液化方法、液化装置及具备该液化装置的浮式液化气制造设备.pdf

上传人:00****42 文档编号:1497376 上传时间:2018-06-18 格式:PDF 页数:18 大小:1.80MB
返回 下载 相关 举报
摘要
申请专利号:

CN201180031178.7

申请日:

2011.10.07

公开号:

CN102959351A

公开日:

2013.03.06

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):F25J 1/00申请日:20111007|||公开

IPC分类号:

F25J1/00; B63B35/44; C10L3/06

主分类号:

F25J1/00

申请人:

三菱重工业株式会社

发明人:

冈胜

地址:

日本东京都

优先权:

2010.10.13 JP 2010-230766

专利代理机构:

中原信达知识产权代理有限责任公司 11219

代理人:

高培培;车文

PDF下载: PDF下载
内容摘要

本发明提供一种能够在使被液化气液化时抑制液化效率下降,同时安全性优异且设备能够实现紧凑化的液化方法、液化装置及具备该液化装置的浮式液化气制造设备。特征在于,对于与单一成分的高压热介质进行了热交换后的被液化气进行减压后,使减压后的被液化气与温度比高压热介质低且与高压热介质为相同种类的低温侧热介质进行热交换而发生液化。

权利要求书

权利要求书一种液化方法,其中,
使与单一成分的高压热介质进行了热交换的被液化气减压后,使减压后的所述被液化气与温度比所述高压热介质低且和所述高压热介质为相同种类的低温侧热介质进行热交换而发生液化。
一种液化装置,其中,
具备:
高温侧热介质用换热器,供被液化气与高温侧热介质进行热交换;
减压阀,对从该高温侧热介质用换热器导出的被液化气进行减压;以及
低压热介质用换热器,供通过了该减压阀的被液化气与低温侧热介质进行热交换,
所述高温侧热介质及所述低温侧热介质为单一成分且相同种类,
所述减压阀将被导向所述低温侧热介质用换热器的被液化气减压至规定压力。
根据权利要求2所述的液化装置,其中,
具备:
并联复式涡轮,具有被引导蒸汽而被驱动的高压涡轮、与该高压涡轮连接的高压涡轮侧轴、被引导从所述高压涡轮导出的蒸汽而被驱动的低压涡轮及与该低压涡轮连接的低压涡轮侧轴;
高温侧热介质用压缩机,对被导向所述高温侧热介质用换热器的高温侧热介质进行压缩;
低温侧热介质用压缩机,对被导向所述低温侧热介质用换热器的低温侧热介质进行压缩;以及
蒸汽产生单元,产生被导向所述高压涡轮的蒸汽,
使所述高温侧热介质用压缩机与所述高压涡轮侧轴连接,使所述低温侧热介质用压缩机与所述低压涡轮侧轴连接。
根据权利要求2或3所述的液化装置,其中,
所述高温侧热介质用换热器是板式。
根据权利要求2~4中任一项所述的液化装置,其中,
所述蒸汽产生单元以液化气中的废气为燃料而产生蒸汽。
一种浮式液化气制造设备,具备权利要求2~5中任一项所述的液化装置。
根据权利要求6所述的浮式液化气制造设备,其中,
所述高温侧热介质及所述低温侧热介质使用氮。

