照明方法和曝光方法及其装置.pdf

上传人:Y0****01 文档编号:162301 上传时间:2018-01-31 格式:PDF 页数:30 大小:1.36MB
返回 下载 相关 举报
摘要
申请专利号:

CN03805595.3

申请日:

2003.07.02

公开号:

CN1639845A

公开日:

2005.07.13

当前法律状态:

授权

有效性:

有权

法律详情:

专利权人的姓名或者名称、地址的变更IPC(主分类):H01L 21/027变更事项:专利权人变更前:日立比亚机械股份有限公司变更后:维亚机械株式会社变更事项:地址变更前:日本神奈川县变更后:日本神奈川县|||授权|||实质审查的生效|||公开

IPC分类号:

H01L21/027; G03F7/20; G02B19/00; G02B3/00

主分类号:

H01L21/027; G03F7/20; G02B19/00; G02B3/00

申请人:

日立比亚机械股份有限公司;

发明人:

押田良忠; 丸山重信; 小林和夫; 内藤芳达; 大坂义久

地址:

日本神奈川县

优先权:

2002.07.03 JP 195086/2002

专利代理机构:

中国国际贸易促进委员会专利商标事务所

代理人:

李德山

PDF下载: PDF下载
内容摘要

一种曝光装置,特征在于包括照明光学系统和投影光学系统,该明光学系统具有:把分开的多个光源以一维或二维排列的光源阵列;使从该光源阵列的各光源射出的光聚光的聚光光学系统;在空间上分解由该聚光光学系统聚光的光来生成多个疑似二次光源的、由棒状透镜的排列构成且各棒状透镜的垂直于光轴的剖面形状的纵横比r1与上述被照明区域的纵横比r0之比r1/r0为大于或等于0.8且小于或等于1.2的光学积分器;以及使来自利用该光学积分器生成的多个疑似二次光源的光叠加在一起来照明具有应该曝光的图形的被照明区域的聚光透镜;该投影光学系统把透射或反射了由该照明光学系统照明的应该曝光的图形的光投影、曝光到被曝光物上的被曝光区上。

