《用于根据流量计参数的偏差进行诊断的方法.pdf》由会员分享,可在线阅读,更多相关《用于根据流量计参数的偏差进行诊断的方法.pdf(14页珍藏版)》请在专利查询网上搜索。
1、(10)申请公布号 CN 103090933 A(43)申请公布日 2013.05.08CN103090933A*CN103090933A*(21)申请号 201310009381.5(22)申请日 2008.05.01200880128969.X 2008.05.01G01F 25/00(2006.01)(71)申请人微动公司地址美国科罗拉多州(72)发明人 T.J.坎宁安 A.T.帕滕(74)专利代理机构中国专利代理(香港)有限公司 72001代理人杨楷(54) 发明名称用于根据流量计参数的偏差进行诊断的方法(57) 摘要提供了一种用于检测适用于测量流体流量的流量计的流量计参数的偏差的方法。
2、。该方法包括测量流量计的至少一部分上的压差。该方法进一步包括将测量的压差与预期压差相比较;预期压差是基于测量流量的。该方法进一步包括:如果测量的压差和预期压差之间的差值超过阈值限制,则检测到流量计参数的偏差。(62)分案原申请数据(51)Int.Cl.权利要求书1页 说明书9页 附图3页(19)中华人民共和国国家知识产权局(12)发明专利申请权利要求书1页 说明书9页 附图3页(10)申请公布号 CN 103090933 ACN 103090933 A1/1页21.一种用于检测流量计参数的偏差的方法,包括以下步骤:在多个位置测量流量管温度;以及基于测量的温度计算温度梯度,如果计算的温度梯度超过。
3、温度梯度阈值,则检测到流量计参数的偏差。2.如权利要求1所述的方法,其中所述计算温度梯度的步骤包括计算从流量计入口到流量计出口的温度梯度。3.如权利要求1所述的方法,其中所述计算温度梯度的步骤包括计算从第一流量管到第二流量管的温度梯度。4.如权利要求1所述的方法,进一步包括如果计算的温度梯度的改变超出阈值限制,则在流量计内检测到涂覆层的步骤。5.如权利要求1所述的方法,其中所述温度梯度阈值是预先确定的。6.如权利要求1所述的方法,其中所述流量计包括科里奥利流量计。7.如权利要求1所述的方法,其中所述流量计参数的偏差指示流量计内涂覆层的存在。权 利 要 求 书CN 103090933 A1/9页。
4、3用于根据流量计参数的偏差进行诊断的方法技术领域0001 本发明涉及流量计,并且更具体地涉及用于利用流量计参数的偏差进行诊断的方法。背景技术0002 使用科里奥利效应的质量流量计来测量用于流过流量计内部导管的材料的质量流量和其他信息是公知的。全部授予J.E.Smith等人的美国专利4109524、美国专利4491025和Re.31450中公开了示范性的科里奥利流量计。这些流量计具有直线或弯曲结构的一条或多条导管。科里奥利质量流量计中的每一种导管结构都有一套固有振动模式,可以是简单的弯曲、扭转或耦合类型。每一条导管都可以被驱动为在这些固有模式中的一种模式下以谐振振荡。在流量计的入口侧从相连的管路。
5、流入流量计内的材料被引导通过一条或多条导管,然后通过流量计的出口侧离开流量计。振动的材料填充系统的固有振动模式部分地由导管和导管内流动的材料的总质量确定。0003 在没有流量通过流量计时,沿导管的所有位置都会由于施加的驱动器作用力具有相同相位或者能够被校正的初始小固定相位偏差而振动。在材料开始流过流量计时,科里奥利作用力导致沿导管的每个位置都具有不同的相位。例如,在流量计入口端的相位使驱动器滞后,而在出口的相位则使驱动器超前。一条或多条导管上的敏感元件传感器生成表示一条或多条导管动作的正弦信号。对来自敏感元件传感器的信号输出进行处理以确定敏感元件传感器之间的相位差。两个或多个敏感元件传感器之间。
