基于高温成型的高磁导率非晶质压粉磁芯及其制造方法.pdf

上传人:32 文档编号:1635306 上传时间:2018-06-30 格式:PDF 页数:8 大小:541.61KB
返回 下载 相关 举报
摘要
申请专利号:

CN201380068134.0

申请日:

2013.11.25

公开号:

CN104884196A

公开日:

2015.09.02

当前法律状态:

撤回

有效性:

无权

法律详情:

发明专利申请公布后的视为撤回IPC(主分类):B22F 3/02申请公布日:20150902|||实质审查的生效IPC(主分类):B22F 3/02申请日:20131125|||公开

IPC分类号:

B22F3/02; B22F3/24; H01F41/02

主分类号:

B22F3/02

申请人:

裵恩英

发明人:

金圭镇

地址:

韩国庆尚北道

优先权:

10-2012-0139429 2012.12.04 KR

专利代理机构:

隆天知识产权代理有限公司72003

代理人:

崔香丹; 李英艳

PDF下载: PDF下载
内容摘要

在本发明中,根据在高频带下有效磁导率变化幅小的基于高温成型的高磁导率非晶质压粉磁芯的制造方法,作为粉末间的绝缘剂,实施磷酸涂布及基于聚酰亚胺系的2次涂布,使用在高温能够实现粉末润滑的二硫化钼(MoS2)或石墨粉末,在约200~550℃的温度下,通过自动压缩成型,能够制造一种非晶质压粉磁芯,其在高频带下有效磁导率的变化幅小,有效磁导率为75以上,在50KHz频率与磁通密度1000高斯的条件下,铁损很低,为300mW/cc以下。另外,本发明的在高温下自动成型的高磁导率的非晶质压粉磁芯,可以提供一种基于高温成型的高磁导率非晶质压粉磁芯,成型密度高,完全无表面破裂,颗粒间绝缘良好,频带依存性小,在高频带下有效磁导率的变化幅小,因而能够作为在数KHz至数十MHz频带的电气及电子装置的磁性材料使用,十分经济。

权利要求书

权利要求书
1.  一种基于高温成型的高磁导率非晶质压粉磁芯的制造方法,其特征在于,包括:
(a)在软磁性非晶质合金粉末上实施2次涂布,制造粉末间绝缘性、结合力及成型性优秀的复合颗粒粉末的步骤;
(b)在所述复合颗粒粉末中混合作为高温润滑剂的微粒二硫化钼MoS2或石墨粉末的步骤;
(c)在高温下对所述混合的粉末自动成型的步骤;
(d)对所述成型的复合颗粒粉末进行热处理的步骤。

2.  根据权利要求1所述的基于高温成型的高磁导率非晶质压粉磁芯的制造方法,其特征在于,
所述软磁性非晶质合金粉末为Fe系、Ni系及Co系。

3.  根据权利要求1所述的基于高温成型的高磁导率非晶质压粉磁芯的制造方法,其特征在于,
就实施所述软磁性非晶质合金粉末的2次涂布而言,在第1次涂布中利用磷酸,涂布量为总质量的0.5~3.0wt%,在第2次涂布中利用聚酰亚胺,涂布量为总质量的0.5~3.0wt%。

4.  根据权利要求1所述的基于高温成型的高磁导率非晶质压粉磁芯的制造方法,其特征在于,
在所述成型时,成型温度在200~550℃范围的高温下,按10~30吨/cm2的压力进行。

5.  根据权利要求1所述的基于高温成型的高磁导率非晶质压粉磁芯的制造方法,其特征在于,
所述热处理在400~550℃的温度下进行热处理。

6.  一种基于高温成型的高磁导率非晶质压粉磁芯的制造方法,其特征在于,
根据权利要求1的制造方法的高磁导率非晶质压粉磁芯,其有效磁导率为85以上,在1MHz及0.1MHz频带下测量的磁导率比为0.90以上,在50KHz频率与磁通密度1000高斯的条件下,铁损值为300mW/cc以下。