说明书

说明书液化方法、液化装置及具备该液化装置的浮式液化气制造设备
技术领域
本发明涉及液化方法、液化装置及具备该液化装置的浮式液化气制造设备,尤其是涉及天然气的液化。
背景技术
通常,作为陆地上的液化设备,利用级联式制冷循环、或使用了多种制冷剂的混合制冷剂的制冷循环对被液化气进行液化(例如专利文献1)。关于该液化设备的设置场所,近年来,讨论了海洋浮体。在海洋浮体上设置与陆地上同样的液化设备时,在对于抗摇摆性能、设置空间、液化的容易性、安全性的考虑中,存在船用化的必要条件。因此,作为液化设备,虽然使用于LNG船的蒸发气(boil off gas)的再液化中,但在液化效率差的氮制冷剂的氮膨胀循环中也有适用的余地。
【在先技术文献】
【专利文献】
【专利文献1】日本特表2006‑504928号公报
【专利文献2】日本特表2006‑503252号公报
发明内容
使用图5,说明氮制冷循环中的天然气及氮的热交换。在图5中,纵轴表示温度(℃),横轴表示热负荷(kW)。而且,图5中的实线表示升压至4Ma的天然气,虚线表示升压至15MPa的天然气。而且,图5中的单点划线表示与升压至4MPa的天然气进行热交换时的氮,双点划线表示与升压至15MPa的天然气进行热交换的氮。
如图5所示,在使天然气(实线)升压至4MPa时,在温度变化的过程中,产生天然气相对于热负荷的温度变化减小的阶梯状。该阶梯状由于在作为制冷剂的氮进行热交换的过程中在液相和气相之间进行相变的期间温度变得恒定而产生。因此,在对应于升压至4Ma的天然气与氮的温度差最小的夹点(pinch point)的方式设定氮(单点划线)时,在夹点以外的热交换过程中,天然气与氮的温度差变大,与通常温度差小的情况相比,液化效率差。
热介质氮的压缩循环如专利文献2记载的发明那样,由于大的所需动力的氮压缩机而多是通过燃气轮机来驱动的例子,但假定应液化的原料气体的一部分作为由燃气轮机消耗的燃料。在液化过程中产生的废气作为燃气轮机的燃料为低压,因此需要再加压,使用困难。为了使作为产品的液化气最大化,还存在工艺废气的高效的燃料化的课题。
另外,在液化过程中产生的废气的压力大致为大气压,氮成分多,存在难以使用作驱动氮压缩机的燃气轮机的燃料的问题。
此外,如专利文献2记载的发明那样,利用燃气轮机与蒸汽轮机、或蒸汽轮机与电动机的混合动力来驱动氮压缩机时,适用于海洋浮体,因此船上检修困难,需要预备品、及确保电动化带来的冗余度成为问题。
另一方面,如图5的虚线所示,在使天然气升压至15MPa时,实线所示的升压至4MPa的天然气产生的阶梯状消失而成为大致直线状。因此,升压至15MPa的高压的天然气与氮(双点划线)的温度差在整体上减小而能够进行热交换,因此能够高效地液化。然而,为了使高压的天然气与氮进行热交换,需要使用管壳式的换热器,因此存在换热器大型化,而无法削减液化装置的设置空间的问题。
本发明鉴于这种情况而作出,提供一种抑制液化效率的下降,同时安全性优异且能够实现设备的紧凑化的液化方法、液化装置及具备该液化装置的浮式液化气制造设备。
为了解决上述课题,本发明的液化方法、液化装置及具备该液化装置的浮式液化气制造设备采用以下的手段。
本发明的第一方式涉及一种液化方法,其中,使与单一成分的高压热介质进行了热交换的被液化气减压至规定压力后,使减压后的所述被液化气与温度比所述高压热介质低且和所述高压热介质为相同种类的低温侧热介质进行热交换而发生液化。
