆赫级超声波能量被用于形成活性气体冲洗流体的紊流流动。所述紊流流动减薄了附着于所述衬底上的流体边界层,以增强活性气体扩散通过边界层与所述衬底表面相接触。当活性气体冲洗流体经过流体歧管之一流入所述室时,利用位于所述室底部的兆赫级超声波换能器可产生紊流。另一种选择是,当冲洗流体经过流体歧管之一流入所述室时,可通过喷嘴36或附加喷嘴将活性气体引入所述室的上内部12b。所述气体溶于靠近冲洗用水表面处的冲洗用水中。所述上部兆赫级超声波换能器32a,32b可被接通以使区域Z内的边界层减薄,在衬底表面上形成活性物质的最佳吸收区。所述衬底一次或多次平动通过区域Z以满足活性气体有效处理衬底表面的需要。 干燥前冲洗 在一些工艺中可能所希望的是使用氢氟酸(HF)、盐酸(HCl)或除气的去离子水进行干燥前钝化冲洗。 在这些工艺中,所述室10的下部12a充满钝化流体。所述钝化流体可被注入到进入流体歧管18的去离子水流中(例如利用如图1C所示的流体处理构造),使所述钝化流体与去离子水一起流入所述室10中。另一种选择是,所述钝化流体可直接流入歧管18或所述室中,或者若使用如图1D所示的流体处理构造,所述流体可通过专用阀门33b进入歧管23和室10中。在每一种情况下,在整个干燥前冲洗工艺过程中例如通过将其收集进入(最好是)温度控制的容器中并使其流回至歧管18用于重新引流至所述10中,可使以阶流方式在溢流堰34上流动的溶液回流到所述室10中。另一种选择是,所述干燥前冲洗工艺可以是“一次完成的”工艺,其中溢出的蚀刻溶液被引至引流管而排出。作为第三种可选实施方式,一旦所述室的下部12a已被充满时,蚀刻溶液流被终止。 衬底S与末端操纵装置30接合,并通过衬底传输装置28被移入蚀刻溶液中。衬底S位于所述室的下部12a中,即在溢流堰34下面的高度处,以便衬底完全浸没在钝化溶液中。在活性气体步骤中,上部兆赫级超声波换能器32a,32b可被接通以使区域Z内的边界层减薄,在钝化冲洗流体和衬底表面之间形成最佳接触区。所述衬底一次或多次平动通过区域Z以满足钝化冲洗流体有效钝化衬底表面的需要。兆赫级超声波能量的使用还可减少在所述衬底上的颗粒沉积,这可能是在使用低pH值的钝化溶液如HF或HCl时经常发生的现象。 干燥 在进行完最终处理和冲洗步骤之后,所述衬底在所述室内进行干燥。可以多种方式进行干燥-以下对三种干燥方法进行说明。所述三个实例中的每一个都利用最好是由氮气流带入所述室的IPA(异丙醇)蒸气。在每一实例中,最好在远离所述室10的IPA发生室中使用为本领域普通技术人员所熟知的多种IPA发生工艺中的一种产生IPA蒸气。例如IPA蒸气可通过将预先确定量的IPA液体注射到在IPA发生室内的受热表面上在IPA发生室内生成。IPA在受热表面上被加热至一定温度,所述温度最好低于IPA的沸点(在1个大气压力下是82.4℃)。加热IPA增大了IPA蒸气生成的速度并因此加速了工艺过程,产生IPA蒸发云。当所述室10需要IPA蒸气时,氮气通过进口进入到IPA发生室中,并携带IPA蒸气通过与所述室10内的蒸气进气口36流体连接的出口离开IPA发生室。也可以使用无氮气作为载体的饱和的IPA蒸气。 下面将对使用IPA蒸气的干燥工艺的三个实例进行说明。在一个实施例中,通过将流体快速抽入负压容器中或通过将兆赫级超声波歧管22移至打开位置(或者若在HF最后加工和冲洗后进行干燥,将流体歧管18从关闭位置移至打开位置)而进行快速抽出,用于最终冲洗的本体水可快速从所述室10中排出。异丙醇的蒸气通过蒸气进气口36被引入到所述室10中。IPA蒸气被引入至所述室10中可在快速排放或快速抽出之前、之中或之后开始进行。所述IPA蒸气进入所述室的下部12a并凝结在所述室的表面上,在此减小了附着在所述衬底上的水的表面张力,并由此使水以薄层的方式脱离衬底表面。