7.  一种根据权利要求1至6的基于高温成型的高磁导率非晶质压粉磁芯 的制造方法的高磁导率非晶质压粉磁芯。

说明书

说明书基于高温成型的高磁导率非晶质压粉磁芯及其制造方法
技术领域
本发明涉及一种基于高温成型的高磁导率非晶质压粉磁芯及其制造方法,在以往技术所不可能的200~550℃的高温下,借助于自动成型,能够在数KHz至数十MHz频带下应用,有效磁导率为75以上。
背景技术
一般而言,软磁性非晶质合金与结晶质材料相比,磁导率、铁损等优秀,正在用作电气及电子设备的各种装置的磁性材料,在工业用途上,应用于变压器、电感器、电动机、发电机、继电器等。
另外,一般而言,软磁性非晶质合金粉末可以借助于机械性合金化法、骤冷凝固法、水喷射法等而制造,在本发明中,使用了高压的水喷射法。另一方面,就高压的水喷射法而言,已经申请注册了喷射达到30MPa以上高压的水,使落下的熔融金属粉碎成微粒并骤冷,制造平均粒径为30μm以下微粒的软磁性非晶质合金粉末的制造方法,这作为本发明的发明人开发的发明,公开于大韩民国专利注册编号10-037226。特别是在结晶化附近温度对软磁性非晶质合金进行热处理而纳米结晶的非晶质合金,与在结晶化温度以下热处理的非晶质合金相比,软磁特性非常良好。
而且,作为借助于适度热处理而有望实现纳米结晶化的非晶质状态的合金粉末系,有Fe-Si-B系、Fe-Al-B系、Fe-Nb-B等。这些合金的结晶化温度约为400~500℃左右。
尽管拥有如此出色的软磁特性,商业化却延迟的理由起因于非晶质合金本身具有的高强度及高韧性,一般而言,借助于在常温下的成型,有效磁导率极限最大60左右。因此,申请注册了在常温下制造非晶质压粉磁芯的方法,这作为本发明的发明人开发的发明,公开于大韩民国专利注册编号专利10-0344010。
如上所述,磁导率不够高的理由起因于成型密度仅为真密度的约70%,作为用于解决这种问题的一个方法是提高成型温度。但是,为此,前提条件 是不能使用以往的润滑剂,需要能够承受高温的润滑剂,随着成型导致的压缩密度的升高,要求改善绝缘性。
另外,利用软磁性非晶质合金粉末的磁芯制造中使用的粘合剂,由于其软化点应低于非晶质合金的结晶化温度,因而在常温下也表现出适当的结合强度,在常温下,应能够根据成型压力而在保持磁芯本身形状的同时抑制发生破裂。作为用于此的适当粘合剂,优选使用聚酰亚胺系和苯酚系的热硬化树脂。
另一方面,软磁性非晶质合金粉末的成型工序为了保持合金的非晶质状态,应在比合金的结晶化温度低的温度下执行。但是,在这种温度下无法对合金粉末进行成型,因而采用了利用球磨法(Ball mill method)等,在软磁性非晶质合金粉末中机械地混合软化点低的玻璃粉末后,在约500℃附近的高温下,使玻璃粉末软化加压,从而使软磁性非晶质合金粉末接合的方法。作为此时应用的实验性成型方法,有热等静压(Hot Isotropic Pressing),此外,还有炸药法、冲击枪法等,但这些方法均需要用于获得很高能量的特殊装置,特别是存在成型时间需要过多,不能连续生产,也无法大量生产的问题。
为了解决这种问题,本发明开发了在200~550℃的温度范围下高温自动成型的制造技术,从而,非晶质压粉磁芯的真密度能够达到85%,另外,本发明是关于能够根据自动成型技术,在以往不可能的数KHz至数十MHz频带下加以利用的基于高温成型的高磁导率非晶质压粉磁芯及其制造方法的发明。
发明内容
(要解决的技术问题)
本发明作为旨在解决如上所述问题的发明,其目的在于提供一种能够基于高温成型制造高磁导率的非晶质压粉磁芯的方法,为了提高软磁性非晶质合金粉末的绝缘性及在成型时的结合力而实施2次涂布,制造复合粉末后,应用在高温也保持润滑性的金属氧化物系润滑剂,在200~550℃的温度范围内能够自动压缩成型,因而能够在以往的常温成型时使用的成型压力机中生产,在高频带下有效磁导率的变化幅也较小。
本发明的另一目的在于提供一种在高频带下有效磁导率的变化幅也较小 的基于高温成型的高磁导率的非晶质压粉磁芯,根据所述制造方法,成型密度高,完全没有表面破裂,颗粒间绝缘良好,频带依存性小。
(解决问题的手段)
为达成如上所述目的,本发明的在高频带下有效磁导率变化幅也较小的基于高温成型的高磁导率的非晶质压粉磁芯的制造方法包括:(a)在软磁性非晶质合金粉末上利用磷酸和聚酰亚胺系树脂0.5-3.0wt%,依次进行2次液态涂布处理,制造均匀、致密地涂布的复合颗粒粉末的步骤;(b)以二硫化钼(MoS2)或石墨的微粒粉末为润滑剂,按0.5-3.0wt%与所述复合颗粒均匀混合的步骤;(c)对混合粉末进行高温成型的步骤;及(d)进行热处理的步骤。
而且,其特征在于,所述成型在200~550℃的温度区间,以10~25吨/cm2的压力进行,磁芯的热处理在400~600℃的温度下进行热处理。
所述软磁性非晶质合金粉末为Fe系、Ni系及Co系等,所述各涂布的量为总质量的0.5~3.0wt%较为合适。
为实现另一目的,根据本发明的在高频带下有效磁导率变化幅也较小的基于高温成型的高磁导率的非晶质压粉磁芯制造方法的高磁导率非晶质压粉磁芯的特征在于,有效磁导率为75以上,在1MHz及0.1MHz的频带下测量的磁导率比为0.90以上,在频率50KHz与磁通密度1000高斯的条件下,铁损为300mw/cc以下。
下面详细说明本发明。
一般而言,软磁性非晶质合金粉末可以借助于机械性合金化法、骤冷凝固法、水喷射法等而制造,在本发明中,使用借助于高压的水喷射法而制造的粉末。特别是作为有望以非晶质状态使用的合金粉末系,有Fe系(Fe-Si-B系、Fe-Al-B系、Fe-Nb-B系等)、Co系(Co-Fe-Si-B系)等。这些合金的结晶化温度约为400~500℃左右。
