海底抽吸系统及其相关的方法.pdf

上传人:r7 文档编号:162550 上传时间:2018-01-31 格式:PDF 页数:24 大小:1.08MB
返回 下载 相关 举报
摘要
申请专利号:

CN98805233.4

申请日:

1998.05.15

公开号:

CN1257564A

公开日:

2000.06.21

当前法律状态:

终止

有效性:

无权

法律详情:

专利权的终止(未缴年费专利权终止)授权公告日:2002.10.2|||授权|||实质审查的生效申请日:1998.5.15|||公开

IPC分类号:

E21B43/01; E21B43/12; F16N17/00

主分类号:

E21B43/01; E21B43/12; F16N17/00

申请人:

西屋行政管理服务有限责任公司;

发明人:

查尔斯·P·奈拉斯; 小克里弗德·H·坎彭; 约瑟夫·M·库亚斯基

地址:

美国宾夕法尼亚州

优先权:

1997.05.20 US 08/859,193

专利代理机构:

中国国际贸易促进委员会专利商标事务所

代理人:

张金熹

PDF下载: PDF下载
内容摘要

一种用于海底抽吸系统(1)从深海井口抽吸流体的压力补偿器(28)包括:顶部组件(3),海底组件(5)及顶部(3)和海底组件(5)之间的脐状连接件(7)。液压流体通过海底组件(5)循环,以冷却和润滑马达(21)和泵(23)。液压冷却和润滑流体最好是能与抽吸流体相容的单介质流体,它通过由感压箱组件(71)构成的水下压力补偿器(28)进行循环。压力补偿器(28)响应抽吸流体的压力并将液压冷却和润滑流体加压到高于抽吸流体的压力。在系统中由于漏泄或热膨胀,液压冷却和润滑流体的体积增加和减小时,压力补偿器作出响应,从而保持液压流体的压力。

权利要求书

1: 一种用于从海床井中抽吸井中流体的海底抽吸系统包括: 一个用于抽吸在各种压力下上述井中流体的马达和泵装置, 用于将介质流体送入上述马达和泵装置、用以冷却和润滑上述马 达和泵的装置,和 压力补偿装置响应上述井中流体的压力,在高于上述井口流体压 力的压差下将上述介质流体传送通过上述马达和泵装置。
2: 权利要求1的海底抽吸系统,其中上述压力补偿装置包括将 上述介质流体加压到一个基本稳定的压差的装置。
3: 权利要求1的海底抽吸系统,其中将上述介质流体送入马达 和泵的装置包括:在上述介质流体的上述压力达到一预定的较低限度 时将补充的介质流体供到上述马达和泵的装置。
4: 权利要求1的海底抽吸系统,其中上述压力补偿器包括一个 可伸展的容器,该容器的内腔与上述井中流体连通,其外表面与上述 介质流体连通,还具有迫使上述可伸展容器的外表面贴靠上述介质流 体以对上述介质流体加压的偏压装置。
5: 权利要求4的海底抽吸系统,其中上述可伸展的容器包括至 少一个感压箱。
6: 权利要求5的海底抽吸系统,其中上述可伸展容器包括多个 基本轴向对准的感压箱。
7: 权利要求5的海底抽吸系统,其中上述至少一个感压箱在轴 向是可伸展的,上述压力补偿器包括用于基本防止上述感压箱在垂直 于上述轴向的横向上移动的装置。
8: 权利要求7的海底抽吸系统,其中上述基本防止上述感压箱 横向移动的装置包括至少一根靠近上述感压箱外部安置并基本在上述 轴向伸展的杆。
9: 权利要求8的海底抽吸系统,其中上述至少一根杆支撑上述 偏压装置。
10: 权利要求9的海底抽吸系统,其中上述偏压装置包括至少一 根压簧。
11: 权利要求5的海底抽吸系统,其中上述压力补偿器包括至少 一个用以限制至少一个上述感压箱的轴向移动的机械止动装置。
12: 权利要求11的海底抽吸系统,其中上述至少一个机械止动 装置安置在上述至少一个感压箱的内侧,一旦上述介质流体的压力达 到预定的上限值时阻止上述感压箱轴向移动。
13: 权利要求11的海底抽吸系统,其中上述至少一个机械止动 装置安置在上述至少一个感压箱的外侧,一旦上述介质流体的压力达 到预定的较低限时阻止上述感压箱的轴向移动。
14: 权利要求4的海底抽吸系统,其中上述偏压装置包括多个从 压簧、拉簧及其组合中选出的弹簧。
15: 权利要求4的海底抽吸系统,其中上述压力补偿装置包括在 上述介质流体的体积减小时伸展上述可伸展容器的装置。
16: 权利要求15的海底抽吸系统,其中上述将上述介质流体送 入上述马达和泵的装置包括在上述介质流体的体积减少、上述介质流 体的压力达到一预定的较低限时将补充的介质流体供入上述马达和泵 装置的装置。
17: 一种从海床井中抽吸井中流体的海底抽吸系统的压力补偿 器,上述压力补偿器包括: 一个可变容积的容器包括与从海床井口抽吸的各种压力的井中流 体连通的装置,和与上述井中流体密封、与上述海底抽吸系统的马达 和泵的冷却和润滑的介质流体连通的装置;和 用于对贴靠着上述介质流体的上述介质流体连通装置加上机械偏 压的装置,以在高于上述井中流体压力的压差上对上述介质流体加压。
18: 权利要求17的压力补偿器,还包括将上述介质流体加压到 基本稳定压差的装置。
19: 权利要求17的压力补偿器,其中上述压力补偿器包括可伸 展的容器,其内腔与上述井中流体连通,其外表面与上述介质流体连 通。
20: 权利要求19的压力补偿器,其中上述偏压装置包括迫使上 述可伸展容器的外表面贴靠上述介质流体的装置,以对上述介质流体 加压。
21: 权利要求19的压力补偿器,其中上述可伸展的容器包括至 少一个感压箱。
22: 权利要求21的压力补偿器,其中上述可伸展的容器包括多 个基本轴向对准的感压箱。
23: 权利要求21的压力补偿器,其中上述至少一个感压箱可轴 向伸展,上述压力补偿器包括能基本防止上述感压箱在垂直于上述轴 向的横向上的移动。
24: 权利要求23的压力补偿器,其中上述基本防止上述感压箱 横向移动的装置包括至少一根放置在上述感压箱外部附近并基本沿上 述轴向伸展的杆。
25: 权利要求24的压力补偿器,其中上述至少一根杆支撑上述 偏压装置。
26: 权利要求25的压力补偿器,其中上述偏压装置包括至少一 个压簧。
27: 权利要求21的压力补偿器,其中上述压力补偿器包括至少 一个用以限制上述至少一个感压箱轴向移动的机械止动装置。
28: 权利要求27的压力补偿器,其中上述至少一个机械止动装 置放置在至少一个感压箱的内侧,一旦上述介质流体的压力达到限定 的上限时阻止上述感压箱的轴向移动。
29: 权利要求27的压力补偿器,其中上述至少一个机械止动装 置放置在上述至少一个感压箱的外侧,一旦上述介质流体的压力达到 预定的较低限时阻止上述感压箱的轴向移动。
30: 权利要求19的压力补偿器,其中上述偏压装置包括多个从 压簧、拉簧及其组合中选出的弹簧。
31: 权利要求19的压力补偿器,其中上述压力补偿器包括在上 述介质流体的体积减少时伸展上述可伸展容器的装置。

