耐热性薄膜及其金属积层体 【技术领域】
本发明涉及适用于电子器件用部件、特别是铜箔积层板的耐热性薄膜,详细的说是涉及低温(≤260℃)下热熔敷性良好,且在PCT(加压蒸煮试验)处理后的钎焊耐热性和端裂阻力值的平衡优异的耐热性薄膜及其金属积层体。
背景技术
聚醚醚酮树脂所代表的结晶性聚芳基酮树脂,由于耐热性、阻燃性、耐水解性、耐化学性等优异,以飞机部件、电气电子部件为中心被广泛应用。但是,因为聚芳基酮树脂不仅原料价格非常高,而且树脂自身的玻璃化转变温度较低,约140-170℃左右,因此进行了各种改善耐热性的研究。其中作为显示良好相容性的一类,与非晶性聚醚酰亚胺树脂的共混物引人注目。本发明人在特开2000-38464号公报、特开2000-200950号公报等中提出了使用上述混合组合物的印刷电路布线基板及其制造方法的方案。这些专利公报中记载的由结晶性聚芳基酮树脂和非晶性聚醚酰亚胺树脂的混合组合物(通常,为了提高尺寸稳定性而含有无机填料等)构成,且结晶性受控制的薄膜,在低温(≤260℃)下的热熔敷性良好,使用该薄膜制备的挠性印刷电路布线基板,尺寸稳定性和耐热性良好。但是,机械强度、特别是端裂阻力值不一定能达到足够的水平,又因耐折性、抗弯曲性不足,会有基板的连接可靠性差的问题。进一步,还有基板加工工序中地操作适应性不足的问题,希望对这些问题进行改善。
【发明内容】
本发明的目的是提供低温(≤260℃)下的热熔敷性良好,且在PCT(加压蒸煮试验)处理后的钎焊耐热性和端裂阻力值的平衡优异的适于用作电子设备用部件的耐热性薄膜及其金属积层体。
本发明人经过专心探讨的结果,发现了一种耐热性薄膜,其使用含有结晶性聚芳基酮树脂和特定的2种非晶性聚醚酰亚胺树脂的混合树脂组合物作为主要成分,可以解决上述课题,以至完成了本发明。
即,本发明为一种耐热性薄膜,其特征是:在相对于包含具有下述结构式(1)重复单元的聚醚酰亚胺树脂(A-1)和具有下述结构式(2)重复单元聚醚酰亚胺树脂(A-2)以及结晶熔融峰温度为260℃以上的聚芳基酮树脂(B)的至少3种成分的树脂组合物100重量份,混合了5-50重量份范围的填充剂的薄膜中,各成分的混合重量比为[(A-1)+(A-2)]/(B)=70-30/30-70,且(A-1)/(A-2)=70-30/30-70。
结构式1
结构式2
[(A-1)+(A-2)]/(B)优选65/35-35/65,更优选65/35-45/55。(A-1)/(A-2)优选65/35-35/65,特别是65/35-50/50。
填充剂的混合量优选10-45重量份,更优选20-40重量份。
本发明涉及在上述薄膜的至少一面上积层金属体而形成的金属积层体。金属体优选铜、铝或不锈钢。
本发明也涉及积层至少2张通过在上述薄膜的一面上积层铜箔得到的铜箔积层薄膜而成的多层基板。
另外,本发明还涉及构成上述薄膜的树脂组合物。
【具体实施方式】
本发明的薄膜,其特征如下:在相对于包含非晶性聚醚酰亚胺树脂(A-1)、(A-2)和结晶性聚芳基酮树脂(B)的树脂组合物100重量份混合了5-50重量份范围的填充剂的薄膜中,各成分的混合重量比为[(A-1)+(A-2)]/(B)=70-30/30-70,且(A-1)/(A-2)=70-30/30-70。本发明所说的薄膜,也包含壁厚度较厚的500μm以上的片材。
这里,构成本发明的非晶性聚醚酰亚胺树脂是其结构单元中含有芳环键、醚键、以及酰亚胺键的非晶性热塑性树脂,具体可应用具有下述结构式(1)、(2)所示的重复单元的聚醚酰亚胺,分别以ゼネラルエレクトリツク社制造的商品名Ultem CRS5001、Ultem 1000等而市售。
结构式1
结构式2
非晶性聚醚酰亚胺树脂的制备方法没有特别的限定,通常,具有上述结构式(1)的非晶性聚醚酰亚胺树脂,作为4,4’-[异亚丙基-双(对亚苯基氧)二邻苯二甲酸二酐和对苯二胺的缩聚物,或具有上述结构式(2)的非晶性聚醚酰亚胺树脂,作为4,4’-[异亚丙基-双(对亚苯基氧)二邻苯二甲酸二酐和间苯二胺的缩聚物,通过公知的方法合成。上述的非晶性聚醚酰亚胺树脂中,在不超出本发明的主旨的范围内,可以导入其他的可共聚单体单元。