6、的相位差与流过一条或多条导管的材料的质量流量成比例。0004 科里奥利质量流量计已经在广泛的工业应用中获得了极大的成功。但是,科里奥利流量计与很多其他的流量计一样,都会遇到过程流体遗留下的沉积物累积的问题。这种累积通常在本领域内被称为“涂覆层”。根据过程流体的特性,流体涂覆层可能会也可能不会影响到流量计的性能和精度。尽管涂覆层通常既不会影响流量计的稳定性也不会造成流量的测量误差,但是它会影响流量计特性的其他方面。例如,涂覆层可能具有与过程流体不同的密度。这可能会反过来影响到从流量计中获得的密度读数。对于某些过程流体,涂覆层可能会在流量计内累积到一定的厚度并随后崩溃成为小碎片。这些小碎片可能会影。
7、响连接至流量计的其他处理部件。在极端情况下,涂覆层可能会累计到足够多以至于流量计被阻塞而需要彻底停止工作或者在某些情况下需要完全更换流量计。0005 涂覆层、阻塞、不稳定的过程流体组分、过程流体的温度改变等因素可能会导致其他问题。例如,在油漆工业中,同一流量计可以被用于多种油漆颜色。因此,即使是涂覆层不会导致流量计读数误差,涂覆层也会对最终产品造成负面影响。0006 由于上述问题以及由涂覆层造成的其他问题,因此希望在有流量计涂覆层存在时进行诊断。现有技术中检测流量计涂覆层的诊断方法有很多问题。首先,很多现有技术中的方法局限于流量管有效部分也就是振动部分内的涂覆层检测。现有技术中的其他限制源于涂。
8、覆层密度基本上类似于过程流体的情况。在此情况下,基于密度的涂覆层检测无法进说 明 书CN 103090933 A2/9页4行。因此,本领域中对于克服了上述限制的涂覆层检测方法存在需求。而且,在已知过程流体会涂覆流量计的应用中,希望在清洁流量计期间能够检测到流量计何时被完全去除了涂覆层。发明内容0007 根据本发明的一种应用,一种用于检测流量计参数的偏差的方法,包括以下步骤:0008 测量流量计的至少一部分上的压差;0009 将测量的压差与基于测量流量的预期压差相比较;以及0010 如果测量的压差和预期压差之间的差值超过阈值限制,则检测到流量计参数的偏差。0011 优选地,所述方法进一步包括测量。
9、整个流量计上的压差的步骤。0012 优选地,所述预期压差基于已知的固定流体粘度。0013 优选地,所述预期压差通过预先准备好的压差-流量曲线获得。0014 优选地,所述方法进一步包括将预期压差存储在计量电子设备内的步骤。0015 优选地,所述阈值限制包括预定值。0016 优选地,所述流量计包括科里奥利流量计。0017 优选地,所述流量计参数的偏差指示流量计内的涂覆层。0018 根据本发明的另一种应用,一种用于检测流量计参数的偏差的方法,包括以下步骤:0019 测量流量计上的压差;0020 基于所述压差计算预期流体流量;以及0021 将测量的流体流量与计算的流体流量相比较,如果测量的流体流量和计。
10、算的流体流量之间的差值超过阈值限制,则检测到流量计参数的偏差。0022 优选地,计算预期流体流量的步骤包括将流量计的定性为孔板流量计的步骤。0023 优选地,所述方法进一步包括确定流量计流量系数的步骤。0024 优选地,所述方法进一步包括将预期流体流量存储在计量电子设备内的步骤。0025 优选地,所述阈值限制包括预定值。0026 优选地,所述流量计包括科里奥利流量计。0027 优选地,所述流量计参数的偏差指示流量计内的涂覆层。0028 根据本发明的另一种应用,一种用于检测流量计参数的偏差的方法,包括以下步骤:0029 测量流量计的至少一部分上的压差;0030 基于测量的流量和测量的压差计算摩擦。