被液化气的液化通过与热介质进行热交换来进行。被液化气的液化效率优选被液化气与热介质的温度差在热交换过程中均匀且小。然而,在被液化气为高压时,虽然与热介质的温度差在热交换过程中大致均匀且小,但与热介质进行热交换的换热器变得大型化。而且,在被液化气为低压的情况下,被液化气在其热交换过程中成为阶梯状。因此,在对应于被液化气与热介质的温度差最小的部位(夹点)来设定热介质的压力时,在夹点以外的过程中,被液化气与热介质的温度差增大,热交换效率变差。
因此,为了减小被液化气与热介质的温度差,使用通过多个换热器对烃、氮等混合热介质或多个单一成分的热介质进行热交换的级联方式。然而,在级联方式的情况下,存在换热器等设备增加的问题。而且,在使用混合热介质的情况下,由于由多个成分构成,因此虽然对应于被液化气的特性而使用多个热介质,但由于其一部分使用可燃性的热介质,因此在安全性上存在问题。
因此,在本发明中,使被液化气与单一成分的高温侧热介质进行热交换,然后,减压至规定压力。而且,减压后的被液化气与高温侧热介质为相同种类,且与温度比高温侧热介质低的低温侧热介质进行热交换。由此,能够使与高温侧热介质进行了热交换的被液化气减压成近似于低温侧热介质的温度变化,之后与低温侧热介质进行热交换。因此,能够将被液化气与高温侧热介质及低温侧热介质的温度差保持为大致恒定。因此,能够使用单一成分的热介质,高效地使被液化气液化。
需要说明的是,规定压力是指与热介质进行热交换的被液化气的临界点所对应的压力。
另外,被液化气是液化前的原料气体,可列举天然气(LNG)、液化石油气(LPG)等。
本发明的第二方式涉及一种液化装置,其特征在于,具备:高温侧热介质用换热器,供被液化气与高温侧热介质进行热交换;减压阀,对从该高温侧热介质用换热器导出的被液化气进行减压;以及低压热介质用换热器,供通过了该减压阀的被液化气与低温侧热介质进行热交换,其中,所述高温侧热介质及所述低温侧热介质为单一成分且相同种类,所述减压阀将被导向所述低温侧热介质用换热器的被液化气减压至规定压力。
将单一成分的高温侧热介质导向高温侧热介质用换热器,将与高温侧热介质为相同种类的低温侧热介质导向低温侧热介质用换热器,在高温侧热介质用换热器与低温侧热介质用换热器之间设有将被液化气减压至规定压力的减压阀。由此,能够借助减压阀使通过了高温侧热介质用换热器的被液化气近似于低温侧热介质的温度变化,而导向低温侧热介质用换热器。因此,能够将被液化气与高温侧热介质及低温侧热介质的温度差保持为大致恒定。因此,能够使用单一成分的热介质,高效地使被液化气液化。
本发明的第三方式涉及一种液化装置,其特征在于,具备:并联复式涡轮(cross compound turbine),具有被引导蒸汽而被驱动的高压涡轮、与该高压涡轮连接的高压涡轮侧轴、被引导从所述高压涡轮导出的蒸汽而被驱动的低压涡轮及与该低压涡轮连接的低压涡轮侧轴;高温侧热介质用压缩机,对被导向所述高温侧热介质用换热器的高温侧热介质进行压缩;低温侧热介质用压缩机,对被导向所述低温侧热介质用换热器的低温侧热介质进行压缩;以及蒸汽产生单元,产生被导向所述高压涡轮的蒸汽,其中,使所述高温侧热介质用压缩机与所述高压涡轮侧轴连接,使所述低温侧热介质用压缩机与所述低压涡轮侧轴连接。
在高压涡轮侧轴上连接高温侧热介质用压缩机,在低压涡轮侧轴上连接低温侧热介质用压缩机。构成并联复式涡轮的高压涡轮侧轴与低压涡轮侧轴相互分离,因此通过分别控制与高压涡轮侧轴连接的高压涡轮及与低压涡轮侧轴连接的低压涡轮,而能够分别独立地控制高温侧热介质用压缩机和低温侧热介质用压缩机。因此,能够相互独立地压缩高温侧热介质和低温侧热介质,从而能够独立地控制高温侧热介质和低温侧热介质的制冷负荷。