结晶性聚芳基酮树脂是其结构单元中含有芳环键、醚键、以及酮键的热塑性树脂,其代表例有,聚醚酮、聚醚醚酮、聚醚酮酮等。本发明中,优选使用具有下述结构式(3)所示的重复单元的聚醚醚酮。具有该重复单元的聚醚醚酮,市售的有VICTREX公司制造的商品名[PEEK151G]、[PEEK381G]、[PEEK450G]等。另外,使用的结晶性聚芳基酮树脂,可以单独使用1种,或2种以上组合使用。
结构式3
上述的非晶性聚醚酰亚胺树脂和结晶性聚芳基酮树脂的混合重量比为70/30-30/70,优选65/35-35/65,更优选65/35-45/55。该重量比超过上述上限值的话,作为组合物总体的结晶性本身低,结晶速度也变得过慢,即使结晶熔融峰温度在260℃以上,钎焊耐热性也低,故不优选。另一方面,该重量比不到上述下限制值的话,因提高作为组合物总体的玻璃化转变温度的效果小,容易使尺寸稳定性不足,并且伴随结晶的体积收缩(尺寸变化)变大,电路布线基板的可靠性易降低,故不优选。
非晶性聚醚酰亚胺树脂(A-1)和非晶性聚醚酰亚胺树脂(A-2)的混合重量比是70/30-30/70,优选65/35-35/65,特别是65/35-50/50。
超过上述上限值的话,通过在低温下的热熔敷制备的多层基板在PCT(加压蒸煮试验)处理后的钎焊耐热性试验中,在层间树脂界面处易产生气孔等,故不优选。另一方面,不到上述的下限值,提高断裂强度的效果不足,故不优选。
本发明中使用的填充剂,无特别限制,可以使用公知的填充剂。可以例举:滑石粉、云母、粘土、玻璃、氧化铝、二氧化硅、氮化铝、氮化硅等的无机填充剂,玻璃纤维、芳族聚酰胺纤维等的纤维,这些可以单独使用1种,或2种以上组合使用。另外,对使用的填充剂可以进行钛酸酯等偶联剂处理、脂肪酸、树脂酸、各种表面活性剂处理等的表面处理。特别地,当本发明应用于印刷电路布线基板时,平均粒径为1-20μm左右,平均径厚比(粒径/厚度)为20-30左右以上,特别是50以上的无机填充剂优选使用。
填充剂的混合量,相对于100重量份的上述树脂组合物,是5-50重量份,优选10-45重量份、更优选20-40重量份。超过上述上限值的话,薄膜的挠性、端裂阻力值大幅降低,故不优选。另一方面,不到上述下限值的话,线膨胀系数降低,提高尺寸稳定性的效果小,故不优选。
本发明的薄膜用于印刷电路布线基板等电子设备用基板的基体材料时,优选线膨胀系数为30×10-6/℃以下,且端裂阻力值在纵向和横向均至少是40MPa以上,优选50MPa以上。即,线膨胀系数超过30×10-6/℃的话,积层金属箔时,易发生卷曲或翘曲,另外尺寸稳定性也不足。线膨胀系数的优选范围,随使用的金属箔的种类、在正反面形成的电路图形、积层结构等不同,大致是10×10-6-25×10-6/℃左右。另外,端裂阻力值不到40MPa的话,挠性印刷电路布线基板等薄基板中,连接可靠性容易变不足,另外,基板加工工序中的操作适应性也容易变不足,故不优选。关于端裂阻力值的测定方法将在后面叙述。
这些特性可以通过对薄膜进行结晶处理来达到。本文中结晶处理的方式、时间并无特别限定,例如可举出,挤出流延时使之结晶的方法(流延结晶法),制膜作业线内,通过热处理辊、热风炉等使之结晶的方法(在线结晶法)以及在制膜作业线外,通过恒温槽、热压等结晶的方法(线外结晶法)等。本发明中,从生产稳定性和物性均一性的观点来看,优选使用线外结晶法。关于热处理时间,满足上述关系式即可,可以是几秒-几十小时,优选应用几分钟到3小时左右的范围。
本发明的薄膜和铜箔等金属体的积层方法,没有特别的限制,优选使用对上述的薄膜的至少单面无需通过粘接层,而是加热金属体,通过加压来进行热熔敷的方法。