使用气体例如通过气体进口38引入的受热氮气可将所有剩余的液滴从衬底表面蒸发掉。气体进口38可包括具有向下成一角度倾斜的出口的供气支管。末端操纵装置30可被用于将衬底移动通过这一供气支管以加速衬底表面上的剩余IPA/水膜层的蒸发。 在另一种可选干燥工艺中,通过经蒸气进气口36引入蒸气可在上内部区域12b中形成IPA蒸气的气氛。根据这一实施例,所述衬底传输装置28将衬底从下内部区域12a升高至上内部区域12b形成的IPA蒸气气氛中,在此IPA蒸气在衬底表面上凝结,造成附着于衬底上的水的表面张力的下降,并由此使水以薄层的方式脱离衬底表面。 当衬底被从去离子水中拉出来时,兆赫级超声波换能器32a,32b可被接通以在区域Z中产生紊流以减薄附着于所述衬底上的边界层。随着边界层被区域Z减薄,IPA可更快速地扩散至所述表面和所述衬底的特征上,由此在较少IPA用量的条件下产生较快速的干燥。因此,所述衬底可相对快速地即最好以30毫米/秒或更慢的速度,且速度最好在约8毫米/秒和30毫米/秒之间被抽入IPA气氛中。这种方法比先前的抽出干燥方法快十倍,所述先前的抽出干燥方法利用慢速抽出(例如0.25-5毫米/秒),以利于在附着于所述衬底的流体和本体冲洗用水之间表面张力梯度。 再一次,气体例如受热的氮可通过供气支管38引入以将所有剩余的IPA和/或水膜层蒸发掉,且所述衬底可平动通过供气支管38以加速这一蒸发过程。 在第三可选实施例中,可使用慢速抽取型干燥。衬底由此缓慢地从本体去离子水中被取出进入IPA蒸气中。利用这一实施例,IPA在衬底和本体液体之间延伸的弯液面上凝结。这造成IPA在弯液面中形成浓度梯度并产生衬底表面上液体所谓的Marangoni流动。气体例如受热氮气可通过供气支管38被引导到衬底上以通过蒸发除去一些残留的水和/或IPA液滴和/或膜层。可将所述衬底移动通过供气支管38以加速这一蒸发步骤。 在每一个上述三个实施例中,应注意在干燥工艺的不同步骤中在所述室内保持静压。 第二实施例-结构 图3A示出了利用本发明原理的单衬底加工室的第二实施例100。 第二实施例100一般包括加工室102、密封容器104、末端操纵装置106、转动致动器108和纵向致动器110。 参见图3A,加工室102包括限定了下内部区域113a和上内部区域113b的间距较密的室壁111。溢流堰114位于下内部区域113a中,略微在上内部区域113b之下。溢流堰114包括壁部115,在一定的工艺步骤中所述壁部115之上在流体以阶流方式流入溢流堰114。在所述室102的底部是一个下开口135(图3B),且在所述室的底部是一个上开口142(图4)。 设置蒸气/气体歧管116用于将蒸气/气体引入所述室的上部区域113b中。歧管116(最佳如图4所示)包括在上部区域113b相对侧上的壁120。蒸气/气体端口122a,122b延伸通过壁120并与蒸气/气体管道124a,124b流体连接。多个开口126a,126b自管道124a,124b延伸进入所述室102中。开口126a,126b可如图所示向下呈一定角度倾斜。这些相对于壁120的法线的角度大小最好在(但不要求)45°-80°的范围内。每一个端口122a,122b与输送工艺蒸气/气体通过端口122a,122b并通过管道124a,124b和开口126a,126b进入所述室102中的管路相连接。 参见图5,歧管116另外还包括从溢流堰114延伸出的排泄口128。排泄口128与输送流体从溢流堰114溢流出并远离所述室以用于回流或排放的管路(未示出)流体相连接。 在密封容器104内有一个歧管130,所述歧管包括一条伸长的管道132和多个自管道132延伸进入所述室102的下部区域的开口134。流体端口133与管道132相连接并与管路网络流体连接。这一管路网络有选择地输送不同工艺化学品的选择物通过流体端口133进入歧管130中并由此进入所述室102中。