11、系数;以及0031 将计算的摩擦系数与基于测量流量的预期摩擦系数相比较,如果计算的摩擦系数和预期摩擦系数之间的差值超过阈值限制,则检测到流量计参数的偏差。0032 优选地,计算摩擦系数的步骤包括使用公式:0033 说 明 书CN 103090933 A3/9页50034 优选地,所述预期摩擦系数根据先前的测量值获得。0035 优选地,所述压差是在整个流量计上测量的。0036 优选地,所述预期摩擦系数基于用于测量流量的雷诺数进行计算。0037 优选地,所述方法进一步包括将预期摩擦系数存储在计量电子设备内的步骤。0038 优选地,所述流量计包括科里奥利流量计。0039 优选地,所述流量计参数的偏差。
12、指示流量计内的涂覆层。0040 根据本发明的另一种应用,一种用于检测流量计参数的偏差的方法,包括以下步骤:0041 在多个位置测量流量管温度;以及0042 基于测量的温度计算温度梯度,如果计算的温度梯度超过温度梯度阈值,则检测到流量计参数的偏差。0043 优选地,所述计算温度梯度的步骤包括计算从流量计入口到流量计出口的温度梯度。0044 优选地,所述计算温度梯度的步骤包括计算从第一流量管到第二流量管的温度梯度。0045 优选地,所述方法进一步包括如果计算的温度梯度的改变超出阈值限制,则在流量计内检测到涂覆层的步骤。0046 优选地,所述温度梯度阈值是预先确定的。0047 优选地,所述流量计包括。
13、科里奥利流量计。0048 优选地,所述流量计参数的偏差指示流量计内的涂覆层。附图说明0049 图1示出了根据本发明实施例的流量计。0050 图2示出了根据本发明实施例的流量计的部分截面图。0051 图3示出了流量管的截面图,具有在流量管内部形成的涂覆层。0052 图4示出了根据本发明实施例的流量计的方块图。具体实施方式0053 图1-4和以下的说明内容介绍了具体示例用于教导本领域技术人员如何实现并使用本发明的最佳模式。为了教导本发明的原理,一些常规的内容已被简化或省略。本领域技术人员可以从这些示例中领会出落入本发明保护范围内的各种变形。本领域技术人员应该理解以下介绍的特征可以用各种方式加以组合。
14、以形成本发明的多种变形。因此,本发明并不局限于以下介绍的具体示例,而只能由权利要求及其等价形式确定。0054 图1示出了根据本发明实施例的流量计100。根据本发明的一个实施例,流量计100包括科里奥利流量计。但是,本发明并不局限于装有科里奥利流量计的应用,而是应该被理解为本发明可以用于其他类型的流量计。流量计100包括封装流量管101,102下部的套管103和歧管107,流量管101,102在其左端通过颈部108被内部连接至法兰104而在其右端通过颈部120被连接至法兰105。图1中还示出了法兰105的出口106、左侧敏感元件LPO、右侧敏感元件RPO和驱动器D。右侧敏感元件RPO被示出了部分。
15、细节并且包括磁体结说 明 书CN 103090933 A4/9页6构115和线圈结构116。歧管套管103底部的元件114是用于从计量电子设备(未示出)接收内部延伸至驱动器D以及敏感元件LPO和RPO的连线(未示出)的开口。流量计100适合在使用时通过法兰104和105被连接至管路等。0055 图2示出了流量计100的剖视图。该视图移除了歧管套管103的前部以使得可以示出歧管套管的内部部件。在图2中示出但是未在图1中示出的部件包括外端撑杆201和204、内部撑杆202和203、右端流量管排出口205和212、流量管101和102、弯曲的流量管部分214,215,216和217。在使用时,流量管。