权利要求书

1: 一种照明方法,其特征在于,使光从以一维或二维分开排列 的多个光源中分别射出,利用光学积分器在空间上分解从该多个光源 分别射出的光来生成多个疑似二次光源,利用聚光透镜使来自该生成 的多个疑似二次光源的光叠加在一起来照明被照明区域。
2: 如权利要求1所述的照明方法,其特征在于,把排列着上述 多个光源的区域或从上述多个光源得到的二次光源的发光区域设置成 与上述被照明区域的形状相似。
3: 如权利要求1所述的照明方法,其特征在于,上述光源是半 导体激光器光源。
4: 如权利要求1所述的照明方法,其特征在于,上述光学积分 器由多个棒状透镜的排列而构成,各棒状透镜的垂直于光轴的剖面形 状的纵横比r 1 与上述被照明区域的纵横比r 0 之比r 1 /r 0 为大于或等于 0.8且小于或等于1.2。
5: 如权利要求1所述的照明方法,其特征在于,入射到上述光 学积分器的光或从上述光学积分器射出的光通过使波面变化的调制 器。
6: 如权利要求1所述的照明方法,其特征在于,把从上述多个 光源分别射出的光束中的发散角调整为:向着垂直于该射出光束的光 轴的面,对面内任意的两个方向为1比1.5以内。
7: 如权利要求1所述的照明方法,其特征在于,控制从上述光 源射出的光的能量。
8: 如权利要求1所述的照明方法,其特征在于,利用聚光光学 系统使从上述多个光源或二次光源射出的各个出射光入射到上述光学 积分器上的对应的位置上。
9: 一种照明方法,其特征在于,使从以一维或二维分开排列的 多个光源分别射出的光对被照明区域进行照明,以使被照明区域内的 照度不均匀为±10%以内,从上述各光源发出的光的能量的30%以上 到达被照明区域内。
10: 一种曝光方法,其特征在于, 从以一维或二维分开排列的多个光源分别射出,利用光学积分器 在空间上分解从该多个光源分别射出的光来生成多个疑似二次光源, 利用聚光透镜使来自该生成的多个疑似二次光源的光叠加在一起来照 明具有应该曝光的图形的被照明区域, 利用投影光学系统把透射或者反射了该经照明的应该曝光的图 形的光投影、曝光到被曝光物上的被曝光区上。
11: 如权利要求10所述的曝光方法,其特征在于,把排列着上 述多个光源的区域或从上述多个光源得到的二次光源的发光区域设置 成与上述被照明区域的形状相似。
12: 如权利要求10所述的曝光方法,其特征在于,上述光源是 半导体激光器光源。
13: 如权利要求10所述的曝光方法,其特征在于,上述光学积 分器由多个棒状透镜的排列而构成,各棒状透镜的垂直于光轴的剖面 形状的纵横比r 1 与上述被照明区域的纵横比r 0 之比r 1 /r 0 为大于或等 于0.8且小于或等于1.2。
14: 如权利要求10所述的曝光方法,其特征在于,入射到上述 光学积分器的光或从上述光学积分器射出的光通过使波面变化的调制 器。
15: 一种曝光装置,其特征在于, 包括照明光学系统和投影光学系统, 上述照明光学系统具有:把分开的多个光源以一维或二维排列的 光源阵列;使从该光源阵列的各光源射出的光聚光的聚光光学系统; 在空间上分解由该聚光光学系统聚光的光来生成多个疑似二次光源的 光学积分器;以及使来自利用该光学积分器生成的多个疑似二次光源 的光叠加在一起来照明具有应该曝光的图形的被照明区域的聚光透 镜; 上述投影光学系统把透射或反射了由该照明光学系统照明的应 该曝光的图形的光投影、曝光到被曝光物上的被曝光区上。
16: 如权利要求15所述的曝光装置,其特征在于,在上述照明 光学系统中,把上述光源阵列中的排列着多个光源的区域或从上述多 个光源得到的二次光源的发光区域设置成与上述被照明区域的形状相 似。
17: 如权利要求15所述的曝光装置,其特征在于,在上述照明 光学系统的上述光源阵列中,上述光源由半导体激光器光源构成。
18: 如权利要求15所述的曝光装置,其特征在于,上述照明光 学系统的上述光学积分器由多个棒状透镜的排列而构成,各棒状透镜 的垂直于光轴的剖面形状的纵横比r 1 与上述被照明区域的纵横比r 0 之比r 1 /r 0 为大于或等于0.8且小于或等于1.2。
19: 如权利要求15所述的曝光装置,其特征在于,在上述照明 光学系统中,在上述光学积分器的入射一侧或上述光学积分器的出射 一侧具有使光的波面变化的调制器。
20: 如权利要求15所述的曝光装置,其特征在于,在上述照明 光学系统中,具有调整从上述光源阵列的各光源射出的光的发散角的 发散角调整光学系统。
21: 如权利要求20所述的曝光装置,其特征在于,上述发散角 调整光学系统包括圆柱面透镜。
22: 如权利要求15所述的曝光装置,其特征在于,在上述照明 光学系统中,具备控制从上述光源阵列的上述光源射出的光的能量的 光源控制装置。
23: 如权利要求15所述的曝光装置,其特征在于,在上述照明 光学系统中,包括计量从上述光源阵列的上述光源射出的光的强度的 检测器。

说明书


照明方法和曝光方法及其装置

    【技术领域】

    本发明涉及均匀而高效地把照明光照射到被照明区域上的照明方法和使用该照明方法的曝光方法,另外,本发明还涉及使用该曝光方法曝光图形的曝光装置。特别是涉及使用多个半导体激光器地照明方法、曝光方法和曝光装置。

    背景技术

    以往,对被照明物体进行照明,或为了对被曝光物体进行曝光而以水银灯为光源,或使用激元激光器。这些光源为了驱动而投入的能量绝大部分变成了热量,是效率非常低的光源。

    近年来,半导体激光器(LD)的短波长化取得进展,出现了400nm左右发光波长的LD,因此出现了能代替水银灯的用于曝光的光源的可能性。但一个LD的输出是有限的,所以不得不使用多个LD。但即使排列多个LD来把从各个光源射出的光均匀地照射到被照明物体上,也会因为从各个光源射出的光的指向性接近于高斯分布而呈现照射区的中心附近强而周边变弱的状态。另外,虽然在垂直于LD的主射出光线的方向之内,一个方向的发散角很小,但是与此垂直的方向的发散角变大,该发散角之比为从1∶3至1∶4左右。所以把这种来自各LD的光均匀而高效地照射到想要照射的被照明区域是不可能的。即产生了如果要均匀地进行照明,则效率降低,如果要提高效率则均匀性恶化这样矛盾的现象。

    【发明内容】

    鉴于上述问题的存在,本发明的目的在于:提供一种能使用多个光源来高效、均匀地照射被照射物,从而实现节能、高性能的照明的照明方法及其装置,其中光源是每个半导体激光器等的发光能量小的光源。

    另外,本发明的另一个目的在于:提供一种在衬底等上对图形进行曝光时,能以高处理能力来实现良好的图形曝光的曝光方法及其装置。

    为了实现上述目的,本发明其特征在于,从分离地一维或二维排列的多个LD等光源的各个出射光,利用光学积分器在空间上分解从该多个光源分别射出的光来生成多个疑似二次光源,利用聚光透镜使来自该生成的多个疑似二次光源的光叠加在一起来照明被照明区域。作为光源阵列,使多个光源或从该光源得到的疑似二次光源在大致相似于被照明区域的形状的区域内均匀分布地排列。通过这样的构成来实现均匀而高效的照明。