作为金属体和薄膜不通过粘接层进行热熔敷的方法,只要是可加热、加压的方法,可采用公知的方法,并无特别限定。例如可以举出,在设定为所要求的热熔敷温度的压制装置中对薄膜和金属体加压的方法,将预热至热熔敷温度的金属体压接到薄膜上的方法,用设定为热熔敷温度的热辊对薄膜和金属体进行连续加压的方法,以及将这些方法组合起来的方法等。使用压制装置时,压制压力在面压力为0.98-9.8MPa(10-100Kg/cm2)左右的范围,减压度为973hPa(百帕斯卡)左右的减压下进行时,可防止金属体的氧化,故优选。对薄膜和金属体各自而言,薄膜和金属体的单面之间可以结合(积层),单面或各自两面结合(积层)的形式也可以。
本发明的金属积层体应用于作为挠性印刷电路布线基板、硬式フレツクス基板、组合多层基板、一括多层基板、金属基基板等电子设备用基板的基体材料时,关于在金属体上形成导电性电路的方法,可采用刻蚀法等的公知的方法,没有特别限定。进一步作成多层基板时的层间连接方法,例如可以举出,对通孔进行镀铜的方法,向通孔、内通路孔中填充导电糊或钎焊球的方法,应用含有微细的导电粒子的绝缘层的各向异性导电性材料的方法等。
作为本发明中使用的金属体,可以举出有铜、银、金、铁、锌、铝、镁、镍等,或它们的合金类。它们可以单独使用1种,也可以2种以上组合使用。也可以是经不妨碍本发明范围的表面处理,例如实施氨基硅烷剂等处理的金属。
金属体的形状,除结构部件的形状之外,可以举出用于形成电气、电子电路的细线状,或为通过刻蚀处理而形成电路的箔状(厚度3-70μm左右)等。以放热为主要目的则优选铝(板材、箔材),需要耐腐蚀性、高强度、高电阻性等的情况优选不锈钢(板材、箔材),为形成复杂微细的电路优选铜箔。此时,优选使用将表面实施黑色氧化处理等化学转化处理的。优选使用为提高粘结效果而在与混合树脂成形体的接触面(重叠面)一侧预先通过化学或机械的方法进行粗化的金属体。作为经过表面粗化处理的铜箔的具体例有,制备电解铜箔时,经过电化学处理的粗化铜箔等。
构成本发明薄膜的树脂组合物中,在不损害其性质的范围内,可以适当混合其他的树脂、填充剂之外的各种添加剂,例如热稳定剂、紫外线吸收剂、光稳定剂、成核剂、着色剂、润滑剂、阻燃剂等。含有填充剂的各种添加剂的混合方法,可使用公知的方法。例如可以举出,(a)先单独制备母料,该母料是将各种添加剂以高浓度(作为代表的含量是10-60重量%左右)混合于结晶性聚芳基酮树脂和/或非晶性聚醚酰亚胺树脂等适当的基体树脂中得到的,向所使用的树脂中混合之而调节浓度,使用捏合机,挤出机等进行机械共混的方法,(b)直接向所用树脂中用捏合机,挤出机等机械共混各种添加剂的方法等。上述的混合方法中,从混合方法的分散性和操作性的观点,优选(a)制备母料并混合的方法。为改善操作性等,薄膜表面也可以适当实施压纹加工或电晕处理等。
作为本发明薄膜的成膜方法,例如可采用使用T模头的挤出流延法,压延法等的公知方法,并没有特别限定,从薄膜的成膜性和稳定生产性等方面考虑,优选使用T模头的挤出流延法。使用T模头的挤出流延法的成形温度,依据组合物的流动特性,成膜性等适当调整,大致是熔点以上,430℃以下。另外,该薄膜的厚度无特别限定,通常是10-800μm左右。
实施例
以下通过实施例详细说明本发明,但本发明并不受这些实施例的任何限制。另外,关于本说明书中表示的薄膜的各种测定值以及评价是如下进行的。在此,薄膜从挤出机排出的方向称为纵方向,与之垂直方向称为横方向。
(1)玻璃化转变温度(Tg),结晶熔融峰温度(Tm)
使用パ一キンエルマ一(株)制的DSC-7,以JIS K7121为基准,样品10mg,从以加热速度10℃/分钟升温时的差示热分析图求出之。
(2)端裂阻力值
以JIS C2151端裂阻力试验为基准,从与制备多层基板时的压制条件相同地在温度250℃,时间30分钟的条件下经结晶处理的厚度为75μm的薄膜上切出宽15mm,长300mm的试验片,使用试验配件B,以拉伸速度500mm/分钟的条件测定纵方向和横方向。
