承载结构的加强装置 本发明涉及一种按权利要求1前序部分的加强装置以及按权利要求11前序部分的梁的加强方法。
在整顿现有建筑物的承载结构时经常提出这样的问题;承载结构应该适应于超过先前选择的载荷情况。为了在这种情况下不完全更换支承结构,找到了加强这种现有支承结构的方法和装置。这种承载结构可以是按常规建造的砖墙或例如钢筋混凝土墙或梁、木梁、塑料梁或钢梁。
很久以来已知用后来装上的钢板加强这种支承结构。这里钢板、也就是带状钢板或薄钢板粘贴在承载结构的一面或两面上,尤其是承载结构受拉力的一面上。这种方法的优点是,可以快速地进行,然后对粘贴提出高的要求,也就是说为了达到预期的效果,零件的准备和粘贴地进行必须在准确地规定的状态下进行。
在这种方法时问题特别是出在锈蚀区内,也就是应该对露天的承载结构进行这种加强时,例如桥梁。由于这种薄钢板重量比较大和制造的问题可采用的最大长度受到限制。同样如果刚硬的薄钢板不能运入相应的室内,那么由于位置关系在封闭的室内的应用可能会有问题。此外在用在“头顶”上的情况下在粘接剂硬化以前薄钢板必须压紧在待加强的承载结构上,这同样意味着高的费用。
由FR 2590608已知,采用金属或纤维强化塑料带形状的通过末端紧固的夹紧装置。但是在这种结构形式时夹紧装置和承载结构不是面接触,而仅仅在夹紧装置的两个末端紧固点处和承载结构有连接。这种类型的夹紧装置通常在承载结构设计时就已经加以考虑,因为后续的改装实际上不可能或者只有花很高的费用才能实现,因为对于夹紧装置必须在承载体内制造相应的通道。
新近也在承载结构的受拉一侧上粘贴碳素薄板(CFK-薄板),由此后续地通过提高抗载荷能力和延展性改善这种结构的承载能力。这里方便和费用低廉地应用那种具有比薄钢板高的强度和远远小得多的重量并且贮存方便的薄板是有利的。还有耐腐蚀性更好,因此这种加强装置也适用于用来加强露天的承载结构。但是这里实际证明,特别是薄板的末端紧固是一个问题。正好在这个区域内薄板裂开的危险特别大,并且存在力从薄板末端传入承载体的问题。
由WO 96/21785已知一种与此相关的解决方案,其中在承载体上做上分布在一个平面角上的孔或者圆形缺口,CFK-薄板的末端装在这些孔或缺口内,在必要情况下借助于卡箍、环、平板等等压在承载体上。这已经促使开裂特性的改善和力更好地从承载体传入薄板内。然而这种类型的CFK-薄板没有预紧力,也就是松弛地粘贴在承载体上。但是因此这种薄板的很大一部分加强潜力没有利用,因为它只有在超过基本载荷,也就是通过本身的工作负荷在产生应变的情况下,才开始承受载荷。
为了更好地充分利用薄板,现在出现了这样的想法,将薄板受预加负荷后粘贴在承载体上。与此相关地一种已知解决方案设想,在CFK-薄板末端上两面粘贴上短的钢板,然后将钢板相互拉紧,从而使CFK-薄板预紧,并将这个预紧的结构与待加强的承载体粘接在一起。在粘接剂硬化以后薄板在末端处借助于平板、环等等压在承载体上,接着将末端与钢板分开。但是现在这种方法费用很高,并且也不可能用在所有的应用场合下。但是现在上述这种薄板末端的紧固方式不适合于在建筑工地上的预紧。
现在本发明的目的是,找到一种CFK-加强薄板,用这种薄板这样地将力从承载体传入薄板末端,使得实际上避免开裂,并且它也适合于预紧。
按照本发明这个目的通过具有权利要求1特征的CFK-薄板或者是通过按权利要求11的方法来解决。本发明优选的结构形式由从属权利要求2至10或者12至14得到。
通过将CFK-薄板的末端劈开成至少两个,最好是三个或更多的片与末端元件连接的表面明显增大,因此现在可以很好地将力传入CFK-薄板的末端,薄板通过这种末端元件也可以方便地预紧。做成块状的末端元件既可以装在承载体的一个凹槽内,也可以用具有带平的或粗糙的底面的楔形开裂的结构形式平面地粘贴和/或钉入或用螺钉拧入承载体上。正好是这种结构形式优先适合于最好直接通过承载构件进行预紧的场合。例如它可以通过相对于装在承载体上的配件的预紧进行。
CFK-薄板末端的劈开尤其是既可以劈成相互重叠的片,也可以劈成相互并排的片,或者这两种方案的组合。
CFK-薄板可以优良地在建筑场地本身分别劈成要求的长度和尺寸。因此这种系统非常万能地适合于实际上任意的承载构件的加强,同时可以预紧或不预紧地使用。
下面借助于附图的图形对本发明的一个实施例作较详细的说明。其中表示:
图1 在底面上装有按本发明的CFK-薄板的承载体的横截面;
图2 通过按图1的CFK-薄板的头部的横截面;
图3 通过按图1和2的CFK-薄板的末端的横截面;
图4 在底面上装有按本发明的另一种CFK-薄板的承载体的横
截面;
图5 通过按图4的CFK-薄板的头部的横截面;
图6 通过按本发明的CFK-薄板的一种可选用的头部的横截面
示意图;
图7 通过按本发明的CFK-薄板的另一种可供选择的头部的横
截面示意图;
图8 CFK-薄板头部的另一种可供选择的结构形式的顶视图。