    另外,本发明由多个棒状透镜的排列而构成上述光学积分器,各棒状透镜的剖面形状的纵横比几乎等于被照明区域的纵横比,据此可以把排列于二维平面上的光源或二次光源的出射光最高效地均匀照明于被照明区域,而且能够比较小型地构成照明光学系统。

    如果使用以上说明的构成,则在被照明物体上几乎能完全消除空间频率的低不均匀。

    但是,如果在光源中使用LD,从各LD射出的光通过由多个棒状透镜组成的光学积分器(integrator)则从一个LD出射,透射各棒状透镜的光在被照射物体上进行干涉,形成干涉条纹。因此,在照明光中产生空间频率的高不均匀。如果多个LD的数量变得非常大,则虽然该空间频率的高不均匀减小,但是并不能完全消除。

    因此,本发明在即将入射到上述光学积分器前的光路或刚从光学积分器射出后的光路中插入使波面变化的调制器,据此上述空间频率的高不均匀变化,能使进行了时间平均的照明光与空间频率无关地几乎完全均匀。

    另外,本发明通过把光束发散角调整为从上述多个光源或从该光源得到的二次光源射出的光的发散角向垂直于出射光的光轴的面而对面内任意的两个方向成为1比1.5以内,在通常具有圆形的有效直径的光学积分器的入射面上把来自光源的出射光有效地用作照明光成为可能。即,上述光束发散角的调整,使用圆柱面透镜来进行。具体地说,光束发散角的调整,根据LD的正交的两个轴的发散角沿着光路前后排列焦距不同的两种圆柱面透镜而进行。

    另外,本发明进而控制各个光源的能量以便从多个光源射出的各个光的能量成为所希望的一定值以内。这样,就能得到照明光的均匀性,并且使照明光强度保持恒定。

    另外,本发明利用聚光光学系统使从上述多个光源或由该光源得到的二次光源射出的各个出射光入射到上述光学积分器上的对应的位置,据此与照明场所无关地均匀地实现指向性均匀的照明成为可能。

    如果使用以上说明的照明方法,则从分离的多个光源得到均匀的照明光成为可能,掩模或二维光调制器等被照明区域内的照度不匀为±10%以内,从多个光源发出的光的能量的30%以上到达被照明区域内第一次成为可能。

    另外,本发明使用上述照明方法或照明装置,把来自分离的多个光源,特别是排列多个半导体激光器的光源的出射光照射到作为被照明物的掩模、中间掩模(reticule)、或用于无掩模曝光的二维光调制器,也就是液晶型的二维光调制器或数字式反射镜器件等,进行曝光。这样,就可以得到具备均匀的强度分布和所希望的指向性的良好的曝光照明光。

    特别是,把多个光源排列为例如与方形形状的被照明区域相似的形状,使从这些光源得到的光以所希望的入射角入射到光学积分器,把出射光用作照射到被照明区域上的光,据此高效率地实现均匀的照明。如果在作为光源用半导体激光器的情况下在光学积分器之前或之后用使波面变化的调制器,则消除激光的干涉条纹不匀,可以得到均匀照明。通过把该照明用于衬底的曝光,可以处理能力高地曝光良好的图形。