在本发明的上述任一个液化装置中,所述高温侧热介质用换热器可以是板式。
根据该结构,被液化气与高温侧热介质进行热交换的高温侧热介质用换热器使用板式。因此,能够实现高温侧热介质用换热器的小型化。因此,能够实现液化装置的紧凑化。
在本发明的上述的任一个液化装置中,所述蒸汽产生单元可以是以液化气中的废气为燃料而产生蒸汽的结构。
根据该结构,使用了以液化气中的废气为燃料燃烧而产生蒸汽的蒸汽产生单元。因此,能够使用在液化装置内产生的大致大气压状态的废气作为驱动并联复式涡轮的蒸汽进行驱动。因此,能够有效地利用从液化装置产生的废气。
本发明的第四方式是一种浮式液化气制造设备,其特征在于,具备上述的任一种液化装置。
将由利用蒸汽驱动的并联复式涡轮构成的液化装置使用于浮式液化气制造设备。因此,作为并联复式涡轮,可以适用在现有的船用主机中使用的蒸汽轮机。因此,不需要用于驱动高温侧热介质用压缩机及低温侧热介质用压缩机的并联复式涡轮的新的开发,能够有效利用现有的设备。
在本发明的上述的浮式液化气制造设备中,所述高温侧热介质及所述低温侧热介质可以使用氮。
将由在热介质中使用不燃性的氮的高温侧热介质用压缩机及低温侧热介质用压缩机、以及高温侧热介质用换热器及低温侧热介质用换热器构成的液化装置使用于浮式液化气制造设备。而且,在高温侧热介质用压缩机及低温侧热介质用压缩机的驱动中,使用蒸汽轮机。由此,能够防止可燃性气体从热介质等泄漏引起的爆炸的危险性。因此,能够在甲板下配置高温侧热介质用压缩机、低温侧热介质用压缩机、蒸汽轮机等设备。因此,能够削减甲板上的液化装置的配置空间。
【发明效果】
根据本发明,使被液化气与单一成分的高温侧热介质进行热交换,之后,减压至规定压力。而且,减压后的被液化气与高温侧热介质为相同种类,且与温度比高温侧热介质低的低温侧热介质进行热交换。由此,能够将与高温侧热介质进行了热交换的被液化气减压成近似于低温侧热介质的温度变化,之后与低温侧热介质进行热交换。因此,能够将被液化气与高温侧热介质及低温侧热介质的温度差保持为大致恒定。因此,能够使用单一成分的热介质,高效地使被液化气液化。
附图说明
图1是具备本发明的一实施方式的液化装置的浮式液化气制造设备的概略结构图。
图2是图1所示的液化装置的右侧放大结构图。
图3是图1所示的液化装置的左侧放大结构图。
图4是表示图2及图3所示的液化装置中的天然气及氮的关系的T‑H线图。
图5是表示多个压力下的天然气及氮的关系的T‑H线图。
具体实施方式
基于图1,说明具备本发明的一实施方式的液化装置的浮式液化气制造设备的概略结构图。
浮式液化天然气制造设备(Floating LNG:FLNG)1具备:储存液化天然气(液化气)的多个货物罐2;前处理装置3;液化装置(未图示);向浮式液化天然气制造设备1内供给电力的电力供给装置(未图示)。
浮式液化天然气制造设备(浮式液化气制造设备)1对从陆地上或海底的地层下以高压喷出的原料气体即天然气(被液化气)进行精制液化而形成作为产品的液化天然气(Liquefied natural gas:LNG),且设置于海洋上。
货物罐(在本图中,仅表示3个)2储存液化天然气。货物罐2是MOSS独立球形罐。
前处理装置3将作为原料气体的天然气中包含的二氧化碳、硫化氢、水分、重质成分等杂质除去。