(3)粘结强度
以JIS C6481常态剥离强度为基准,对两面的铜箔分别测定,其平均值用N/mm表示。
(4)钎焊耐热性
以JIS C6481常态钎焊耐热性为基准,将多层基板浮在260℃的钎焊浴中20秒,使铜箔一侧和钎焊浴接触,冷却到室温后,通过目视观察有无起泡和剥离等,判定好坏。
(5)PCT处理后的钎焊耐热性
使用加压蒸煮试验机,将制备的多层基板在温度:121℃,湿度:100%RH,气压:202650Pa(2atm)的条件下,处理4小时后取出,以JIS C6481常态钎焊耐热性为基准,将多层基板浮在260℃的钎焊浴中20秒,使铜箔一侧和钎焊浴接触,冷却到室温后,通过目视观察有无起泡和剥离等,判定好坏。
实施例1
如表1所示,本发明将含有作为树脂(A-1)的聚醚酰亚胺树脂[GE公司制,Ultem-CRS5001,Tg:226℃](以下简称为PEI-1)30重量份,作为树脂(A-2)的聚醚酰亚胺树脂[GE公司制,Ultem-1000,Tg:216℃](以下简称为PEI-2)20重量份,作为树脂(B)的聚醚醚酮树脂[VICTREX公司制,PEEK381G,Tg:143℃,Tm:334℃](以下简称PEEK)50重量份和市售的云母(平均粒径:10μm,径厚比:50)25重量份的混合组合物,使用装备有T模头的挤出机,在设定温度380℃下,挤出厚度为75μm的薄膜,同时通过层压铜箔(厚度:18μm,表面粗化)得到单面铜箔积层薄膜。另外,也得到评价用厚度75μm的单纯薄膜。接着将得到的单面铜箔积层薄膜切割为A4大小,通过刻蚀形成要求的电路后,加工出通孔,填充导电糊。进一步,将3张填充了导电糊的单面铜箔积层薄膜层合(铜箔/树脂薄膜/铜箔/树脂薄膜/铜箔/树脂薄膜/铜箔),在温度250℃,时间30分钟,压力2.94MPa的条件下真空压制,制备多层基板。使用得到的多层基板进行评价的结果如表1所示。
比较例1
如表1所示,除实施例1使用的树脂组合物变更为PEI-1/PEEK=50/50重量份以外,其他与实施例1相同得到多层基板。使用得到的多层基板进行评价的结果如表1所示。
比较例2
如表1所示,除实施例1使用的树脂组合物变更为PEI-1/PEI-2/PEEK=10/40/50重量份以外,其他与实施例1相同得到多层基板。使用得到的多层基板进行评价的结果如表1所示。
比较例3
如表1所示,除实施例1使用的树脂组合物变更为PEI-2/PEEK=50/50重量份以外,其他与实施例1相同得到多层基板。使用得到的多层基板进行评价的结果如表1所示。
表1 实施例 比较例 1 1 2 3 PEI-1(重量份) 30 50 10 PEI-2(重量份) 20 40 50 PEEK(重量份) 50 50 50 50 云母(重量份) 25 25 25 25 端裂阻力值 (MPa) 纵 158.8 176.3 136.2 129.7 横 82.9 88.1 38.2 35.5 压制温度(℃) 250 250 250 250 粘结强度(N/mm) 1.5 1.4 1.6 1.6 钎焊耐热性 良好 良好 良好 良好 PCT处理后的钎焊耐热性 良好 差,有气孔产生 良好 良好
通过表1可知,含有本发明规定的聚芳基酮树脂和2种聚醚酰亚胺树脂、且它们的混合重量比在规定的范围内的实施例1的薄膜,低温热熔敷时的PCT处理后的钎焊耐热性和端裂阻力值均优异。相对于此也可知,只含有本发明规定的聚醚酰亚胺树脂中的任意一方的情况,低温热熔敷时的PCT处理后的钎焊耐热性变差(比较例1),或是端裂阻力值变差(比较例3)。另外也可知,即使含有本发明规定的聚芳基酮树脂和2种聚醚酰亚胺树脂,如果它们的混合重量比不在规定的范围内,不能平衡良好地满足二特性(比较例2)。
产业实用性
根据本发明,提供低温(≤260℃)下的热熔敷性良好,且在PCT(加压蒸煮试验)处理后的钎焊耐热性和端裂阻力值的平衡优异的适宜用作电子设备用部件的耐热性薄膜及其金属积层体。