    【附图说明】

    图1是表示根据本发明的曝光装置的第1实施例的构成透视图。

    图2是表示半导体激光器光源与其光束成形与光学积分器部的关系的图。

    图3是表示圆柱面透镜引起的光束成形的透视图。

    图4是用来说明半导体激光器的排列的图。

    图5是表示光学积分器中的棒状透镜的排列状态的图。

    图6(A)是用来说明构成光学积分器的棒状透镜的入射光与出射光的关系的主视图,图6(B)是(A)所示的A-A剖面图,图6(C)是侧视图。

    图7是表示根据本发明的曝光装置的第2实施例的构成透视图。

    图8是用来说明使波面变化的调制器与光学积分器的关系的图。

    图9(A)是详细表示使波面变化的调制的主视图,图9(B)是表示(A)所示的C-C剖面上的形状的图。

    图10是表示根据本发明的曝光装置的第3实施例的构成透视图。

    图11是表示根据本发明的曝光装置的第4实施例的构成透视图。

    图12是表示根据本发明的曝光装置的第5实施例的构成透视图。

    图13是表示根据本发明的曝光装置的第6实施例的构成透视图。

    图14(A)(B)分别是用来说明排列多个光源的不同的实施例的图。

    图15是表示作为光源阵列用多个激光光源的情况下的图。

    图16是表示用多种光源的情况下的排列的图。

    【具体实施方式】

    下面,参照附图来说明本发明的照明方法和曝光方法及其装置。

    首先,根据图1说明本发明的曝光装置的第1实施例。作为一维或二维排列分离的多个光源的光源阵列,LD阵列1,在衬底上二维排列405nm附近(380~420nm)的波长的光以30mW左右的输出射出的蓝(紫)色半导体激光器11而构成。来自各个半导体激光器11的出射光利用聚光透镜(聚光光学系统)12入射到后面使用图5和图6进行详细说明的光学积分器13。透射光学积分器13的光通过作为照射光学机构的聚光透镜(准直透镜)14,被反射镜15反射照射到掩模2。掩模2可以是通常的铬或氧化铬掩模2a,也可以是具有掩模的功能的例如液晶或数字式反射镜器件(Digital Mirror Device)等二维光调制器2b。光学积分器13是空间分解利用聚光透镜(聚光光学系统)12所聚光的来自二维排列的多个半导体激光器11的射出光束生成多个疑似二次光源使之叠加在一起来照明的光学系统。

    透射或反射掩模2a或二维光调制器2b的图形显示部21(例如方形形状形成)的光,通过投影透镜3把图形21投影于被曝光衬底5上的曝光区51。衬底5通过由衬底夹头和xy载物台组成的衬底移动机构4移动,据此涉及衬底5上的所希望的区依次曝光图形。在使用通常的掩模2a的情况下被扫描于掩模上的图形重复地被曝光。另外,在使用二维光调制器2b的情况下,在衬底5的几乎全体上所希望的图形被曝光一组或数组。

    控制电路6每一曝光的时刻使半导体激光器11点亮,如果所希望的曝光量在衬底5上形成就进行熄灭控制。即,光检测器17取入入射到设在光路中的分光镜171的光的1%左右。通过光检测器17所检测的光强度利用控制电路6积分。由于该积分值成为曝光于衬底5的曝光照明光的累计曝光量,所以在该值达到预先储存于控制电路6的所希望的设定值(最佳曝光量)的阶段使半导体激光器11为OFF,结束曝光。

    另外,控制电路6基于二维光调制器2b的显示二维图形信息发送驱动控制二维光调制器2b的信号。另外,控制电路6驱动衬底移动机构4,一边与二维光调制器2b的显示信息同步一边使衬底5移动。

    在连续移动载物台4扫描曝光于衬底5的情况下,控制电路6基于上述作为曝光监视器的光检测器17的信号强度控制载物台的扫描速度。另外,在使用二维光调制器2b的情况下,控制电路6总体控制该驱动,与上述光检测器17的信号与载物台的驱动信号。

    多个半导体激光器11,由于可以单独地进行ON-OFF,所以使用图1所示的光检测器17依次监视各个激光器输出是可能的。因此,控制电路6向各个LD 11送出依次明灭的信号,与此同步地,检测光检测器17的信号强度,据此可知伴随LD11劣化的输出降低。因此,控制电路6如果输出降低,则把电流值提高到某个值以便输出成为所希望的一定值以内,控制各个光源的能量。这样,可以得到照明光的均匀性,并且使照明光强度保持恒定成为可能。

    图1所示的多个半导体激光器11以等间距的均匀的密度分布排列。此外光源11的排列区,成为相似于掩模2a或二维光调制器2b的作为图形显示部的被照明区域21的形状的区域。当然,在被照明区域21为矩形形状的情况下,光源11的排列区也成为相似的矩形区。

    半导体激光器11通常其出射光的发散角在图2的纸面内的方向(x方向)与垂直于纸面的方向(y方向)上不同。半导体激光器11的出射光的发散角,在图2的纸面内的方向(x方向)上给出例如对最大值的半值的情况下的方向从光轴测量为28°左右,在垂直于纸面的方向(y方向)上成为8°左右。因此,有必要使这两个方向(x方向和y方向)的发散角几乎相等,或作为允许的最大值设定为1.5倍以内。这样,向后面说明的那样入射到光学积分器13的来自各半导体激光器的光的强度分布成为旋转对称地几乎相等。

    而且,如后所述,光学积分器入射光的强度分布变得与光学积分器出射光的强度分布相等。另外,光学积分器出射位置与投影曝光透镜3的入射光瞳成为成像关系。因此,在投影曝光透镜3的光瞳上实现成为旋转对称的强度分布的曝光照明。通过象这样使在投影曝光透镜3的光瞳上强度分布成为旋转对称,可以与掩模2a或二维光调制器2b的图形的方向无关地得到几乎相等的照明的指向性。结果得到不依存于图形的方向的分辨率特性,成为在衬底上没有变形(走型)地正确曝光。而且,103是设在光学积分器出射位置的视野孔。