在本发明中,为了提高软磁性非晶质粉末的绝缘性及在成型时的结合力,2次涂布较为合适,作为本发明中的第1次涂布剂,应用了磷酸。磷酸涂布量为总质量的0.5~3.0wt%较为合适。在0.5wt%以下时,绝缘性下降,在3.0wt%以上时,软磁特性大幅下降。就本发明中的第2次涂布剂而言,为了提高绝缘性及成型时的结合力,涂布剂的软化点应低于非晶质合金的热处理温度,在200~550℃的温度下也应表现出适当结合强度,因而需要能够在根据成型 压力而保持磁芯本身形状的同时抑制发生破裂。作为适当粘合剂,优选聚酰亚胺(polyimide)系和苯酚(phenol)系的热硬化树脂。一般而言,在压粉磁芯制造时使用的水玻璃系(water glass),即使添加至总质量的3.0wt%(重量百分率),由于粉末颗粒间接合强度弱,因而不适合。本发明中的粘合剂的量优选限制在总质量的0.5~3.0wt%。这是因为,在粘合剂的量为总质量0.5wt%以下时,接合强度弱,非晶质合金粉末成型困难,另一方面,如果粘合剂的量过多,则合金粉末颗粒间的接合强度虽然增强,但在成型的压粉磁芯中,非晶质合金粉末的量较小,软磁特性低下。其中,所谓“总质量”,意味着构成制造的磁芯的涂布剂与非晶质合金的质量之和,不包括有机溶剂的质量。
为了赋予涂布本发明中的粘合剂而制造的非晶质合金粉末的高温润滑性,二硫化钼(MoS2)或石墨粉末较为合适,粉末的平均粒径为1~10μm左右较为合适。
另外,优选添加量限制为总质量的0.5~3.0wt%。在0.5wt%以下时,粉末间缺乏润滑性,因此给成型用冲压机造成损伤,在3.0wt%以上时,软磁特性低下,经济性下降。
在本发明中的压粉磁芯成型时,10~30吨/cm2的压力较为合适。这是因为,如果成型压力为10吨/cm2以下,则压粉磁芯的成型密度降低,软磁特性变坏,另一方面,如果过高,寻频繁发生成型模具的磨损及破损等问题,生产成本单位升高。
优选本发明中的成型时的温度为200~550℃的温度区域。在成型温度为200℃以下时,无法体现适当成型密度,成型温度越高,则磁芯的成型密度越高,粉末颗粒间致密度也越升高,但由于非晶质合金粉末的特性上的原因,优选在结晶化以下的温度下成型。
一般而言,大部分的非晶质合金粉末的结晶化温度为400~550℃附近,因此,优选最高成型温度为550℃以下。
本发明中的压粉磁芯的热处理温度因非晶质合金成份及预处理温度而异,但就普通的未纳米结晶化的非晶质合金粉末系而言,比非晶质合金的结晶化温度低50~100℃左右的350~500℃较为合适。这是因为,如果压粉磁芯的热处理温度过低,则成型时发生的内部应力未充分消除,如果过高,则出现从非晶质相向结晶相的相变态。
另一方面,在可纳米结晶化的非晶质合金粉末的热处理的情况下,必须在结晶化温度区域进行热处理。因此,在本发明中,使得在结晶化附近的温度下对非晶质合金进行热处理或形成纳米结晶,能够如此纳米结晶化的非晶质合金与在结晶化温度以下热处理的非晶质合金相比,软磁特性非常良好。
本发明中的热处理气氛为惰性气体或还原性气体气氛,时间为30~60分钟左右较为合适。这是因为,如果热处理时间过短,则无法充分消除应力及实现结晶化,另一方面,如果过长,则生产率低下。
(发明的效果)
根据本发明的基于高温成型的在高频带下有效磁导率变化幅也较小的高磁导率非晶质压粉磁芯的制造方法,作为粉末间的绝缘剂,实施磷酸涂布及基于聚酰亚胺系的2次涂布,使用在高温能进行粉末润滑的二硫化钼(MoS2)或石墨粉末,在200~550℃的高温下,通过压缩成型,能够制造在高频带有效磁导率变化幅也较小且有效磁导率为75以上、铁损很低的、基于高温成型的高电容率的非晶质压粉磁芯。
另外,根据本发明,能够提供一种基于高温成型的高磁导率的非晶质压粉磁芯,在非晶质压粉磁芯的成型后,成型密度高,完全无表面破裂,颗粒间绝缘良好,频带依存性小,即使在高频带下,有效磁导率的变化幅也较小,因而能够作为数KHz至数十MHz频带的电气及电子装置的磁性材料使用。
具体实施方式
最佳实施方式
(实施例1)
作为用于本发明实施的最佳形态的实施例1,是在根据高压水喷射法制造的、借助于适度热处理而有望实现纳米结晶化的、作为非晶质状态合金粉末的Fe73.5Si13.5B9Nb3Cu1(平均粒径约15μm)1000g中,把磷酸(H3PO4)10g加于丙酮中稀释,进行第1次磷酸涂布处理,在干燥后,利用把聚酰亚胺10g溶解于二氯甲烷(methylene chloride)溶液而制造的溶液进行第2次涂布处理后,进行干燥处理,制造了聚酰亚胺在平均粒径约15μm的非晶质合金粉末表面均匀涂布约1μm以下厚度的复合颗粒粉末,在干燥后,均匀混合平均粒径3μm的二硫化钼(MoS2)粉末10g。
把如此混合的复合颗粒粉末,在保持约450℃温度的外径12.7mm、内径7.65mm大小的成型装置内部自动装入2.50g左右后,以20吨/cm2的压力和每分钟10次的速度进行成型,制造了平均高度4.75mm的压粉磁芯。
如此成型的压粉磁芯在氩(Ar)气气氛的550℃温度下热处理60分钟,制造了磁芯内部组织实现纳米结晶化的压粉磁芯。针对如此制造的状态的纳米结晶化的非晶质压粉磁芯,将测量的密度、是否发生破裂及多种频带的有效磁导率(effective permeability)、铁损(core loss)等磁特性,综合从实施例与对比例中获得的结果,显示于表1中。
其中,非晶质压粉磁芯的密度是把磁芯的实际质量除以磁芯体积而计算的值,是否发生破裂是在制造10个非晶质压粉磁芯时,当发生1个以上破裂时判断为发生破裂,有效磁导率是利用电感电容电阻测量计,在各个频带下,在10mOe的外部磁场下测量的值。铁损值是在频率50kHz和磁通密度1000高斯的条件下利用BH分析仪测量的值。
表1