16、101和102围绕其弯曲轴W和W振动。外端撑杆201和204以及内部撑杆202和203帮助确定弯曲轴W和W的位置。0056 根据图2中示出的实施例,流量计100包括压力传感器230。根据本发明的实施例,压力传感器230包括压差传感器。压力传感器230通过取压分接管231和232被连接至流量计100以获取压力读数。分接管231和232允许压力传感器230连续地监测流量计100上的材料压降。应该注意的是尽管分接管231,232可以在任意所需位置被连接至流量计100,但是根据图2中示出的实施例,分接管231,232分别被连接在法兰104,105处。有利地,压力传感器230可以获取用于整个流量计100。
17、而不仅仅是流量计100有效部分的压差测量值。在其他的实施例中,例如以下在图4中示出的那样,取压分接管231,232可以被设置在连接流量计的管路中。以下会进一步介绍差压测量。0057 图2还示出了多个温度测量装置240。根据图2中示出的实施例,温度测量装置包括RTD传感器。但是应该理解也可以使用其他的温度测量装置并且本发明不应被限制为RTD传感器。类似地,尽管示出了六个RTD传感器240,但是应该理解任意数量的RTD传感器均可使用并且仍然落在本发明的保护范围之内。0058 压力传感器230和RTD传感器240被示出为分别通过引线中的P信号和RTD信号连接至计量电子设备20。如图1所述,图1中示出。
18、的左侧敏感元件LPO和右侧敏感元件RPO以及驱动器D也被连接至计量电子设备20。计量电子设备20提供质量流量和累计质量流量的信息。另外,质量流量信息、密度、温度、压力以及其他的流动特征可以通过引线26被发送至下游的过程控制和/或测量设备。计量电子设备20还可以包括允许用户输入信息例如流体粘度以及其他已知数值的用户接口。根据本发明的实施例,计量电子设备20包括能够存储已知信息或计算出的信息以供将来调用的硬盘驱动器。以下会进一步介绍这些存储的信息。0059 图3示出了具有涂覆层310的一部分流量管101的截面图。尽管只示出了一部分流量管101,但是应该理解涂覆层310也可以在流量管102以及流量计。
19、100暴露于过程流体的其他部件的内部形成。随着过程流体流过流量管101,过程流体中的沉积物可能会留下来。随着时间的推移,这些沉积物就形成了涂覆层310。涂覆层310可能会如图所示覆盖流量管101的全部内径,或者可选地涂覆层310可以在流量管101的某些区域内形成,而其他区域则没有涂覆层310。而且,尽管涂覆层310在具体应用中可能不像图3中所示那么厚,但是在某些过程中涂覆层310会变得足够厚以至于严重地阻塞流量计100。即使涂覆层310还没有厚到足以阻塞流量计100,它也会减小供过程流体流过的横截面积。例如,流量管101可以具有的内径为D1;但是,在有涂覆层310存在时,过程流体能够从中流过的。
20、实际可允许直径就被减小至D2。0060 因为涂覆层310可能会对流量计100的性能有负面影响,所以本发明提供了用于说 明 书CN 103090933 A5/9页7确定流量计100内存在涂覆层310的可选方法。而且,尽管现有技术中的方法被局限于只能在有效部分也就是在流量管101,102的振动部分检测涂覆层310,但是本发明能够在流量计100包括歧管104,105的所有部分检测涂覆层310。然而应该理解本发明并不局限于检测涂覆层,而且本发明还提供了用于检测流量计参数的偏差的可选方法。流量计参数可以是由流量计获得的任意测量值。在某些实施例中,流量计参数的偏差是由涂覆层310造成的。但是,其他因素也会。