图1表示通过待加强的承载体1的横截面。这里所采用的CFK-薄板2的末端按本发明装在末端元件,这里是紧固头3和4内。紧固头3、4可以装在承载体1上铣出的或挤出(gespitzten)的缺口内,如此图中所示。CFK-薄板2借助于一个粘接层5与承载体1整个面地或部分地连接,因此紧固头3、4也与它相粘接。此外紧固头3、4可以通过一个横向夹紧装置6,这里仅仅纯粹示意画出,与承载体1连接,这促使力通过紧固头3、4更好地从CFK-薄板传入承载体。横向夹紧装置6例如可以通过穿过承载体1和紧固头3、4的螺杆或销钉进行。
现在由CFK-薄板2和紧固头3、4构成的加强装置也可以方便地预紧,就像在图1的右侧示意表示的那样。为此例如可以在承载体1底面上固定一个直角附件7,其一端与紧固头4相连的张紧杆8作用在附件7上。对于预紧两个紧固头3、4配备一个这种张紧装置是有利的。张紧装置在粘贴以前安装,并在CFK-薄板2或者紧固头3、4和承载体之间的粘接连接硬化以后可以重新取下。
图2表示通过一个紧固头3的横截面。这里在正方形的紧固头3内相互重叠地设置最好是三个导向或固定槽9,它们可以容纳如图3所示的分成三片2’的CFK-薄板2的末端。这里固定槽9向上和向下楔形张开设置,并具有横向分布的孔10,这些孔产生用以使CFK-薄板2的片2’与固定槽9相连接的粘接剂的附加的紧固点。因此更加改善拉伸力通过紧固头3从承载体1向CFK-薄板2的传导。当然主要的优点在于将薄板2的末端劈成片2’。这种劈开最好在薄板的纤维方向进行,并由此达到粘接面的有益的扩大,而不影响CFK-薄板2的强度特性。
在本实施例中用三片2’使粘接表面相对于仅仅在其末端粘贴在承载体上的通常的薄板而言增加到六倍,相对于用承载体内的楔形缺口和固定桥板的已知解决办法而言增加到三倍。
为了避免在CFK-薄板2从紧固头3中伸出的区域内由于由固定槽9的楔形或圆弧形结构引起的横向力而产生弯边或断裂,最好增加一个横向加强装置11,它在图2中仅仅示意画出。这种横向加强装置11例如可以借助于穿过紧固头3上的孔并通过螺母夹紧的螺杆进行。由此抑制紧固头3出口区内可能出现的剪切应力尖峰,并允许在这个区域内有较大的剪切应力。
其次在紧固头3内例如做一个螺纹孔12,它里面可以拧入一个预紧装置,就像图1中示意表示的那样。
已经提到,图3表示一个具有劈成三片2’的薄板末端的CFK-薄板的末端。CFK-薄板可以在截断到希望的长度以后用普通的方法劈成希望数量的、大致等厚的片2’,例如用刨子或刀子。这里有利的是,对劈开的质量提出的要求较低,主要是分成相应数量的片2’以达到与紧固头3连接表面的扩大。
现在图4中是通过一个带有安装在底面上(受拉力一侧)的、按本发明的加强装置的承载体的横截面,加强装置由一个带装在末端的紧固头12和13的CFK-薄板2组成。紧固头12、13做成这样,使CFK-薄板2从紧固头12,13中伸出一个粘接层5的高度,而不必将它沉入地装在承载体1的底面上,而是同样可以平面地例如粘接在它的底面上。当然这里也可以安装在图1中所示的横向张紧装置6,以便使紧固头12、13和承载体底面之间的连接产生更大的压紧力并因此产生更高的拉伸强度。同时就像前面已经解释过的结构形式那样,这种紧固头12、13也可以方便地预紧。
图5表示通过一个紧固头12和相应的固定槽9结构的横截面。其中最下面的槽9’做得平行于贴在承载体1上的紧固头12的外壁12’,其余的槽9与它成一个锐角扇形地指向外侧地设置。这种结构一方面通过加大CFK-薄板2的粘接表面带来和已经说明过的同样的优点,另一方面还可以使紧固头12、13不需要附加的缺口平面地贴合在承载体1上。在这种紧固头12,13时也可以采用如图2中示意表示的那种横向加强装置11,以避免在CFK-薄板2的出口区域内紧固头12、13的弯曲或开裂。
一方面具有高的强度、好的可加工性和力传导性能的金属,另一方面塑料、特别是如果对耐锈蚀的要求必须很高的话,适合于作为紧固头3、4或12、13的材料。
图6中表示按本发明的加强装置的另一种结构形式的示意视图。这里CFK-薄板末端劈成两个相互重叠的片2’,它们贴合在做成楔形的紧固头14的外表面上。它们在那里同样可以通过粘接与紧固头14的表面相连接。
在按本发明的另一种结构形式中CFK-薄板2末端劈成的片2’固定在一个由相互平行设置的板15构成的紧固头内,如图7的纵剖面中所示。这里可以有益地采用附加的螺钉拧紧结构16以使板15或片2’相互压紧。
其次图8中表示CFK-薄板2末端另一种结构形式的顶视图。这里片2’不是做成相互重叠,而是做成侧向并排的。这里劈分最好也沿CFK-薄板2的纤维方向进行。
按本发明的加强装置特别适合于现有的混凝土承载结构例如屋顶或桥梁的整顿。然而它也可以用于所有通常的CFK-薄板的已知应用场合,例如砖墙和木结构梁。方便地可预紧性使得可以比迄今为止的已知方法更好地充分利用CFK-薄板的强度性能。此外预紧起着在现有承载元件的受拉一侧上施加预加压力的作用,这正好例如对于桥梁是有利的。