    如图2所示的圆柱面透镜112在11′的位置上成像半导体激光器(LD)光源的虚像,据此成为就好像从11′的点出射似的,在LD出射时在纸面内(x方向)上具有离开光轴28度左右的发散角的激光光束成为1度左右的发散角。同样在垂直于纸面方向上排列的圆柱面透镜113在11′的位置成像LD光源的虚像,据此成为就好像从11′的点光源出射似的,在LD出射时在垂直于纸面方向(y方向)上具有离开光轴8度左右的发散角的激光光束成为1度左右的发散角。象这样从任何LD11射出的激光光束都利用圆柱面透镜112与113实现几乎旋转对称的强度分布。即,在圆柱面透镜系统100中从二次光源11′射出的光的发散角向垂直于出射光的光轴的面对面内任意两个方向(例如x方向和y方向),调整光束发散角以便成为1比1.5以内,据此来自光源11的出射光用作对具有通常圆形的有效直径的光学积分器13的入射面的照明光成为可能。结果,如前面说明的那样在投影曝光透镜3的光瞳上实现旋转对称的强度分布,可以正确地曝光利用掩模2a或二维光调制器2b所表示的图形。

    而且,如图3所示,通过根据LD的正交的两个轴的发散角把焦距不同的两种圆柱面透镜112、113沿着光路前后排列调整光束发散角成为可能。

    图2所示的13是光学积分器,图5是从光轴方向观察光学积分器13的图。光学积分器13可以大致分为玻璃棒式与透镜阵列式。当光学积分器13为玻璃棒式时,由多个棒状透镜131构成。各棒状透镜131具有图6所示的结构。入射一侧的端面1311是球凸面,出射一侧的端面1312同样也是球凸面。如果这两个凸面的曲率半径为R,圆柱面透镜的折射率为n,则圆柱面透镜的长度L成为nR/(n-1)。如图6(A)所示以对光轴θx′的角度入射到这种棒状透镜131的光束分量Bxy′,通过入射面1311的球凸透镜的效应,收束于出射端面。进而收束后从该出射端1312射出的光束Bxy,通过该出射面的球凸透镜的效应,不依存于入射光的入射角θx′,全都成为具有平行于光轴(平行于棒状透镜的轴)的主光线的出射光。

    如前所述利用圆柱面透镜112与113,从11′的虚像位置射出的发散角1度左右的激光光束,入射到聚光透镜12。该聚光透镜12的前侧焦点处于虚像位置11′,后侧焦点处于光学积分器13的入射端。因此,透射该聚光透镜12的从各LD11发出的激光成为平行光束,入射到光学积分器13,而且入射到上述棒状透镜131的入射端的光束分量Bxy′对光学积分器13的入射的角度(θx′,θy′)对应于图3和图4所示的半导体激光器11的排列位置(x,y)。即,LD阵列1,例如,例如图4所示排列LD11。该排列,在一个LD的x方向的直径为DLDx,y方向的直径为DLDy,令x方向的间距为PLDx,令y方向的间距为PLDy,令x方向的个数为mx,令y方向的个数为ny时,可以使用以下所示的式(1)和式(2)表达x方向的长度WLDAx和y方向的长度HLDAy。

        WLDAx=(mx-1)PLDx                (1)

        HLDAy=(ny-1)PLDy                (2)

    这样,利用聚光透镜(准直透镜)12,使LD11的间距(PLDx,PLDy)与构成光学积分器13的棒状透镜131的间距(Wx,Hy)对应,通过使从二次光源11′射出的各个出射光入射到光学积分器13上的同一位置,实现不依存照明场所均匀而指向性均匀的照明成为可能。

    象这样从各LD11照射到光学积分器13的光束B′是平行光束且接近于旋转对称成为在光学积分器13的入射面的中心(光轴)上有中心的高斯分布。由于光学积分器13是多个棒状透镜131的集合,所以入射到一个棒状透镜131的光成为高斯分布的微小的一部分。因此,在一个棒状透镜131内成为几乎均匀的强度。另外,棒状透镜入射光的入射端面1311的位置与出射光的出射方向对应。结果,出射光向以光轴为中心的任何发散角的光强度变得几乎相等,因为该发散角利用准直透镜14对应掩模2a的面或二维光调制器2b的调制面的情况,所以不依存掩模2a的面或二维光调制器2b的调制面的情况下均匀地进行照明成为可能。