说明书


海底抽吸系统及其相关的方法

    相互参照的相关申请

    本申请是美国申请系列号No.08/567558、申请日为1995年12月5目的申请的部分继续申请,这里提出,以供参考。

    【发明背景】

    【发明领域】

    本发明关于将海底井中的流体抽吸出来送到浮动平台或海岸上进行加工的抽吸系统及其相关方法,特别是关于海底抽吸站抽吸多相流体并与深海井口连接的压力补偿器。

    背景情况

    由于浅近海油气生产井的储量正在枯竭,很多国家和/或公司正在对深海油气储量表示了很大的兴趣,其中采用海底多相抽吸系统从这些油层中抽吸出油和/或气。

    海底多相抽吸系统将通常由油、气和水的混合物组成的多相流体从海底抽吸站、通过长距离的管道传送到位于遥远处的加工厂,然后将多相流体在进一步加工前分为单一流体。这种加工厂可以在平台上,也可在陆地上。

    在世界范围内,目前正在研制各种类型的海底多相抽吸系统,每种类型的多相抽吸系统包括同样的基本的构件:一个多相泵,多相泵地驱动件,一个能源供给系统,一个控制系统,一个压力保持系统和用于多相泵和/或驱动装置的辅助的润滑和冷却循环回路。一个海底多相抽吸系统通常包括一个或多个这些基本构件,它们安装到一个基板上然后降下并安装到连接到深海井口的海底支柱上。

    现在在多相抽吸系统中使用的泵的类型不是旋转动力泵就是正压移动泵,这些类型的泵通常都能处理多于一个流体相的流体。在较深的海洋深度上,采用后一种泵,这是因为它对密度的敏感性较小。因而对抽吸的多相流体的压力变化的敏感性较小。无论如何,海底多相泵要求不管是井压在高或低的情况下均保持或增加多相流体的产量。

    多相泵的驱动装置可以是液压涡轮和/或变速马达,现已确定后者在操作中具有更高的有效功率和机动性,对离动力源的远距离的敏感性较小。

    对于液压涡轮来说,作为驱动液体装置它既能压水又可压油。压水或油的系统位于浮动平台上,多根输送管道从加压系统连到海底装置上。因此,通常采用一种不同于加工和涡轮流体的阻流(barrier fluid)系统来冷却和润滑多相泵/驱动装置的轴承,并用以补偿系统中变化的压力。该阻流来源于浮动平台,在平台上受到冷却,然后再返回到海底装置。它在顶部平台就保持在高于加工流体的压力上,这样所出现的任何漏泄的阻流或进入海水中、或通过机械密封件进入加工流体中。

    如果用加压的水驱动液压涡轮,可以去掉涡轮和多相泵之间的轴的密封件,允许涡轮中的水通过涡轮和多相泵之间的轴中的小的轴向间隙流动,进入如上所述的生产和加工流体,这种流体就是抽吸的多相流体。在此项应用中,阻挡流体也可是通过多相泵和涡轮罩循环的水。压力补偿出现在阻挡流体漏泄的时候,阻挡流体从涡轮流入多相泵并进入泵的加工或生产流体、最终进入海水中。实际上阻挡流体对密封件的润滑侧提供了一个反向压力,从而确保漏泄物进入加工流体或进入密封件的涡轮流体侧。