21、造成流量计测量值的偏差,例如流量计的阻塞、不稳定的温度、不稳定的过程流体混合物、流量计内形成的气泡等。因此,根据本发明的实施例,以下提供的方法检测流量计参数的偏差,这就可以提供进一步分析所需的诊断。0061 流量计参数的偏差可根据以下所述方法中的一种进行检测。根据本发明的实施例,直接根据由压力传感器230获得的压差测量值来检测流量计参数的偏差。在工厂或者可选地在现场已知流量计100内没有涂覆层310时,例如可以准备好一部分流量计100上的压差和质量流量的曲线用于已知的固定流体粘度。根据该曲线即可确定用于指定流量的预期压差。随后可以利用压力传感器230来连续地监测实际压差并将其与用于测量流量的预。
22、期压差相比较。如果实际压差处于预期压差的阈值限制以内,那么计量电子设备20即可发送未检测到参数偏差的信号,或者可选地发送已经在流量计参数中检测到微小偏差的信号。另一方面,如果测量的压差落在阈值限制以外,那么计量电子设备20即可标记该测量值用于进一步的分析。根据本发明的一个实施例,阈值限制包括预定值。根据本发明的另一个实施例,阈值限制由用户或操作人员设定。0062 尽管这种方法提供了满意的结果,但是使用这种直接比较的方法仍然有很多限制。首先,用户必须知道过程流体的粘度。另外,粘度必须基本保持恒定。这是因为根据先前测量值获得的预期压差以及实际压差都取决于过程流体的粘度。由于该限制,压差的改变可能是。
23、表示不同于涂覆层的其他条件,从而给出错误的涂覆层指示。0063 用于检测流量计参数的偏差的另一种方法是将流量计100的定性为孔板流量计。孔板流量计是公知的并且被用于根据压差来测量流体流量。孔板流量计与根据压差测量流体流量的其他流量计相比具有一定的优势,原因在于它们占用的空间要小得多。孔板流量计通过在管内设置具有孔的板进行工作,其中孔要小于管的直径。横截面积的这种减小以压力位差为代价来使流体流动增加速度位差。该压差可以通过取压分接管在板前和板后进行测量。利用测量的压差,即可根据例如以下的公式来计算流体速度:0064 0065 其中:0066 V0通过孔的速度0067 =孔径和管径的比值0068 。
24、P=孔上的压差0069 =流体密度0070 C0=孔流量系数0071 应该理解已知有利用孔径来计算流体流量的其他公式,而公式(1)则仅仅是一个示例,其不应该限制本发明的保护范围。通常,除了孔流量系数CO以外,所有的未知量都可以被测量或者是已知的,孔流量系数CO通常要实验性地确定并且会随着流量计的不同而改说 明 书CN 103090933 A6/9页8变。它通常取决于和雷诺数,雷诺数是无量纲数并且定义如下:0072 0073 其中:0074 D=直径0075 =平均流体速度0076 =流体粘度0077 =流体密度0078 v=运动流体粘度0079 对于多种孔板流量计来说,孔流量系数C0几乎保持恒。
25、定并且与大于约30000的雷诺数无关。像孔板流量计一样,流量计100经历可测的压降并且能够被视为图4中示出的孔板流量计。0080 图4示出了位于管路410内并且被连接至计量电子设备20的流量计100。在图4中,没有示出流量计100的内部结构,而是将流量计100示出为简单的方块图。在实验测试期间,流量计100的可以被定性为孔板流量计。换句话说,压力传感器430可以分别利用取压分接管431,432来测量流量计100的入口410和出口411之间的压差。由于公式(1)中的变量或者是已知的,或者可以通过测量轻易获得,并且流量计100确定了流量,因此即可实验性地确定流量计的流量系数。流量计的流量系数类似于。
26、孔流量系数。一旦流量计的流量系数已知,即可根据流量计100上的压差以与使用孔板流量计确定流量相同的原理为基础来计算出流量。0081 在正常工作期间,可以将由流量计100测量的流量与通过使用公式(1)或用于以孔板流量计为基础计算流量的类似公式计算获得的预期流量相比较。如果预期流量落在由流量计100获得的流量的阈值差异以外,那么计量电子设备20即可发出流量计参数有偏差的信号。该偏差可能是由流量计100内存在的涂覆层310造成的。但是,该变差也可能是由不同于涂覆层310的某种原因造成的。另一方面,如果通过将流量计定性为孔板流量计获得的预期流量落在由流量计100获得的测量流量的阈值差异以内,那么计量电。