    而且,各棒状透镜的剖面形状如图6(B)所示,x、y方向上具有Wx,Hy的宽度。如上述入射光的棒状透镜端1311的位置与出射光的出射角度(θx,θy)对应,即因为成比例所以出射光的发散最大角度θxm,θym(离开出射光的光轴的角度范围)成比例于该棒状透镜剖面的尺寸(Wx,Hy)。即,如果严格地表达,则成为以下所示的式(3)和式(4)的关系。而且,n是棒状透镜玻璃的折射率,L是棒状透镜的长度。

        θxm=nWx/2L                   (3)

        θym=nHy/2L                   (4)

    光学积分器出射面1312与掩模2a或二维光调制器2b,因为是焦距fc的准直透镜14的各个前侧焦点面与后侧焦点面,所以照射掩模2a或二维光调制器2b的光束的(x,y)坐标范围Wmx和Hmy由以下所示的式(5)和式(6)给出。

        Wmx=fc·θxm=Wx·nfc/2L      (5)

        Hmy=fc·θym=Hy·nfc/2L      (6)

    即,通过把各棒状透镜的垂直于光轴的剖面形状的纵横比r1(=Wx/Hy),与被照明区域(21)的纵横比r0(=Wmx/Hmy)的比r1/r0取为1,仅在掩模2a或二维光调制器2b的必要的部分使用均匀的光进行曝光成为可能。如果上述比r1/r0为大于或等于0.8且小于或等于1.2,则与现有的曝光照明方法相比实现十分有效的光利用效率。

    在光学积分器13为透镜阵列式的情况下,由利用近光源的第1透镜阵列,远离光源的第2透镜阵列组成的两个透镜阵列构成。在第1透镜阵列上二维排列透镜元件空间地分割从LD阵列1得到的光束。第1透镜阵列的各透镜元件成为把光束聚光于对应各个元件的第2透镜阵列上,在第2透镜阵列上形成与分割数同数的二次光源像。第2透镜阵列的各透镜元件使对应的第1透镜阵列的各透镜元件开口成像于被照明区域21。准直透镜14构成为使各透镜元件中心一致于被照明区域21的中心,第1透镜阵列的各透镜元件在被照明区域21上叠加在一起。结果,与玻璃棒式的情况同样,几乎旋转对称地分布的照明光束其强度被积分,各自的强度差相互抵销可以得到均匀的强度分布。

    接着,根据图7说明本发明的曝光装置的第2实施例。图7所示的零件编号与图1所示的零件编号相同时表示同一物。在第2实施例中,与第1实施例不同之处在于,为了不依存于空间频率地使照明光成为完全均匀而防止干涉条纹的发生,设置作为使波面变化的调制器的漫射体16。通过这样的构成,从各LD光源11射出的光通过由圆柱面透镜112、113组成的圆柱面透镜系统100和聚光透镜12,在作为具有接近旋转对称的强度分布的平行光束B′入射到光学积分器13前通过漫射体16。

    漫射体16是使波面变化的调制器,例如,如图8所示,旋转驱动直接连接的电动机161使玻璃圆板16旋转构成。玻璃圆板16放射状地光学研磨,图9(A)的CC剖面的玻璃表面的形状,如图9(B)所示成为大致正弦波状的高度变化。这个高度(粗糙度)变化量为数μm。可是,163表示入射到漫射体16的光束,162表示上述光束163的中心在漫射体16上的旋转轨迹。

    一个周期的长度取决于圆板16的转速与曝光时间,大致在一步曝光期间进行一个周期左右变化。另外,在进行扫描曝光的情况下,在移动一个像素量期间进行一个~几个周期左右变化。这些转速的控制虽然利用控制电路6与二维光调制器2b的显示控制、载物台4的移动控制同步控制,但是一旦开始旋转就以上述速度恒定旋转。结果,在对掩模2a或二维光调制器2b的照明光中,使空间频率高不均匀变化通过进行时间平均使得几乎完全均匀而防止干涉条纹的发生成为可能。而且,图7所示的使波面变化的调制器16虽然设在仅利用光学积分器13之前,但是设在仅利用光学积分器13之后也可以得到同样的效果。

    接着,根据图10说明本发明的第3实施例。在第3实施例中,与第1和第2实施例不同之处在于,设置多个LD阵列以增大曝光光量。因为半导体激光器11的出射光是直线偏振光,所以对准方向地设置LD11以来自例如有N个的所有LD阵列1a的出射光是x方向的直线偏振光。另一方面设置有N个所有LD 11以便LD阵列1b是y方向直线偏振光。从LD阵列1a射出的x方向的直线偏振光,在偏振分光镜114处几乎100%透射而成为P偏振光。另一方面从LD阵列1b射出的y方向的直线偏振光在偏振分光镜114处几乎100%反射成为S偏振光。结果,来自2N个LD11的偏振光毫无损失地引入曝光光学系统。