    如果用油来驱动液压涡轮,用密封件将涡轮流体腔与抽吸的多相流体分开。通常也用油作为冷却和润滑多相泵/驱动装置的轴承的阻挡流体,并用来补偿多相泵进口处的变化的压力。即使阻挡流体与涡轮中的流体和抽吸的多相流体是相容的,这种系统的一个缺点是少量的油会漏入周围的海水中,因此会产生环境问题。

    尽管有些人认为液压涡轮多相抽吸系统在机械和液压上设计简单并便于维护,但这些类型的泵系统的顶部设施要求提供昂贵的能源、液压源系统和阻挡流体系统。

    这些设施的问题是随着脐形供给管道的加长而引起的压降增大,使能耗也大大增加。也就是说,当海底站台的深度增大、离平台较远时,驱动多相泵的液压涡轮的液压管道损失增加了。通常能源离海底越远,脐状供给管道的循环就越复杂,因此提供这种用于从深海井中抽吸多相流体的提升系统的成本更大。

    一些系统设计者已认识到,对深井来说,水下电动机提供了一种液压涡轮驱动装置的经济的替代品。在一个这样的系统中,一个电动潜水泵具有它的电动机,在一些应用中还具有位于海底站上的变压器。这种电动机/泵装置可两者均用油冷、或电动机可用油冷、泵可用水冷。在仅用油作为冷却和润滑介质的第一个系统中,油系统还具有加压系统以防止来自抽吸流体的回漏,油传送到浮动平台的空气冷却装置中。尽管该系统在电驱动系统方面是简单的,但它仍需要将冷却介质送到浮动平台的冷却装置中并返回到海底站的脐状供给和返回管。

    在电动机用水冷、泵用油冷的第二个系统中,具有多相泵轴承和密封件的油冷却循环回路,和水下电动机的轴承和密封件的水-乙二醇的循环回路。来自每个润滑回路的轴密封件的漏泄物进入马达和泵之间的腔中,该腔罩住马达和泵的连轴器。油和水-乙二醇的混合物收集在一个漏泄箱中。水-乙二醇和油的混合液周期性地泵送到浮动平台上,在平台上将它们分离,然后再循环到相应的海底供给箱中。每个供给箱具有气泡型隔膜,它与供油箱连通,进而也与泵吸侧连通,由此来调节其它箱中的压力,从而在所有的系统操作模式中不管外部压力和水深如何均能使三个箱内的压力等于泵吸压。油的海底热交换器和水-乙二醇的海底热交换器将它们的热载荷传到周围的水中,装到它驱动链上的辅助叶轮一旦马达起动就使两种冷却剂流体穿过马达和泵。海底站和浮动平台之间的脐状连接件包括三相馈电线、通到油供给箱的补充油管、通到水-乙二醇供给箱的补充水-乙二醇的管,及通到油/水-乙二醇分离器装置的漏泄管,这些构件导致脐状连接件尺寸加大,因此使这两个流体系统的设计很复杂。

    在通常的流行技术中海底马达采用湿式缠绕马达,它的绕组由通常为油的冷却循环介质直接冷却。采用湿式缠绕马达的一个缺点是绕组与冷却剂直接接触,即使采用了特殊的绝缘材料也减小了马达的长期可靠性。马达的损坏会导致生产的基本损失,并增加了维护费用,为了恢复生产还必须拆除和置换海底站。

    对深海油井来说,人们一直对采用水下电动马达来驱动抽吸流体的泵感兴趣。这种流体可以是多相流体。然而现有系统的设计昂贵而复杂,并需要大量的维护工作和为使它们工作进行人工在顶部的协助。

    因此,仍有必要简化现有技术的海底的单相或多相抽吸系统的设计,降低提供单相或多相抽吸系统的成本,并提供一个技术上较高级的、经济上具有优越性的单相或多相抽吸系统。

    还有必要提供一种单相或多相抽吸系统,它基本上不需要维护,在操作中只需要少量或根本不需要人力介入,与现有的系统相比,它具有增长了的预期的寿命。

    还有必要提供一种海底压力补偿系统,它用于海底单相或多相抽吸系统中,能远距离控制系统中的压力量级。

    发明概述

    本发明已满足上述要求。本发明提供一种用于可抽吸单相或多相流体的海底抽吸系统的压力补偿器、以及与其相关的方法。该系统最好采用单介质流体作为冷却剂和润滑剂,它包括一个封装的电动马达,一个与封装的电动马达相连的单相或多相泵,和一个最好位于海底组件上的压力补偿器。该压力补偿器最好是一个感压箱装置,它响应泵吸压并使流过马达/泵装置用以冷却和润滑马达/泵装置的轴承和密封件的单介质流体保持在高于泵吸压的压力上。浮动平台上的顶部组件具有动力供给源和单介质流体源。第一脐状连接件包括一组三相电线,将电源连到封装的马达,第二脐状连接件包括液压管道,将单介质流体连到封装电动马达的罩子中。单介质流体与从深海井中抽吸的流体是相容的,如果抽吸的多相流体是油、气和水的多相混合物,则单介质流体最好是油。