歧管130如图3B所示可移动至打开位置以允许在所述室中的流体通过下部开口快速排放至排出管(未示出)中。设置自动装置137用于在打开和关闭位置之间移动所述流体歧管。 如图6所示类型的末端操纵装置可被用于第一或第二实施例中的任何一个。末端操纵装置136包括块体138和一对夹持构件140,所述夹持构件如图所示通过接合衬底的相对边缘而与衬底S相接合。纵向致动器110(图3A)在取出位置和前置位置之间移动块体138和夹持构件140,在所述取出位置中,衬底S被完全从所述室102中移出;在所述送进位置中,衬底S被完全设置在下部区域113a内。当处于送进位置时,块体138靠住并关闭室102的开口142(图4),以便容纳气体和蒸气并防止或减少颗粒向所述室内的迁移。 当末端操纵装置处于取出位置时,转动致动器(图3A)被构造成将所述末端操纵装置转动至侧向取向。这是通常以水平布置容纳在存贮装置或载体中的大衬底(例如300毫米)所特别需要的。所述末端操纵装置可被制成以直接从/向这种载体上,或者从设置用于从/向所述载体上取下/装载衬底独立的机械手末端操纵装置上取回和放置衬底。所述纵向致动器和横向致动器最好利用为本领域的普通技术人员所公知的常规类型的机械装置,且这些及其它自动化部件(例如那些与工艺流体/蒸气/气体的测量和注射相关的部件)受常规控制器例如可编程逻辑控制器的控制。 图7A-7E示出了另一种可选的末端操纵装置106a,所述末端操纵装置具有当与所述实施例一起使用时特别有利的接合机构。尽管末端操纵装置106a还可以利用其它不同的室的形状,还描述了一种具有与室102不同形状的可选室102a。如下说明所述,末端操纵装置106a相对于衬底具有两种位置即:传输位置,其中衬底被末端操纵装置牢牢地保持住;和加工位置,其中当允许工艺流体流入接触衬底表面时,末端操纵装置稳定住所述衬底。 参看图7A,末端操纵装置106a包括一对支承构件150,每一个支承构件包括上支架152、下支架154、上传输槽156和下传输槽158。在衬底的传输过程中,上、下传输槽156,158接收衬底S的边缘,如图7A和7B所示,由此当衬底移入所述室102a/移出所述室102a/在所述室102a内移动时,支承住所述衬底。 如图7B-7D所示,在所述室102a内(例如如图所示的室壁111a)装有底部切口160。当所述衬底下降至所述室中的加工位置时,所述衬底的底部边缘接触到底部切口160。末端操纵装置106继续向下移动造成所述衬底缓缓移动从上、下传输槽156,158中滑出。一旦所述衬底已完全下降至所述室内的加工位置(图7D)时,其重量受到底部切口160和支承构件152,154的支承作用以使衬底稳定在这一加工位置处。特别是如图7E所示,所述衬底边缘被置于支承构件152的槽口间,所述槽口限制了衬底向前/向后的移动但最好不夹紧所述衬底,由此当使工艺流体流过所述槽口时保持衬底稳定。支承构件154(最好不包括槽口)延伸朝向衬底边缘并限制衬底的侧向移动。 由于所述室壁111a间距较近,所以所述室壁最好包括凹进部162(图7B-7D),所述凹进部为容纳末端操纵装置构件150提供了附加空间。 作为另一可选实施方式,所述室可包括除底部切口160之外的静态切口161。所述切口161限制衬底在所述室内的左右和前后移动。一旦衬底已位于切口160内,这种切口使衬底从末端操纵装置中释出,由此防止末端操纵装置干扰要在所述容器内进行的加工过程。例如为干燥步骤从所述室上除去末端操纵装置将防止可从末端操纵装置上通过毛细作用流走的液体缓慢地滴落到所述衬底上,在此可产生条痕。 第二实施例-操作 与第一实施例一样,第二实施例可被用于多种步骤,这些步骤或单独,或相互间组合或与其它工艺相结合,所述步骤包括但不限于湿法蚀刻、清洗、冲洗和干燥操作。