液化装置通过使天然气与制冷剂(冷却用热介质)进行热交换而将天然气液化。液化装置分为:容纳有后述的高压氮换热器(未图示)、低压氮换热器(未图示)的冷箱5;设有向船内供给电力的电力供给装置的船内动力设置区域4;容纳有后述的高压氮压缩机(未图示)、低压氮压缩机(未图示)、压缩机驱动用蒸汽轮机(未图示)等的液化装置用动力装置区域6;设有后述的末端闪蒸罐(未图示)等的储存区域7。
冷箱5设置在甲板上。在冷箱5内设有作为液化装置的一部分的高压氮换热器(高温侧热介质用换热器)及低压氮换热器(低温侧热介质用换热器)。冷箱5为了防止与外部的热量的出入而实施隔热措施。
液化装置用动力装置区域6设置在甲板下。在液化装置用动力装置区域6设有构成液化装置的高压氮压缩机(高温侧热介质用压缩机)、低压氮压缩机(低温侧热介质用压缩机)、驱动这些压缩机的压缩机驱动用蒸汽轮机(并联复式涡轮)。
储存区域7设置在甲板下,且设有末端闪蒸罐。
船内动力设置区域4设置在甲板下,具备后述的锅炉(未图示)、燃气柴油机(未图示)、燃气柴油机驱动发电机(未图示)。浮式液化天然气制造设备1内所需的电力由设置在船内动力设置区域4上的这些设备来供给。
接下来,使用图2及图3,说明本实施方式的液化装置的结构。
图2表示图1所示的液化装置的右侧放大结构图,图3表示其左侧放大结构图。
液化装置10主要具备高压氮换热器11、低压氮换热器12、高压氮压缩机13、低压氮压缩机14、压缩机驱动用蒸汽轮机15、焦耳‑汤姆逊膨胀阀(减压阀)16、锅炉(未图示)、末端闪蒸罐30。液化装置10分为制冷循环和驱动液化装置10的驱动部。
制冷循环具备:高压的天然气(例如15MPa至20MPa)与作为制冷剂的氮进行热交换的高压氮循环17;比较低压的天然气(例如6MPa以下)与作为制冷剂的氮进行热交换的低压氮循环18。这两个制冷循环成为相互独立的循环。
驱动部具备压缩机驱动用蒸汽轮机15。
高压氮循环17主要具备高压氮换热器11、高压氮压缩机13、高压氮膨胀机19。
高压氮换热器11使高压的天然气与氮(以下,称为“高压氮”)进行热交换。对高压氮换热器11优选使用例如Heatric公司的板式的不锈钢板扩散类型(diffusion‑bonded heat exchangers)。
高压氮压缩机13对高压氮(高温侧热介质)进行压缩。在高压氮压缩机13连接有与后述的压缩机驱动用蒸汽轮机15连接的高压涡轮侧减速器20。高压氮压缩机13通过高压涡轮侧减速器20被驱动而对高压氮进行压缩。
高压氮膨胀机19使高压氮膨胀。在高压氮膨胀机19连接有高压氮升压机21。高压氮升压机21通过高压氮膨胀机19使高压氮膨胀并进行旋转驱动而被驱动。高压氮升压机21通过被驱动而使高压氮升压。
低压氮循环18主要具备低压氮换热器12、低压氮压缩机14、低压氮膨胀机22。
低压氮换热器12使天然气与氮(以下,称为“低压氮”)进行热交换。低压氮换热器12使用铝钎焊板翅片类型的换热器。
低压氮压缩机14对低压氮(低温侧热介质)进行压缩。在低压氮压缩机14连接有与后述的压缩机驱动用蒸汽轮机15连接的低压涡轮侧减速器23。低压氮压缩机14通过低压涡轮侧减速器23被驱动而对低压氮进行压缩。
低压氮膨胀机22使低压氮膨胀。在低压氮膨胀机22连接有低压氮升压机24。低压氮升压机24通过低压氮膨胀机22使低压氮膨胀并进行旋转驱动而被驱动。低压氮升压机24通过被驱动而使低压氮升压。
压缩机驱动用蒸汽轮机15是在船舶的主机中使用的并联复式的大型的蒸汽轮机。作为压缩机驱动用蒸汽轮机15,优选使用三菱重工业制的UST(Ultra Steam Turbine)。