具体实施方式
(实施例2)
用于本发明实施的实施例2除利用磷酸25g进行磷酸涂布处理之外,与实施例1相同地实施。把如此制造的纳米结晶化的非晶质压粉磁芯的各项特性显示于表1中。
(实施例3)
用于本发明实施的实施例3除把聚酰亚胺20g溶解于二氯甲烷中而制造溶液之外,与实施例1相同地实施。把如此制造的纳米结晶化的非晶质压粉磁芯的各项特性显示于表1中。
(实施例4)
用于本发明实施的实施例4除把成型温度定为200℃、300℃、400℃的温度之外,与实施例1相同地实施。把如此制造的纳米结晶化的非晶质压粉磁芯的磁特性显示于表1中。
(实施例5)
用于本发明实施的实施例5除把平均粒径5μm的石墨粉末用作润滑剂之外,与实施例1相同地实施。把如此制造的纳米结晶化的非晶质压粉磁芯的磁特性显示于表1中。
(实施例6)
用于本发明实施的实施例6除使用借助于高压水喷射法而制造的Fe83Nb7B9Cu1非晶质合金粉末(平均粒径约16μm)进行磁芯成型,在作为结晶化以上温度的560℃温度下进行热处理之外,与实施例1相同地实施。把如此制造的纳米结晶化的非晶质压粉磁芯的各项特性显示于表1中。
(实施例7)
用于本发明实施的实施例7除使用借助于高压水喷射法而制造的Fe78Si13B9非晶质合金粉末(平均粒径约12μm)进行压粉磁芯成型,在作为结晶化以下温度的410℃温度下进行热处理之外,与实施例1相同地实施。本发明的实施例7由于在结晶化附近温度以下对非晶质合金进行热处理,因而不同于所述实施例1至实施例6的形成纳米结晶的非晶质压粉磁芯,是关于普通的非晶质压粉磁芯的制造的实施例。把如此制造的非晶质压粉磁芯的各项特性显示于表1中。
其中,如表1所示,如果成型温度增加,则成型密度直线增加,在400℃以上急剧增加,且有效磁导率也急剧增加,有效磁导率可以达成以往连续生产中所不可能的75以上,特别是在400℃以上时,有效磁导率可达到125以上。铁损也非常优秀,为300mW/cc以下,这比作为普通压粉磁芯的铁硅铝磁合金、HF、MPP优秀。在1MHz及0.1MHz频带下的磁导率比为0.90 以上,可知几乎没有频带依存性。这意味着结果甚至能够在数十MHz的频带使用。
下面详细说明本发明的对比例。
(对比例1)
对比例1除把聚酰亚胺3g溶解于二氯甲烷制造溶液外,与实施例1相同地实施。把如此制造的纳米结晶化的非晶质压粉磁芯的各项特性显示于表1中。
(对比例2)
对比例2除不实施磷酸涂布之外,与实施例1相同地实施。把如此制造的纳米结晶化的非晶质压粉磁芯的各项特性显示于表1中。
(对比例3)
对比例3除成型温度在25℃及100℃的温度下成型之外,与实施例1相同地实施。把如此制造的纳米结晶化的非晶质压粉磁芯的各项特性显示于表1中。
其中,如表1所示,当成型温度在200℃以下时,成型密度无法超过5.5g/cm3,因此,有效磁导率不可能在75以上,当单独进行涂布或涂布量小时,一部分发生压粉磁芯内的破裂,另外可知,磁芯内部的粉末间的绝缘性下降,频率特性大幅变坏,铁损大幅升高。
工业实用性
本发明的在高频带下有效磁导率变化幅也较小的基于高温成型的高磁导率非晶质压粉磁芯的制造方法及根据其制造的高磁导率非晶质压粉磁芯,作为成型密度高、完全无表面破裂、颗粒间绝缘良好、频带依存性小、在高频带下的有效磁导率变化幅也较小的软磁性材料,与结晶质材料相比,有效磁导率、铁损等非常优秀,可以作为数KHz至数十MHz频带的各种电气及电子装置的磁性材料使用,作为工业用途,可以用于变压器、电感器、电动机、发电机、继电器等。