27、子设备20即可发出流量计参数只有很小偏差或者没有偏差的信号。应该理解阈值差异可以是预先确定的,或者也可以是由操作人员基于具体情况确定的。0082 用于检测流量计参数存在偏差的另一种方法是利用摩擦系数例如范宁摩擦系数f,这种方法与前述的方法相比提供了更高的精度和更广泛的可应用性。其他的摩擦系数也是现有技术中公知的,例如大约为4f的Darcy Wei ssbach摩擦系数。应该理解具体使用的摩擦系数对于本发明来说并不重要,因为任何可应用的公式都可以根据所用的摩擦系数进行调整。0083 经过管路的压降可以通过使用摩擦系数f来进行量化和调节是现有技术中公知的。首先,重要的是要理解如何定性流过圆形管路的。
28、过程流体。对于该实施例来说,流量计100可以被定性为具有已知内径和长度的圆形管路。在定性流过管路的流体时,一个重要的数值是在上述的公式(2)中使用的雷诺数Re。应该注意的是管径D可以被轻易确定并且通常在工厂里都是已知的。包括科里奥利流量计在内的很多流量计都能够测量流体特征例如流体密度和质量流量。根据这两个量就可以计算出平均流体速度。根据已知、计算或者测说 明 书CN 103090933 A7/9页9量得到的数值也可以确定流体粘度。0084 系统的摩擦系数被定义为壁面切应力与密度和速度位差乘积的比值。对于不可压缩流体的流动系统来说,用雷诺数Re来定性摩擦系数f经常是很有效的。具体公式根据流体以及。
29、流体流动通过的管路的特征而变化。应该理解以下的公式仅仅是示例,并且现有技术中还有公知的其他类似公式。因此,以下列举的公式并非限制本发明的保护范围。对于流过光滑管路的层流,摩擦系数f可以被描述为:0085 0086 作为对比,对于流过光滑管路的湍流,摩擦系数f可以被描述为:0087 0088 公式(4)可以在104Re106时使用并具有合理的精度。也已知有用于将摩擦系数与雷诺数相关联的其他公式,例如:0089 f.046Re-2(5)0090 0091 公式(5)通常可应用于50000Re106,而公式(6)通常可应用于3000Re3106。根据公式(1)和公式(3)-(6)中的任意一个,即可确。
30、定系统的摩擦系数,其中只有粘度是未知量。根据流量,粘度的改变可能并不明显。可选地,用户可以输入标称粘度。0092 摩擦系数f可以用通过系统的压降P来描述如下也是现有技术中所公知的:0093 0094 其中:0095 P=压降0096 L=取压分接管之间的管长0097 f=摩擦系数0098 =平均流体速度0099 =流体密度0100 D=管径0101 压降可以通过压力传感器230获得;流量计100在取压分接管231,232之间的长度可以轻易测量;管径也可以轻易测量;流体密度可以由流量计100获得,而平均速度可以根据质量流量以及由流量计测量的密度获得。因此,公式(7)右侧的所有变量均可获知。010。
31、2 根据本发明的实施例,通过将基于压差计算的摩擦系数fc与预期摩擦系数fe相比较即可根据流量计参数内存在的偏差进行诊断。可以用多种不同的方式来获得预期摩擦系数fe。根据本发明的一个实施例,可以在工厂或者可选地在现场已知只有少量或者没有涂覆层存在时确定预期摩擦系数fe。可以根据各种流量测量值来获得预期摩擦系数fe并且由此能够将摩擦系数与流量的关系曲线准备好。预期摩擦系数fe可以提前准备好并存储在计量电子设备20中。根据本发明的另一个实施例,可以根据与正常工作期间获得的雷诺说 明 书CN 103090933 A8/9页10数的相关性计算预期摩擦系数fe。0103 在正常工作期间,根据本发明的实施例。