    在上述说明中,虽然LD阵列1b被设置为y方向是直线偏振光,但也可以与LD阵列1a同样设置为x方向是直线偏振光。在这样的情况下,在从LD阵列1b射出至入射到偏振分光镜114的中途光路上设置1/2波长板,也可以使透射了该1/2波长板的光成为y方向的直线偏振光。

    半导体激光器、LD通常封入具有透明窗口的小管内,但是因为管的直径不足6mm左右,所以二维排列的数量有限。因此,如果采用第3实施例,则通过设置多个LD阵列,就可以得到使该数量极限倍增的效果。

    透射偏振分光镜114的激光包括正交的两个方向的偏振分量,通过聚光透镜12、光学积分器13、准直透镜14、掩模2或二维光调制器2、投影曝光透镜3,到达衬底。这些光路中途的零件因为与偏振光无关,使激光通过,所以可以使2倍的曝光量照射在衬底上。其结果,曝光时间只用了原来的二分之一,可以实现处理能力的高速化。

    而且,根据从控制电路6曝光的图形的信息,驱动二维光调制器2b,与驱动信息同步,驱动载物台2和LD阵列1a和1b。来自控制电路6的LD 11的驱动,控制点亮时间以使曝光光对衬底5的灵敏度成为最佳,按进行曝光的定时LD熄灭。

    接着,根据图11说明本发明的曝光装置的第4实施例。在第4实施例中,与第1~第3实施例不同之处在于,作为掩模2的二维光调制器2b,不使用透射型而使用反射型。总之,二维光调制器2b可以是透射型也可以是反射型。在第4实施例中,使用反射型液晶二维光调制器等反射型的二维光调制器2bb。而且,从LD光源1射出的激光光束被分光镜145分成两股引入两个曝光光学系统。144是与二维光调制器的显示部处于共轭的位置关系的视野孔。视野孔的像利用透镜142a、143a和142b、143b成像在二维光调制器2bba和2bbb的显示部,显示部利用投影曝光透镜3a和3b,成像在衬底5上的曝光区151a和151b。

    出射半导体激光器11的光是平行于图的衬底面也就是水平面的直线偏振光。这里通过光学积分器13后利用1/4波长板105成为圆偏振光。由于分光镜145是偏振分光镜,所以入射到分光镜145的圆偏振光当中的作为水平偏振光分量的P偏振光分量通过偏振分光镜145,S偏振光分量被偏振分光镜145反射。反射的S偏振光分量是垂直方向的直线偏振光,被反射镜151b与152b反射,成为水平的直线偏振光。

    象这样被偏振分光镜145分支的两个曝光光束同时成为水平的直线偏振光,入射到偏振分光镜153a和153b。由于利用这些偏振分光镜153a和153b入射光是S偏振光,所以100%反射,垂直地入射到由反射型液晶组成的二维光调制器2bba和2bbb。如果根据显示信息进行对反射型液晶二维光调制器2bba和2bbb的各显示像素电压施加的ON、OFF,则反射光的偏振光据此原封不动或直角地变化。因此,如果反射光再次通过偏振分光镜153a和153b,则仅偏振光直角地变化的像素通过分光镜153a和153b。

    这样得到的二维光信息,利用投影曝光透镜3a和3b,作为曝光图形成像于衬底5上的151a和151b上。

    接着,根据图12说明本发明的曝光装置的第5实施例。第5实施例,作为反射型二维光调制器使用数字式反射镜器件(DigitalMirror Device)2bbc。数字式反射镜器件2bbc在各像素上设置薄膜反射镜而构成。照射到各反射镜的曝光光在信号ON的部分反射镜按θ倾斜,在OFF的部分反射镜不倾斜。例如虽然利用反射镜154反射曝光光而照射,被倾斜的反射镜反射的光入射到投影曝光透镜3而通过透镜3,但是不倾斜的像素被反射镜正反射离开投影曝光透镜3的光瞳而不通过透镜3。结果,在数字式反射镜器件2bbc处利用数字式反射镜器件驱动信号所显示的图形就由投影曝光透镜3投影曝光于衬底5上。

    接着,根据图13说明本发明的曝光装置的第6实施例。第6实施例,作为光源阵列1,构成为利用未图示的导光光学系统接受从多个半导体激光器11射出的光,利用光纤1101引导从成为二次光源的出射端1102出射。从光纤1101的各纤维端射出的光利用光束成形光学系统1103,以所希望的发散角出射。成为二次光源的出射端1102具有与二维光调制器2b的显示区域21几乎相似的发光区域。由此象已经说明的那样出射二次光源的光高效且均匀地照明二维光调制器2b。