将在蚀刻、清洗和干燥工艺的范围内对第二实施例的操作进行说明,其中在蚀刻和清洗之后进行冲洗。然而,应理解在不偏离本发明范围的条件下也可进行多种其它工艺的组合。还应理解使用第二实施例可实施与第一实施例相关的所述多种步骤,包括所述的用于边界层减薄、兆赫级超声波辅助的骤冷、清洗、冲洗和/或干燥、气体引入、臭氧钝化、化学品的注入和排出的方法。此外,与第一实施例相关的作为实例给出的速度和其它数值也可适用于第二和第三实施例的应用。 第二实施例的操作自如图5所示处于关闭位置的流体歧管130开始。去离子水通过歧管管道132被引入流体端口133并通过开口134进入室102。去离子水通过下内部区域113a并在壁115上以阶流方式流入溢流堰114并流出排放口128。同时,氮气缓慢流入蒸气/气体歧管中充气端口122a,b的最上部,造成氮气流过相关管道124a,124b并通过孔口126a,126b进入室102的上部区域113b。这一缓慢流动保持室102内有较小的正压。最好在蚀刻、清洗、冲洗和干燥整个过程中持续有这一氮气流。 衬底W与末端操纵装置106相接合并通过自动系统移入以阶流方式流动的去离子水中。衬底S位于所述室的下内部113a中。为蚀刻工序所需的工艺流体(例如HF)被注入到通过流体端口133输送至歧管的去离子水中,并通过流体歧管130进入室102中。在蚀刻工序的末端,进入室102的蚀刻溶液的输送被终止。蚀刻溶液从所述室中可被排空并且最好使用如上所述的一个或多个工序进行冲洗。例如纯的去离子水可继续流入室102中以将蚀刻溶液从所述室中冲走并对衬底、歧管和室进行冲洗。 在一种可选的蚀刻工序中,下内部113a充满了蚀刻溶液,然后将衬底下降进入蚀刻溶液的静态体积中。在经过所要求的停留时间之后,如上所述最好进行阶流式冲洗或其它类型的冲洗。 一旦衬底进行完彻底冲洗,将清洗溶液(例如在行业中被称为“SC1”的由水、NH4OH和H2O2组成的溶液)通过歧管130引入所述室102中并使其以阶流方式在壁115上流动进入溢流堰114。在衬底已完全暴露于清洗溶液中一段所需时间之后,终止清洗溶液向去离子水流中的注入,接着纯去离子水流流入室102中以冲洗衬底。 在进行完最终处理和冲洗步骤之后,所述衬底在室102内进行干燥。可以多种方式进行干燥,每一种方式最好使用与如上所述相似的方式所产生的IPA蒸气。 在干燥工艺的一个实例中,通过将流体歧管130移动至打开位置(图3B),用于最终冲洗的本体水可快速地从室102中排出。然后通过使IPA蒸气通过蒸气/气体端口122a,b进入相应的管道124a,b并由此经过开口126a,b进入到所述室中,异丙醇蒸气被引入所述室的上部113b。IPA蒸气流入所述室的下部113a,在此异丙醇蒸气凝结在衬底表面上,从而减小了附着在衬底上的水的表面张力,并由此使水以薄层的方式脱离衬底表面。使用通过气体蒸气/气体进口126a,126b引入的气体(例如受热氮气)可将所有剩余的液滴从衬底表面蒸发掉。 另一种选择是,通过经气体/蒸气开口126a,b引入蒸气,可在上内部区域113b中形成IPA蒸气气氛。根据这一实施例,末端操纵装置106将衬底从下内部区域113a升高进入上内部区域113b中的IPA蒸气气氛中。将衬底取出进入IPA蒸气气氛这一过程可非常快,也就是约8-30毫米/秒。IPA蒸气凝结在衬底表面上,从而减小了附着在衬底上的水的表面张力,并由此使水以薄层的方式脱离衬底表面。与开口126a,b相类似的第三开口可设置在溢流堰114刚刚靠上的地方以抽成真空,以加速IPA或IPA/水的混合物的蒸发。再一次,可引入气体例如受热氮气以干燥衬底上剩余的IPA和/或液滴/膜层。 作为另一种可选实施方式,衬底可缓慢地从本体去离子水中取出进入到IPA蒸气中。利用这一实施例,IPA在衬底和本体液体之间延伸的弯液面上凝结。