基于高温成型的高磁导率非晶质压粉磁芯及其制造方法.pdf_第1页
第1页 / 共8页
基于高温成型的高磁导率非晶质压粉磁芯及其制造方法.pdf_第2页
第2页 / 共8页
基于高温成型的高磁导率非晶质压粉磁芯及其制造方法.pdf_第3页
第3页 / 共8页
点击查看更多>>
资源描述

《基于高温成型的高磁导率非晶质压粉磁芯及其制造方法.pdf》由会员分享,可在线阅读,更多相关《基于高温成型的高磁导率非晶质压粉磁芯及其制造方法.pdf(8页珍藏版)》请在专利查询网上搜索。

在本发明中,根据在高频带下有效磁导率变化幅小的基于高温成型的高磁导率非晶质压粉磁芯的制造方法,作为粉末间的绝缘剂,实施磷酸涂布及基于聚酰亚胺系的2次涂布,使用在高温能够实现粉末润滑的二硫化钼(MoS2)或石墨粉末,在约200550的温度下,通过自动压缩成型,能够制造一种非晶质压粉磁芯,其在高频带下有效磁导率的变化幅小,有效磁导率为75以上,在50KHz频率与磁通密度1000高斯的条件下,铁损很低,。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 作业;运输 > 铸造;粉末冶金


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1