32、,压力传感器230可以获得流量计100的压差测量值。另外,流量计100可以获得流量测量值。根据流量测量值以及压差测量值,计算的摩擦系数fc即可由公式(7)算出。可以将这个计算的摩擦系数fc与预期摩擦系数fe相比较。两个摩擦系数之间的差异就指示了流量计参数的偏差。根据一个实施例,该偏差可以由流量计100内的涂覆层300造成。但是,在其他的实施例中,该偏差也可以由其他情况例如阻塞、不稳定的过程流体混合物、过程流体内的气泡等造成。如果计算的摩擦系数fc落在预期摩擦系数fe的阈值限制以内,计量电子设备20即可确定流量计参数中没有偏差或者只存在微小的偏差。另一方面,如果计算的摩擦系数fc落在预期摩擦系数。
33、fe的阈值限制以外,计量电子设备20即可发送流量计参数中可能存在偏差的警告。根据本发明的一个实施例,阈值限制可以根据具体的流量计或流动特性预先确定。根据本发明的另一个实施例,阈值限制可以由用户或操作人员现场确定。0104 除了提供涂覆层230的准确预测以外,该方法另外还可以在缺少精确已知的流体粘度时确定流量计参数的偏差。根据流体的流量,粘度的微小改变可能不会造成雷诺数的明显变化。因此,可以由用户输入平均粘度而无需进一步测量粘度。0105 根据本发明的另一个实施例,可以利用温度测量值来检测流量计参数的偏差。在过程流体流过流量计100时,入口温度和出口温度保持彼此相对接近。类似地,流量管101和流。
34、量管102基本上保持在相同的温度。根据本发明的实施例,流量计100包括两个或多个温度传感器例如RTD240。尽管图2仅示出了六个RTD,但是应该理解在其他实施例中,流量计100可以包括多于或少于六个RTD传感器240。RTD传感器240可以监测流量管101,102的温度。涂覆层310例如可以阻碍流体流过流量管101,102。因此,涂覆层310还会造成从101或102中指定流量管的入口到出口的温度梯度的异常改变。另外,涂覆层310可以造成从流量管101到流量管102的温度梯度。阻塞也会影响到温度梯度,原因在于实际上只有很少的流体或者根本没有流体行进通过流量计100。0106 因此,根据本发明的实。
35、施例,可以基于温度梯度来检测流量计参数的偏差。更具体地,根据本发明的实施例,可以通过跟踪由多于一个的温度传感器例如RTD传感器240获得的温度梯度的改变来确定偏差。根据一个实施例,从流量计100的入口到流量计100的出口测量温度梯度。根据本发明的另一个实施例,从流量计100的一根流量管101到流量计100的另一根流量管102测量温度梯度。根据本发明的实施例,如果温度梯度超出温度梯度的阈值,即可检测到涂覆层310。根据一个实施例,温度梯度阈值包括预定值。根据另一个实施例,温度梯度阈值由用户或操作人员确定。0107 在某些实施例中,流量计100即使在没有偏差时也可以包括温度梯度。因此,根据本发明的实施例,可以根据已经存在的温度梯度的改变来检测偏差。0108 以上说明提供了用于检测流量计100的流量计参数偏差的多种方法。根据本发明的实施例,流量计参数的偏差可以被用于进行可能是指示涂覆层的诊断。每一种方法都包括不同的优点,并且使用的具体方法可以取决于所处环境或可用设备。某些方法允许在流量测量值中不存在偏差时检测参数中的偏差。另外,可以在单个流量计系统中采用上述方法中的多于一种或全部。因此,计量电子设备20可以将使用一种方法获得的偏差检测与使用另一种方法获得的结果相比较。说 明 书CN 103090933 A10。