这造成IPA在弯液面中形成浓度梯度并产生衬底表面上液体所谓的Marangoni流动。气体(例如受热氮气)可被用于在Marangoni过程后除去全部残留的水的液滴。 第三实施例-结构 参见图8,单衬底加工室的第三实施例200包括室210,所述室具有与容纳加工衬底S成比例的下内部区域212a、上内部区域212b和在上内部区域212a中的开口。 设置衬底传输装置(未示出),其包括被构造最好以如图6所示的方式接合衬底S的末端操纵装置。所述传输装置受常规自动装置(未示出)驱动以将衬底S沿边缘方向通过开口214移入、移出所述室和在所述室内移动。 密封开口214设有盖子215。所述盖子215是可用自动装置操纵的,该自动装置驱动末端操纵装置,或用独立的自动装置。 流体处理系统被构造成输送多种工艺流体(例如蚀刻流体、清洗流体、冲洗流体等)进入所述室210的下内部区域212b中。所述流体处理系统可存在多种形式,包括如图1A-1D和图5所示的形式。 在所述室210的下部区域212a中设有一个或多个兆赫级超声波换能器(未示出)。所述下部换能器可以一种已公知的技术安装在室210的壁上,或者所述下部换能器可包括如上所述歧管组件的一部分。当下部换能器将兆赫级超声波能量导向所述室中的流体中时,所述换能器在流体内引发声流-即微泡流,其有助于从衬底中去除污染物并保持颗粒在所述工艺流体内运动着以避免颗粒附着在衬底上。 蒸气入口、流体喷嘴和供气支管延伸进入所述室210的上内部区域212b。每一个上述部件在加工过程中与根据所需向端口输送适量蒸气和气体的管道系统流体连接。 上溢流堰234位于开口214下面。流经所述室和衬底S的工艺流体以阶流方式流动进入溢流堰234并进入溢流管道235用于回流至流体处理系统和再次进入所述室或进入排出管233中。多于一个兆赫级超声波换能器232(图8中示出一个)被放置在溢流堰34下面的某一高度处,并取向成将兆赫级超声波能量引入所述室210的上部中,其中所述兆赫级超声波换能器可包括单个换能器或一多个换能器阵列。 当末端操纵装置向上和向下移动衬底通过所述室210时,所述能量与衬底发生相互作用。所希望的是取向所述换能器,以使能量束在气体/液体界面处或附近,例如在上溢流堰234高度下面的所述室区域顶部0-20%的范围内的高度处与衬底表面产生相互作用。所述换能器可被构造成沿正交于衬底表面的方向或与所述正交方向成一角度引导兆赫级超声波能量。引导兆赫级超声波能量与所述正交方向所成的角度最好约为0-30度,最佳约为5-30度。所述换能器的功率和取向可按照第一实施例所述的方式进行调节。 当被接通时,换能器232在所述室的工艺流体内产生最佳性能区域Z。如下详述,所述区域的能量增大通过区域性边界层减薄和微空穴作用加强了蚀刻后骤冷、清洗、冲洗和干燥工艺。 下溢流堰240位于换能器232的高度之下。下溢流堰240有选择地包括具有防止流体流入溢流堰中的关闭位置的门242。当溢流堰240处于关闭位置时,流入所述室的流体流经换能器232并以阶流方式在上溢流堰234之上流动。当下溢流堰240处于打开位置时,流入所述室的流体以阶流方式流过溢流堰234且不与换能器232相接触。所述下溢流堰240被用于分流开能够损坏兆赫级超声波换能器的强腐蚀性的化学品(例如使用氟化氢的蚀刻溶液)。尽管一些换能器的材质例如蓝宝石或特氟隆可耐住这些化学品的侵蚀作用,但是那些材料非常昂贵,这样会增加所述室的总成本。此外,设置强腐蚀性化学品的单独溢流堰还有助于使这些化学品保持在用于传送其它溶液的管道(例如用于再循环清洗和冲洗流体的管道235)之外,由此将流体的交叉污染减至最低。 第三实施例-操作 将在蚀刻、清洗和干燥工艺的范围内对所述室200的使用进行说明,其中在蚀刻和清洗之后进行冲洗。自然地,在不偏离本发明范围的条件下,这些或其它工艺步骤可进行多种其它组合。 