    接着,根据图14对本发明的作为光源阵列的LD阵列具体进行说明。在这些LD阵列的实施例中,图14(A)所示的LD阵列1A是迄今所说明的,LD阵列沿xy方向按等间距排列。另一方面,图14(B)所示的LD阵列1B最稠密排列。即LD11排列在正三角形的顶点。在本实施例的情况时对LD元件的圆的外径D,如果排列间距为P,则P例如为1.07~1.1D左右是可能的。图14(A)与(B)的112是描绘LD的安装区域的相互完全相等的矩形。最稠密安装的(B)一方成为高安装密度。如果进行具体的数值评价,则LD阵列1A的LD安装密度成为1/P2,与此相对照,LD阵列1B中,成为1.154/P2,提高安装密度,即把光源的输出提高15%左右成为可能。

    图14所示的111是用来防止由于从所排列的多个LD产生的热量而导致LD成为高温,寿命缩短的冷却机。具体地说,冷却机111由热传导良好的材料的铜等来构成,在其上贯通孔,通入冷却水,据此在25℃以下驱动成为可能。此外即使用帕尔帖元件也同样可以冷却到25℃以下,可以实现长寿命化。

    本发明并不局限于以上说明的LD阵列的实施例。即,作为所用的光源,使用指向性比较高的光源,例如发光二极管(LED)或其他发光面积小的灯,实现本发明也是可能的。另外,也可以使用半导体激光器以外的多个激光光源来实现。

    接着,根据图15对本发明的光源阵列进行说明。虽然光源阵列1是使用发散角比较小的,通常的气体激光器光源,或固体激光器光源,但是激光器光源本身并不二维排列。即,没有必要使任何激光器都向同一方向发射激光。在光轴方向的激光器剖面大的情况下,如图15所示通过使用反射镜115p、115q折返光路,使多个光束的密度高于激光器的安装密度是可能的。

    图15的实线部(1P)是纸面内的剖面处的激光光源11p的排列,虚线(1Q)是与纸面平行且处于一定的间隔的剖面处的激光光源11q的排列。实际上这种面存在着三个面以上。被反射镜115p或115q等所折返的光束进入图的左侧,二维分布着。1106是微透镜。使各微透镜的光轴一致于各光束的中心。通过微透镜1106的光,各自的光束聚光于二次光源面1105。而且,二次光源面1105被配置成与图1、图2、图7、图10~图12所示的聚光透镜12的前侧焦点面一致。

    另外,通过同时排列多种光源,得到含有各种波长的照明是可能的。把这种由各种波长组成的照明用于曝光以外的照明也是可能的,在该情况也是,可以均匀地实现光的利用率高的照明。作为这种用途,有例如用于显微镜的细微图形的观察、检查等的照明。

    在作为光源阵列1A,使用多个波长的LED或LD的情况下,如图1~图4或图14所示构成。而且,多个光源11,如图16所示,例如由波长不同的多种光源11A、11B、11C、11D组成。象这样按种类来使用多种光源的情况下,如图16所示最好是排列成没有各种偏颇地进行分布。

    虽然以上说明的光源阵列是呈二维排列分离的多个光源,但在照明区细长的情况下显然也可以一维排列。

    另外,如果使用以上说明的实施例,则排列多个半导体激光器,能把出射光高效地用作照明光,与现有的把水银灯作为光源的情况相比,能有效地把投入的电能用于衬底的曝光,从而对节省能量作出贡献。而且能使用固体光源,从而实现光源的长寿命、易维修。

    产业上的可应用性

    如果使用本发明,则可以用多个半导体激光器等每一个发光能量小的光源,高效且均匀地照射被照射物,从而实现节能且高性能的照明。

    另外,如果使用本发明,则通过实现节能且高性能的照明,在把图形曝光于衬底上时,能以较高的处理能力来实现良好的图形曝光。

照明方法和曝光方法及其装置.pdf_第1页
第1页 / 共30页
照明方法和曝光方法及其装置.pdf_第2页
第2页 / 共30页
照明方法和曝光方法及其装置.pdf_第3页
第3页 / 共30页
点击查看更多>>
资源描述

《照明方法和曝光方法及其装置.pdf》由会员分享,可在线阅读,更多相关《照明方法和曝光方法及其装置.pdf(30页珍藏版)》请在专利查询网上搜索。

一种曝光装置,特征在于包括照明光学系统和投影光学系统,该明光学系统具有:把分开的多个光源以一维或二维排列的光源阵列;使从该光源阵列的各光源射出的光聚光的聚光光学系统;在空间上分解由该聚光光学系统聚光的光来生成多个疑似二次光源的、由棒状透镜的排列构成且各棒状透镜的垂直于光轴的剖面形状的纵横比r1与上述被照明区域的纵横比r0之比r1/r0为大于或等于0.8且小于或等于1.2的光学积分器;以及使来自利用。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 基本电气元件


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1