    在压力补偿器上最好也使用单介质流体。压力补偿器在水下通过自动调节通过泵吸压系统循环的单介质流体的压力来自动操作抽吸系统,并使通过该系统的一定量的单介质流体的压力保持在大于泵吸压的压力上。

    因此,本发明的目的在于提供一种用于海底抽吸系统的压力补偿器及从深海井中抽吸流体的相关方法。该抽吸系统采用一种单介质流体,它由压力补偿器加压到泵的入口,压力补偿器保持马达和泵装置内的完全注入的液压冷却和润滑循环。本发明的系统采用单介质流体作为冷却剂、润滑剂及作为压力补偿器中的流体,同时它也与抽吸的流体相容。

    本发明的进一步的目的在于为海底抽吸系统提供一种压力补偿器,它具有有限的构件,设计简单。该压力补偿器较便宜、小型而有效,并且能在任何海的深度上长时间地无人和自动地进行工作。

    本发明的另一目的在于在使用尽可能少的单介质流体的同时来保持泵/马达的压力。

    本发明还有一个目的在于提供一种使用可伸展的感压箱组件的压力补偿器。

    从下面参照附图对本发明的描述将会完全理解和更清楚地认识本发明上述及其它目的。

    附图概述

    图1为本发明的海底抽吸系统的透视图。

    图2为图1海底组件的主要零件的剖视图。

    图3为一流程图,表示图1海底组件的泵和压力补偿器之间液压流的部分液压回路。

    图4是按照本发明的优选实施例的感压箱式压力补偿器的侧向剖面图。

    优选实施例的描述

    参见附图,在所有附图中同样的参照数字表示相同的零件,图1表示本发明的海底抽吸系统1,它包括:通常表示为3的顶部组件,通常表示为5的海底组件,及通常表示为7的脐状连接件,这些连接件分别用来对若干顶部组件和海底组件进行液体和电的连接。顶部组件3可以支撑在一个可支撑生产台的浮动平台(未示出)上。对于图1中的抽吸系统,操作和维修人员通常位于海边或服务平台上,该抽吸系统1设计成以无人操作方式进行工作。

    海底组件5具有安装底板9,它安装在通常座在海床上的井口柱状结构(未示出)上。安装底板9可包括任何合适的结构,例如位于其角部的漏斗形导向柱,它们中的一些如数字11,13和15所示,用于使海底组件5在上方与井口柱状结构对准。

    仍参见图1,海底组件5的安装底板9支撑装置17和19。装置17罩住马达21和多相泵23,它们由过渡罩25整体地连在一起。在马达轴21和泵23的轴之间装有柔性轴连轴器。装置19由液流管29连接到过渡罩25上。脐状馈送连接件7对顶部组件3和海底组件5上的马达21进行电和液体的连接。

    图2更详细地示出了海底组件5的若干零件。装置19罩住热交换器27和压力补偿器28,马达21最好是高压电子变速马达,它并不需要潜水变压器或多级齿轮。这些要求可由Westinghouse的密封马达达到,这种马达在先有技术中是已知的,同时还公开在美国专利No.5101128、5185545、5220231和5225875中。马达21选成在25%~100%的速度范围下工作并具有恒定的轴输出扭矩。马达21基本包括罩31。定子套33,具有轴37的密封的转子35,上轴承39和下轴承40。

    马达21的轴37通过过渡罩25内的柔性连轴器43机械连接到多相泵23的轴41上,过渡罩25螺接在马达21的罩31和多相泵的罩45之间。多相泵23连到马达21上并选择成能理想地用于传输由油、气和水组成的多相的流体。传统的正齿轮(未示出)可有选择地用于马达21和泵23的机械连接。多相泵23可以是双螺纹型泵、螺旋-轴型泵或可用于抽吸气体体积含量达95%(GVF)或更高一些的油气混合物的多相流体。多相泵23具有上轴密封件及轴承51和下轴密封件及轴承53。该轴密封件将冷却/润滑流体与泵中的流体分开。为了改进轴密封的可靠性,需要限制密封件两侧的压差,从泵的侧部到流体侧的方向保持正压差,并限制压差的波动,从而提高寿命并降低油耗。

    仍参见图2,多相泵23通过吸口47连到支撑在安装底板9上的井口柱状结构(未示出)的阀上,通过吸口,多相流体从井口抽吸并从排放口49排出,多相流体从排放口通过管道送到生产台。

    参见图1和图2,图1中的液流管道7将最好是油的介质流体送入马达21的基部,在马达21的轴37上装有以已知方式循环的辅助的叶轮(未示出),液态流体通过上轴承39进入密封的定子33和转子35之间的下轴承以进行冷却和润滑,进入过渡罩25后由管道29送到罩住热交换器27和压力补偿器28的装置19。这里的“介质流体”  指的是供给马达21和泵23用以进行冷却和润滑的流体,同时介质流体是通过马达21抽吸的,它还被送到多相泵23的密封件和轴承51和53内。

    在装置19中,介质流体由热交换器27冷却,压力补偿器28用于保持抽吸系统的内部压力,详细情况下面将进行描述。介质流体在马达21工作时最好通过马达21和多相泵23抽吸,这是因为辅助叶轮安装在马达轴37上,就可不必单独为它提供能源。