蚀刻 蚀刻操作优选始于所述室210的下部212a,其被蚀刻工序所需的工艺流体(例如氢氟酸(HF),氟化铵和HF,或缓冲氧化物)充满。可通过将工艺流体引入所述室下端部的流体处理系统引入这些流体。 衬底S与末端操纵装置(例如如图6所示的末端操纵装置30)接合,并被移入蚀刻溶液中。衬底S位于所述室的下部212a中,以使其上边缘位于下溢流堰240的高度之下。若已设置,那么下溢流堰240的门242被移动至打开位置。蚀刻溶液继续流入所述室210中并以阶流方式流入溢流堰240。 蚀刻可包括有助于蚀刻溶液达到并由此与要从衬底表面除去的物质进行反应的边界层减薄。可通过利用在所述室侧壁中形成的扰动在蚀刻流体中引起紊流而实现边界层减薄。可通过相对较高的流速和温度的蚀刻溶液进一步增强紊流。还可以采用用于在蚀刻溶液中产生紊流的其它机制,其中包括那些与第一和第二实施例相关的机制。 蚀刻后骤冷和冲洗 在蚀刻工序结尾,蚀刻溶液的流动被终止,并可进行蚀刻后冲洗步骤以从所述衬底和所述室中除去蚀刻溶液。 所述蚀刻后冲洗工艺最好包括骤冷工艺以加速来自衬底表面的蚀刻化学物质扩散出附着在衬底上的流体边界层并进入环境本体流体中。例如利用密封容器如图1C所示的容器31a,优选从所述室的下端部210快速除去(例如最好但不限于在大约少于1.0秒的时间内)蚀刻溶液,开始进行骤冷。这种类型的蚀刻溶液快速去除通过更突然地结束衬底暴露于本体蚀刻流体中使得衬底整个表面上的蚀刻变化减至最小。最好通过使用衬底传输装置以同时将衬底从所述室的下部212a取出进入上部212b而改进这种工艺。 紧接着,下溢流堰240被移动至关闭位置并且所述室210快速充满骤冷剂例如去离子水。由于这时衬底位于所述室的上部212b,因此进行快速充注时可不考虑衬底被溅到而造成衬底整个表面缺少均匀性。随着对所述室210开始进行充注,在所述室底部的兆赫级超声波换能器以较低功率进行操作。一旦所述室的下部212a已被部分注入,衬底被降下进入骤冷剂中。由兆赫级超声波能量产生的紊流利于边界层减薄,由此利于蚀刻化学物质从边界层向本体冲洗水中的扩散。 所述兆赫级超声波功率随在所述室中骤冷剂体积的增加而增大。以较低功率开始并当所述室进行充注时增大功率将产生造成骤冷剂溅到所述衬底上的高功率兆赫级超声波能量的机会减至最小,同时也将在所述衬底上和在槽中残留的蚀刻溶液侵蚀浸没在水中的衬底的底部的可能性减至最小。 即使在衬底完全浸没之后最好去离子水或其它骤冷剂的流动还继续。由于下溢流堰240被关闭,因此流体高度升至兆赫级超声波换能器232之上并以阶流方式流入上溢流堰234。上部兆赫级超声波换能器232被接通并将兆赫级超声波能量传入与区域Z中(图2A-2C)的去离子水的相邻区域。在区域Z中,由兆赫级超声波能量产生的紊流致使边界层减薄并由此有利于从衬底上蚀刻下并进入骤冷剂中的蚀刻材料的吸气。牵引衬底通过区域Z,并且为了彻底骤冷,一次或多次升高或降低所述衬底通过区域Z。与前面的实施例一样,最好选择该带状区域的面积,使得当衬底通过该区域时,衬底端面最高达30%的表面积位于该带状区域内。最好是,当衬底中心通过该区域时,衬底端面仅约3-30%的表面积位于该带状区域内。 当衬底从上部区域212b进入本体冲洗流体时,衬底表面夹带的颗粒被排到气体/液体界面处并经溢流堰之上被冲出所述室210。 通过最好是经位于上部区域中的流体喷嘴(例如第一实施例所述的流体喷嘴37)直接将去离子水流引入上部区域212b中可改进所述骤冷工艺。当衬底传输装置牵引所述衬底通过所述室时,该衬底通过区域Z和新水流。在衬底向上移动通过流体流的过程中,所述流体流将新的冲洗流体薄层应用在部分衬底上,在这部分衬底处边界层恰好被区域Z减薄。为进行彻底骤冷,所述衬底可向上和向下一次或多次移动通过区域Z和流体流。 