压缩机驱动用蒸汽轮机15具备高压涡轮15a、中压涡轮(高压涡轮)15b、第一低压涡轮15c、第二低压涡轮15d。高压涡轮15a和中压涡轮15b设置在第一级轴15e(高压涡轮侧轴)上。第一低压涡轮(低压涡轮)15c和第二低压涡轮(低压涡轮)15d设置在第二级轴(低压涡轮侧轴)15f上。
在第一级轴15e的端部连接有高压涡轮侧减速器20,在第二级轴15f的端部连接有低压涡轮侧减速器23。
高压涡轮侧减速器20将从第一级轴15e传递的输出向高压氮压缩机13传递。由此,高压氮压缩机13通过高压涡轮15a或中压涡轮15b被进行旋转驱动而被驱动。
低压涡轮侧减速器23将从第二级轴15f传递的输出向低压氮压缩机14传递。由此,低压氮压缩机14通过第一低压涡轮15c或第二低压涡轮15d被进行旋转驱动而被驱动。
锅炉(蒸汽产生单元)是使用后述的废气或蒸发气等液化天然气和重油作为燃料的混烧锅炉。
末端闪蒸罐30使通过高压氮循环17及低压氮循环18后的液化天然气膨胀而使温度下降。在末端闪蒸罐30中,液化天然气被除去含有的氮成分。需要说明的是,也可以取代末端闪蒸罐30而使用减压阀。
焦耳‑汤姆逊膨胀阀16设置在高压氮循环17与低压氮循环18之间。焦耳‑汤姆逊膨胀阀16通过其节流机构而使通过了高压氮循环17的天然气发生焦耳‑汤姆逊膨胀。
接下来,说明天然气的液化方法。
从陆地上或海底的地层下喷出的原料气体即天然气被导向设置在浮式液化天然气制造设备1(参照图1)的甲板上的前处理装置3。天然气在前处理装置3中,被除去含有的二氧化碳、硫化氢、水分、重质成分等。
通过前处理装置3精制的天然气被导向冷箱5。被导向冷箱5的天然气通过升压压缩器31(参照图2)等而升压至例如15MPa以上。需要说明的是,该升压优选为10MPa以上。
通过升压压缩器31而成为高压的天然气被导向第一换热器32。被导向第一换热器32的天然气与海水进行热交换而温度下降至例如30℃。通过第一换热器32而温度下降后的天然气还被导向第二换热器33。被导向第二换热器33的天然气与作为冷却水的清水进行热交换而温度下降至例如‑20℃。通过如此与冷却水进行热交换而进行预冷,能够提高与高压氮循环17中的高压氮的热交换效率。
通过第二换热器33而预冷的天然气被导向高压氮循环17。被导向高压氮循环17的天然气被导向构成高压氮循环17的高压氮换热器11。被导向高压氮换热器11的天然气在设于高压氮换热器11内的第一过冷却部K1中与高压氮进行热交换。通过在第一过冷却部K1中与高压氮进行热交换,天然气下降至例如‑80℃。
温度下降后的天然气被导向焦耳‑汤姆逊膨胀阀16。被导向焦耳‑汤姆逊阀16的天然气由于通过焦耳‑汤姆逊膨胀阀16而压力膨胀(减压)至例如10MPa。由此,通过了焦耳‑汤姆逊膨胀阀16的天然气的温度下降至例如‑90℃。
需要说明的是,优选通过基于焦耳‑汤姆逊膨胀阀16的膨胀而使天然气成为10MPa以下。
由于通过焦耳‑汤姆逊膨胀阀16而发生膨胀从而温度下降的天然气被导向低压氮循环18。被导向低压氮循环18的天然气被导向构成低压氮循环18的低压氮换热器12。被导向低压氮换热器12的天然气以两阶段与低压氮进行热交换。即,天然气在设于低压氮换热器12的第二过冷却部K2中使温度下降至例如‑135℃之后,在设于低压氮换热器12的第三过冷却部K3中使温度下降至例如‑160℃而液化。