    本发明最好采用单介质流体,如用于分别冷却和润滑马达21和泵23的马达芯和轴承35,39,40和51,53的油,这是因为油与抽吸的由油混合物组成的多相流体相容。任何在冷却和润滑期间通过密封件和轴承51和53的流体漏泄物流入多相泵23,避免了因流体介质污染海底环境。这就不需要一个使用水、水-乙二醇、油和气体系统的组合来进行冷却、润滑和压力控制的抽吸系统提供单独的漏泄液的回路或分离器。

    仍参见图2,来自泵23和马达21的内部液体回路中的介质流体通过热交换器27循环,将马达21和泵23产生的介质流体中的热载荷传到周围的海水中。热交换器27可以是单管和多管型的,它采用对流热传导将热量传到周围的海水中,从而除去废热而并不需要将介质流体循环到顶部平台上的冷却器中。

    参见图3,装置19包括一压力补偿器28,它通过一个吸压传感管69连到泵23上。如图3所示的包括泵23、马达21和过渡段25的加压圈90包含冷却和润滑马达和泵的密封件和轴承的介质流体,并使介质流体与周围海水隔离。一个下注入阀91用于将介质流体注入加压圈的内部,同时一个上排放阀92连到一个真空系统中,用于开始时给该系统抽真空。真空注入确保了该系统是油密封的,从而使压力补偿器具有最大的工作和动态响应。压力补偿器28最好包括一个感压箱式组件71。该感压箱式组件71可包括焊接的不锈钢薄板73、弹簧75和77和若干叶片,其中的一个叶片以79表示。拉簧75和77连到薄板73上并最好设计成使感压箱式组件71能够在泵吸管69和加压圈90之间的每个介质流体的吸入循环中至少置换两加仑介质流体。叶片79可连接到拉簧75和77相对侧上的薄板73上。叶片在加压圈90和泵吸管69之间形成密封件。

    叶片79最好由厚薄交替地焊接在一起的耐腐蚀金属材料制成。薄的材料用于使感压箱式组件提供良好的轴向一致性和柔性,而厚的材料提供刚度,以抵御由于泵马达加压圈90内的高压而引起的感压箱式组件71的损坏。另外,也可采用周边波纹状的等厚叶片。

    仍参见图3,吸压管69连通到感压箱式组件71上多相流体的压力为泵的抽吸压力。由本发明的控制系统109、111、113、115、117、119、121、123、131和132保持的弹簧载荷加上作用在感压箱区上的泵吸压力,能确保每个泵的轴密封件51和53上的正压差。吸压传感管69传输在图1海底组件5中抽吸的多相流体的静态压力出现的任何变化,该压力在感压箱组件71中基本无衰减,亦即在感压箱组件71中无压力损失。感压箱组件71的内侧暴露在泵的压力下,该内侧85对马达21和泵23中的压力是敞开的,这就分别调节了润滑和冷却马达21和泵23的密封件和轴承39、40和51,53的系统中介质流体的内压,将该压力调节到泵吸压力,下面将描述其调节方式。

    压力补偿器28最好位于尽可能靠近泵23的地方,这样为了改进感压箱组件71的马达泵侧压力对组件71的泵吸侧的瞬态变化的响应,连到轴密封件和轴承51和53上的液压连接件65、67(图2)就可比较短。

    起到压力调节作用的感压箱组件71允许弹簧75和77对补偿器加载,从而在泵23中提供高于井口压力的正压力。这种泵压圈的压力大于井口压力的压差可称之为“密封偏压”。压差基本保持一个常压、其量级约为0~100磅/平方英寸,最好为35~75磅/平方英寸。与感压箱组件71的移动有关的弹簧75和77的刚度考虑到从顶部供油箱(未示出)到海底组件5的马达21和泵23在密封偏压变化的基础上为系统提供介质流体的自然情况,当马达21和泵23中的介质流体低于某一压力限制时,传感管69中的抽吸压使感压箱组件71伸展。弹簧75和77受压或放松,其中密封偏压变弱或降低。该低的偏压给系统中的液压系统一个信号,通过一个阀门系统(图3)开始将介质流体分别送到马达21和泵23的密封件和轴承39、40和51、53,一直加到达到预定的海底组件5中介质流体限定值时为止。当马达21和泵23被来自顶部供油箱的介质流体加到预定值时,感压箱组件71受到较大的压力,弹簧75和77受拉,在采用压簧的情况下则受压。当弹簧75和77伸长或受压时,马达21和泵23中的压力上升,继续供给介质流体,一直供到马达21和泵23中的压力达到一个高于泵吸压的设定点的压力时为止。导致弹簧75和77伸长和受压的偏压增大由液压系统中感测、并给出一个信号以中断从供油箱到含有马达21和泵23的装置17的介质流体。

    再一次参见图3,它概略示出用于润滑和冷却图2的泵23的密封件和轴承51和53的介质流体的液压系统。在图3中以数字99、101、103和105代表这些液压连接中的阀门,这些阀门控制流到密封件和轴承上的润滑和冷却流体的流动,同时还可控制流到泵定时齿轮的流体流动。