如前所述,换能器232的接通计时取决于工艺目标或物质表面特性(例如疏水性的或亲水性的)。在一些实例中,可能所希望的是仅在将衬底从下部区域212a中取出进入上部区域212b中,或仅在将衬底插入下部区域212a中,或在取出和插入两种过程中接通换能器232。 在骤冷后,去离子水可继续在所述室中循环直至所述室、末端操纵装置和衬底已被彻底冲洗。 清洗 在进行清洗前,使用包括如前面所述的多种方法中的一种排空所述室。在清洗工艺过程中,使用流体处理系统将清洗溶液(例如“SC1”溶液或后端清洗溶液)引入所述室210中。下溢流堰240保持关闭位置并由此使清洗流体升高至换能器232之上且在上溢流堰234之上以阶流方式进行流动。 在清洗过程中兆赫级超声波换能器232被接通,以便将兆赫级超声波能量传入区域Z中。衬底传输装置沿边缘方向向上和向下移动衬底一次或多次,以将整个衬底移动通过区域Z。与骤冷工艺一样,可根据工艺目标对换能器232的接通计时进行选择。 区域Z优化了清洗,原因如下。首先,通过产生局部紊流,所述局部紊流减薄流体边界层,并使得清洗溶液有效地接触到衬底表面,从而提高了清洗效率。该兆赫级超声波能量还在所述流体内引起微空穴-即形成随后向内破裂的微泡,排放出使颗粒脱离衬底的能量。可通过进气口将气体例如氮、氧、氦或氩引入上内部区域212b使得气体扩散进靠近清洗溶液表面的清洗溶液体积中,而进一步增强微空穴作用。 其次,兆赫级超声波紊流还使流体中的颗粒在本体流体中保持悬浮,且几乎不可能与衬底相接触。最后,通过所述室和在溢流堰之上流动的高速流体流动将颗粒从所述区域移开并由此将再附着减至最小。 如第一实施例所述,可通过喷洒歧管或其它入口将气体或蒸气例如氮、氧、氦、氩、氨、臭氧、无水HF、氯气或HCl蒸气引入靠近主动清洗区Z的清洗溶液中而进一步增强清洗作用。这样做可具有许多优势。例如,引入的靠近所述衬底表面和主动清洗区Z的气体在衬底表面处可放出较大的气泡,所述气泡在可衰减所述表面处的兆赫级超声波能量-防止或减少细微特征受到损害。此外,经位于主动清洗区处或附近的入口引入气体允许在产生最强清洗作用的主动清洗区中调节清洗溶液中的化学物质。 在清洗过程中,位于下部区域212b的兆赫级超声波换能器可被启动,以在所述室内产生声流效应,使被排放的颗粒悬浮在本体流体中直至所述颗粒被冲到溢流堰234之上。这样将颗粒产生再附着的机会减至最少。为了进一步使颗粒产生再附着的机会减至最小,颗粒的吸气表面(未示出)可位于所述室内靠近区域Z处。在清洗过程中,在所述吸气表面上会感应出电荷,以使衬底表面所排放出的颗粒被吸至所述吸气表面并由此远离所述衬底。在衬底已通过区域Z之后,所述吸气表面的极性发生反转,造成来自所述吸气表面的颗粒的排放。这些被排放的颗粒被流动的清洗流体冲洗出所述室10并进入溢流堰中。 所述清洗过程将造成气体自清洗溶液中排放进入上内部区域212b中,一些被排放的气体可接触到所述衬底被暴露的区域,并在衬底表面产生点蚀。为了避免这种暴露,通过蒸气进气口向上内部区域212b中引入经过选择的蒸气以在衬底表面凝结以形成保护膜。若从清洗溶液中排放的活性气体在衬底表面凝结,那么所述活性气体会与保护模而不是与衬底的硅表面发生反应。例如,SC1清洗溶液会造成将氨气排入所述室中。在这一实例中,过氧化氢蒸气被引入到上部区域212b中以在所述衬底上形成保护膜。清洗溶液排放的氨会与保护膜反应,而不是点蚀衬底表面。 在已将所述衬底暴露于清洗溶液中所要求的一段处理时间之后,使用冲洗溶液对所述衬底进行冲洗。所述冲洗溶液自然由所进行的清洗工艺而定。可以不同方式完成冲洗。在一个实例中,所述衬底被升高至所述室中的清洗溶液之上,并且使用低压容器例如如前所述的容器31b将清洗溶液从所述室中抽出。冲洗流体被引入所述室210中并以阶流方式流动于上溢流堰234之上。 降低所述衬底进入冲洗用水中且所述水冲洗来自所述室210和衬底表面的清洗溶液。来自侧部换能器232和/或下部换能器的兆赫级超声波能量被有选择地引入所述室中,以改进冲洗工艺。所述衬底可多次通过区域Z以进行彻底冲洗。气体例如氮、氧、氦或氩可被引入上内部区域212b中。所述气体扩散进靠近气体/液体界面处(即在冲洗流体上表面和气体或在其上的空气之间的界面)的冲洗流体体积中,并增强了区域Z中的兆赫级超声波换能器的微空穴作用。 根据冲洗工艺阶段和衬底的表面状态选择适当的所述换能器的能量状态。在将衬底插入冲洗流体的过程中,侧部换能器232和下部换能器最好被置于“开”。根据所述衬底的表面状态(例如亲水性的还是疏水性的),在将衬底抽入上部区域12b的过程中,侧部换能器232的状态可为开或关。 干燥 在最终冲洗后可进行任何一种干燥工艺,包括但不限于在第一和第二实施例中所述的那些干燥工艺。 第四实施例 图9A示出了室300的第四实施例。所示第四实施例是为了说明在适于同时加工两个衬底S而不是一个衬底的室中前述原理的应用。所述第四实施例可包括第一至第四实施例的一些或全部特征,包括流体处理系统(包含快速抽出容器)、上部和下部兆赫级超声波、用于平动所述衬底通过主动区的自动装置、气体/蒸气进口等。 参考图9A,室300包括一对衬底支承切口302。切口302被取向成支承衬底S,使衬底的两个前表面(即成为在所述衬底上形成的电子装置的工作面的表面)相互背离。这使得前表面暴露在发自上部兆赫级超声波换能器304的直接能量(标号E)中。 所述切口可被构造成全面支承衬底,防止衬底在加工过程中产生左右和前后向移动,或者所述切口可与图7A-7D所示的末端操纵装置结合在一起工作。 所述两个衬底最好以如图9B所示的倾斜方式进行取向,所述两个衬底的上边缘相互倾斜且在这两个上边缘之间存在一个窄隙(即约5-10毫米)。这种倾斜的取向使更多活性表面暴露于在所述室内的流体和蒸气中。 另一种选择是,该支承切口利用机械自动装置(例如马达,或气动致动器或液压致动器)是可移动的,使得在蚀刻、冲洗和清洗过程中支承切口以基本上垂直或近似垂直的方式(图9A)支承所述衬底。在干燥阶段,所述支承切口将衬底移动至如图9B所示的倾斜取向。在IPA蒸气阶段,衬底保持所述倾斜取向,使更多的经选择的IPA流到所述衬底的前表面上。 所述双衬底加工室在以下方面特别有利,即所述双衬底加工室使得可在与单衬底加工室具有相同体积的一个室内对两个衬底进行加工,在不需要补充水或化学品用量的条件下使产量增加至两倍。所述双衬底加工室可具有比单晶片加工室内部体积大30%的内部体积。 已对利用本发明原理的四个实施例进行了描述。这些实施例仅通过实例方式给出,且并不意味着限制权利要求的范围,这是由于本发明的设备和方法可以包括在此所述方式以外的多种方式进行构造和实施。此外,已对与在此所述的每一实施例相关的许多特征进行了说明。应理解所述特征可以多种方式进行组合,且在不偏离本发明的前提下,与公开实施例之一相关的所述特征同样可被包含在其它实施例中。最后,各种尺寸、持续时间、工序、化学品、体积等已通过实例给出且不是限制性的。
《用于单衬底或双衬底加工的设备和方法.pdf》由会员分享,可在线阅读,更多相关《用于单衬底或双衬底加工的设备和方法.pdf(57页珍藏版)》请在专利查询网上搜索。
在一种用于对半导体衬底进行处理的方法中,一个或两个衬底被放置在衬底加工室中,并进行湿法蚀刻、清洗、冲洗和/或干燥步骤。在清洗或冲洗过程中,在所述加工室内产生一个兆赫级超声波能量带以产生主动冲洗或清洗区,且在所述室内进行的冲洗或清洗过程中,所述衬底平动通过所述主动区域。 。
copyright@ 2017-2020 zhuanlichaxun.net网站版权所有经营许可证编号:粤ICP备2021068784号-1