    图3的液压系统采用一对压力调节阀109和111,它们与小孔113和115相连形成一对压力传感继动器,每个阀109和111装有一个传感活塞,其一端为泵吸压力、相对的另一端为泵/马达的内压,因此每个阀109和111形成马达21、泵23和泵吸压介质流体之间的压差。每个阀109和111具有建立设定点的一定范围的弹性设定装置。阀109和111具有在压力低于设定点时打开、高于设定点时关闭的特性。由于它们参照抽吸压力,因此设定点压力高于泵吸压。

    阀109和111分别与小孔113和115串联。当每个阀109和111关闭时,基本无流体流动,每个孔113和115的向下流动的压力等于液压泵组件117排放时的压力(例如:400~600磅/平方英寸表压,高于马达21和泵23中介质流体压力)。包括过滤器和降压阀的液压泵组件117可由马达轴37或泵轴41驱动。当每个阀109和111打开时,流过小孔113和115将每个孔的流动压力减小到基本为马达21和泵23中流体的压力。阀119和121是通常关闭的阀门,它们要求加到它们的薄膜或活塞上压力高于马达21和泵23中介质流体的压力时才打开。同样阀123是通常打开的阀门,它要求压力高于马达21和泵23中介质流体的压力时才关闭。当泵117由主马达21带动时,高压进入阀123和小孔113和115。如果马达21和泵23中介质流体的压力低于泵吸压上方的30磅/平方英寸表压,阀119将打开,在阀123的操作件(活塞或薄膜)上将没有压力,马达21和泵23内介质流体的压力也将能低于阀111的设定点,阀111将打开。在此情况下,在小孔115两侧有一压降,在小孔115和阀109之间出现低压的后果是阀119的操作件不受压。通常是关闭的阀119使通往阀121的操作件供给管受压,通过阀123来自泵117的高压对阀121的操作件(活塞或薄膜)加压,因此阀121打开,介质流体从脐状供给管7流出。对脐状管7加压以确保有足够的压力将介质流体流入马达21和泵23。

    当介质流体流入马达21和泵23时,感压箱组件71受压,压缩感压箱组件71的动作拉伸了偏压弹簧75和77或压缩了压簧,马达21和泵23中介质流体的压力高于泵吸压力。当马达21和泵23中介质流体的压力升到阀109的设定点以上时,阀109关闭。阀109的关闭切断了通过小孔113的流动,且阀123关闭。当阀123关闭时,积蓄在阀121的操作件和介质流体中的压力继续使介质流体从脐状管7流入马达21和泵23。

    在压力超过阀111的设定点之前,介质流体继续流入马达21和泵23。在超过阀111的设定点上阀111关闭,通过小孔115的流动停止。孔115的下游压力上升到泵117输出压力的量级,连接到孔115下游侧的阀119打开,这就排放了来自阀121的压力并使它关闭,停止供给顺脐状管7流下的介质液流。

    在泵工作时,感压箱压力补偿器71保持密封偏压,不必排放或取得流体介质就可使泵/马达的压力保持在高于泵吸压力。在稳定操作期间,为了替代通过泵轴密封件51和53的损耗,仅从海底脐状管7取得流体介质。在系统的展开、备用、开始和关闭时,可采用附加的装置来适应流体介质的变化。

    在展开期间,泵吸口47经受压力变化,从大气压变到展开深度的压力、如约在1000米时的1500磅/平方英寸表压。另外,流体介质从室温约100°F冷却到海底温度,通常约为35~38°F。压力增大和温度降低的联合作用使流体介质收缩约5倍感压箱的排量。

    在开始期间,流体介质从海底温度加热到正常的工作温度,通常为150°F,该工作温度高到足以降低介质粘度和流体及摩擦损失、然而低到足以吸收来自马达的热量而不超过绝缘温度额定值。与流体介质加热同时发生的是在流体流动导致供给管线中压力损失时井口压力降低。流体膨胀的结果通常约是感压箱排量的6倍。

    在从正常操作关闭时,流体介质的温度可从约150°F降低到35~38°F。由于切断流体,井口压力上升到正常静态压力,约1500磅/平方英寸表压。最后结果是流体介质的收缩量约相当于感压箱排量的6倍。

    在泵关闭的备用期间,通过密封件继续漏入泵吸侧。随着泵的停止及从泵/马达罩到泵吸侧的压差降低,漏泄减少了。然而仍保持正向压差以确保来自井口的外来材料不会进入泵。

    正如图3所示,单向阀107允许马达关闭时的反向转动。在顶部脐状管7上装有蓄能器141和142,从而在操作的展开阶段提供压力。在顶部管线7上还安装了单向阀143,用以在不能得到脐管压力时避免给蓄能器降压。

    该压力和设备的控制系统对开、关泵来说具有不同的模式。当系统工作时,阀131被来自液压系统的泵117的压力压向关闭位置。当泵117工作时,可得到操作阀109、111、113、115、119、121和123的压力,并断开阀132。因此由感压箱71来完成压力控制,由阀109、111、113、115、121和123来完成设备管理。当系统关闭时,泵117关闭,阀131打开(通常是打开的)。随着泵117的关闭,阀109、111、113、115、119、121和123均空置。打开的阀131允许压力调节阀132从脐状管7加油。该调节器参照泵的吸力并理想地设定得较低,如约20巴,在系统处于备用状态时,该压力与正常的工作压力范围相比在油耗方面是经济的。与预先充满的蓄油器相连的压力调节阀可在展开期间维持流体介质的压力。该调节器还在该系统冷却关闭期间收缩时能添加流体介质以维持密封偏压。蓄油器对顶部供油系统3提供短期的支援,并能通过局部储备的高压流体而不依靠它向下传导到脐状管7的长度上的注入来改进介质流体的传送速度。

    该系统还装有压差单向阀133。该通常设定成约100磅/平方英寸表压的回压控制阀每当系统在起动时由于温度升高而膨胀时将流体介质排放到泵吸侧。

    当系统工作时,分别穿过马达21和泵23的密封和轴承39、40和51、53漏泄的介质流体将流入由泵23抽吸的多相流体中,这将导致马达21和泵23中的压力下降,感压箱组件71膨胀,弹簧75和77收缩。由于弹簧75和77的伸展尺寸减小,马达21和泵23中的介质流体的压力相对于泵吸压来说减小了,当马达21和泵23中的压力值降到低于最小设定值、通常高于泵吸压力值时,图3的液压系统再次开始工作,从而将介质流体从补充供给箱送到加压圈90中。送到泵和马达罩中的介质流体与已有的通常的流体混合来润滑构件39、40、51和53并冷却马达35。图3液压系统中的阀133能避免过压和泵23密封件51和53的过早的磨损。

    例如图1的系统1连续工作,可以预计从补充供给箱流到海底组件5的介质流体损失的估计速度约为每天4加仑。预计顶部组件3每天两次通过液压系统将2加仑的介质流体送到海底组件5,操作人员每年三次重新加注补充供给油箱。重要的是来自补充供给箱的介质流体漏入生产流体中并得到重新回收,因此不会漏到周围环境中。

    图4示出本发明优选实施例的压力补偿器28。在该实施例中,压力补偿器28包括:一个可变体积的容器170,它由相互轴向对准的感压箱171和172组成。感压箱172的一端用合适的手段如焊接方法封装到一刚性薄板173上,感压箱171和172由中部支环174相互连接,支环可焊接到感压箱171和172上。感压箱171的上部连到端部支环175上,支环175连到法兰176上。支环175的端部由密封件177密封到法兰176上。另一个密封件178用以将法兰176封装到图2所示的压力补偿装置19的罩上。法兰176包括流体进口179,该进口如图1~3所示通过吸压传感管69与从井口抽吸的井中的流体连通。在工作期间,通过流体入口179,变化的井口流体压力与感压箱171和172的内腔连通。在一个优选实施例中,感压箱171和172的内表面及接触流体的其它表面均涂覆了防止该压力补偿器工作期间粘上流体的材料,如聚四氟乙烯。

    按照本实施例,每个感压箱171和172包括一系列的厚叶片,在图4中其中之一表示为元件181,它们与示为元件182的一系列的薄叶片相间,正如前面讨论的,厚叶片181提供抵抗感压箱撞击时的刚度,而薄叶片182提供了感压箱的轴向一致性和柔性。图4所示的感压箱叶片181和182是弯曲的,也可使用其它形状如直的或大弯曲度的叶片。当感压箱171和172如图4所示轴向对准时,应该看到,在本发明中也可采用一个感压箱,在此情况下,可去掉中部支环174。另外,在本发明中还可包括多于两个的感压箱,例如可采用三个或更多的感压箱。采用上述实施例时,感压箱171和172最好采用焊接在一起的抗腐蚀金属的叶片。同样,薄板173最好也采用抗腐蚀材料金属制成。感压箱171和172最好能置换至少两加仑的用于冷却和润滑马达和组件的介质流体。

    在靠近感压箱171和172的外部最好安装至少一根杆185。其一端连到支环175的端部,另一端连到基座186上。在图4的实施例中,杆185具有感压箱171和172的横向支撑件。薄板173和中部支环174最好采用一降低摩擦的套(未示出)可滑动地啮合在杆185上。如果需要,除了采用图4所示的单根杆185外,还可围绕着感压箱171和172提供附加的杆。

    压缩弹簧187和188安装在杆185上,在图4中向下偏压薄板173。上压簧187的一端压在端部支环175上,另一端压在中部支环174上。下压簧188的一端压在中部支环174上,另一端压在薄板173上。拉簧189的一端连到薄板173上,另一端连到基座186上。压簧187、188和拉簧189联合提供使感压箱171和172轴向伸展的偏压力。在如图4所示的拉压簧的联合中,感压箱171和172的轴向偏压力可仅由压簧或拉簧来完成。另外,为达到此偏压效果可采用单根簧或多根簧,例如图4所示的轴向对准的压簧187和188,在感压箱171和172的外侧或内侧的其它位置也可放置其它的压簧。另外,图4表示出采用单根拉簧,在其它位置也可采用附加的拉簧。除了图4所示的拉压簧外,也可采用能在轴向对感压箱加上偏压的其它装置,例如可采用片簧或贝氏弹簧。此外软性或弹性材料可用于对感压箱加上机械偏压。

    如图4所示,还具有作为法兰176一部分的机械止动件191,它位于感压箱171和172的内部,一旦感压箱171和172的外压到达一预定值如80磅/英寸2,它将与薄板173接触以限制感压箱171和172的轴向移动。另外在感压箱171和172的外侧也可安装低压机械止动件。所安装的低压机械止动件192作为基座186的一部分,一旦感压箱171和172外侧的压力到达预定的较低值如30磅/英寸2时,它通过与薄板173接触来限制感压箱171和172的轴向移动。

    在图2的海底组件中抽吸的流体抽吸压的静压可能出现变化,任何变化均是互相连通的,基本上没有因为通过吸压传感管69和流体入口179而使到达感压箱171和172的内腔180的压力产生衰减。因此感压箱171和172的内腔180受到泵吸压,感压箱171和172的外部受到马达21和泵23中介质流体的压力,并将介质流体的压力调节到高于流体的泵吸压力之上。在压簧187、188及拉簧189的偏压下的感压箱171和172对泵和马达的介质流体提供高于流体的井口压力的正压力,因此为海底泵压系统提供了压差或密封偏压。按照一个优选实施例,压差基本保持为常数,量级约为35磅/英寸2~75磅/英寸2。

    与上述实施例一样,图4的实施例根据密封偏压的变化,允许将介质流体从顶部的补充液压供给箱供到海底组件5的马达21和泵23。当马达21和泵23中的介质流体低于设定限度时,传感管69的抽吸压和弹簧187、188和189的力使感压箱171和172伸展。该低的密封偏压被用来给液压系统一个信号,通过上述阀门系统将补充的介质流体供到马达21和泵23,一直供到达到海底组件5的介质流体的预设限度时为止。当马达21和泵23被来自顶部供给箱的介质流体加注到预定限度时,感压箱171和172轴向受压,压簧187和188受压、拉簧189拉伸。马达21和泵23中的压力上升,继续输送介质流体,直到马达21和泵23中的压力达到泵吸压以上的设定点压力时为止。一旦到达设定点压力,中止从补充供给箱到含有马达21和泵23的装置17的介质流体的流动。

    按照图4的实施例,感压箱171和172的总的置换量最好约为2加仑。因此可变容积的容器170最好伸展和收缩成能置换约2加仑的介质流体,当然也可采用较大或较小的置换量。感压箱组件最好能在最大外部压力约在80磅/英寸2和最小的外部压力约在30磅/英寸2之间循环。感压箱组件最好能经受从外到内的150磅/英寸2的漏泄压力试验。高压机械止动件191最好能在支撑150磅/英寸2压力时没有损坏。该感压箱组件还最好能经受从内到外的15磅/英寸2的压力试验,低压机械止动件192最好能经受加到感压箱外部的15磅/英寸2的真空而没有损坏。图4所示的压力补偿器28的外部尺寸可根据特殊使用情况而改变。在很多使用中,压力补偿器28的总尺寸通常为15英寸或更小,而它的轴向长度可根据需要进行调节。

    本发明的压力补偿器最好包括如图3和4所示的感压箱,应该看到,按照本发明可采用各种可变容积的压力补偿器组件。例如除了可以采用感压箱内部与流体连通外,还可使感压箱外部与流体连通,在此情况下,感压箱内部含有介质流体。在这种实施例中,偏压装置用于压缩感压箱而不是扩张感压箱。作为进一步的例子,可用一个具有与抽吸流体连通的可膨胀腔的弹簧偏压活塞来代替感压箱组件。在这个实施例中,活塞腔内部可衬有柔性膜片,以防止抽吸的流体和活塞的环形密封件之间的接触。

    按照本发明,可以在生产平台控制室监视系统的工作情况。在抽吸生产过程中可以监视马达21的动力范围和井口及抽吸的多相流体的情况。室内水温就足以能为海底组件5的构件提供合适的冷却,

    本发明的海底多相系统是一个液压固体抽吸系统,其中该系统是一个完全注满或封闭的液压系统(没有气压),该系统使用由压力补偿器28加压到泵的进口压力以上的简单的介质流体,压力补偿器28在马达21和泵23内保持完全注入的液压的冷却和润滑回路。

    应该看到,尽管本发明描述了多相流体抽吸系统,但它也能用于单相流体抽吸系统。

    在已经详细描述了本发明的特殊实施例的同时,应该看到,对本专业技术人员来说,在已经公开的技术的教导下,对上述细节可进行各种改型和置换。因此,已公开的特殊设计仅作说明而不作为限制本发明的范围之用。本发明的范围由下面所附的权利要求及其任何和所有的同等物给出。

海底抽吸系统及其相关的方法.pdf_第1页
第1页 / 共24页
海底抽吸系统及其相关的方法.pdf_第2页
第2页 / 共24页
海底抽吸系统及其相关的方法.pdf_第3页
第3页 / 共24页
点击查看更多>>
资源描述

《海底抽吸系统及其相关的方法.pdf》由会员分享,可在线阅读,更多相关《海底抽吸系统及其相关的方法.pdf(24页珍藏版)》请在专利查询网上搜索。

一种用于海底抽吸系统(1)从深海井口抽吸流体的压力补偿器(28)包括:顶部组件(3),海底组件(5)及顶部(3)和海底组件(5)之间的脐状连接件(7)。液压流体通过海底组件(5)循环,以冷却和润滑马达(21)和泵(23)。液压冷却和润滑流体最好是能与抽吸流体相容的单介质流体,它通过由感压箱组件(71)构成的水下压力补偿器(28)进行循环。压力补偿器(28)响应抽吸流体的压力并将液压冷却和润滑流体加。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 固定建筑物 > 土层或岩石的钻进;采矿


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1