如此液化的液化天然气被导向末端闪蒸罐30。被导向末端闪蒸罐30的液化天然气在末端闪蒸罐30内发生膨胀从而其温度下降,并且液化天然气中的氮成分被排出。温度进一步下降而氮成分被排出后的液化天然气被导向图1所示的货物罐2而储存。
被导向末端闪蒸罐30的液化天然气的一部分发生气化。关于气化后的液化天然气(以下,称为“废气”)的量,通过调节导向末端闪蒸罐30的液化天然气的温度,而闪蒸率成为例如10%以下。
废气(例如‑140℃)被从末端闪蒸罐30导向低压氮换热器12。被导向低压氮换热器12的废气在设于低压氮换热器12的第二过冷却部K2中与前述的天然气进行热交换。由此,废气的温度成为例如‑100℃。而且,废气被导向设于低压氮换热器12的第二冷凝部G2。被导向第二冷凝部G2的废气与后述的低压氮进行热交换。在第二冷凝部G2中进行了热交换后的废气的温度被加热至例如30℃而从低压氮换热器12导出。
另外,在货物罐2(参照图1)内,液化天然气的一部分气化后的蒸发气也与废气同样地被导向低压氮换热器12。被导向低压氮换热器12的蒸发气在设于低压氮换热器12的第二过冷却部K2及第二冷凝部G2中进行热交换,其温度被加热至例如30℃而从低压氮换热器12导出。
接下来,说明高压氮的流动。
在高压氮循环17内循环的高压氮通过由高压涡轮侧减速器20驱动的高压氮压缩机13而被压缩为例如12MPa、120℃。成为高压的高压氮被导向第三换热器34。被导向第三换热器34的高压氮与从未图示的供水系统引导的供水进行热交换而温度下降至85℃。
通过了第三换热器34的高压氮还被导向第四换热器35。被导向第四换热器35的高压氮与从未图示的清水系统引导来的清水进行热交换而温度下降至40℃。温度下降至40℃的高压氮被导向高压氮换热器11。被导向高压氮换热器11的高压氮被导向设于高压氮换热器11的第一冷凝部G1。
被导向第一冷凝部G1的高压氮与通过第一过冷却部K1而膨胀的高压氮进行热交换。由此,通过了第一冷凝部G1的高压氮的温度下降至例如‑25℃。在第一冷凝部G1中进行热交换而温度下降的高压氮被导向高温氮膨胀机19。被导向高温氮膨胀机19的高压氮膨胀为例如2MPa、‑85℃。膨胀而温度下降的高压氮被导向设于高压氮换热器11的第一过冷却部K1。
被导向第一过冷却部K1的膨胀的高压氮与前述的天然气进行热交换而被加热至例如‑30℃。在第一过冷却部K1中被加热的高压氮在第一冷凝部G1中与从第四换热器35引导来的高压氮进行热交换而被加热至例如35℃。
通过设于高压氮换热器11的第一过冷却部K1及第一冷凝部G1而被加热的膨胀的高压氮被导向高压氮升压机21。被导向高压氮升压机21的膨胀的高压氮由高压氮升压机21升压而成为例如3MPa、85℃,被导向第五换热器36。
被导向第五换热器36的升压后的高压氮与从清水系统引导来的清水进行热交换而温度下降至例如40℃。通过第五换热器36而温度下降的高压氮被导向高压氮压缩机13。
如以上所述,高压氮在高压氮循环17内循环。
接下来,说明低压氮的流动。
在低压氮循环18内循环的低压氮通过由低压涡轮侧减速器23驱动的低压氮压缩机14而被压缩为例如5MPa。被压缩后的低压氮被导向第六换热器37。被导向第六换热器37的低压氮与从供水系统引导来的供水进行热交换而温度下降至例如85℃。
通过了第六换热器37的低压氮再被导向第七换热器38。被导向第七换热器38的低压氮与从供水系统引导来的供水进行热交换而温度下降至例如40℃。通过第六换热器37及第七换热器38而温度下降的低压氮被导向低压氮换热器12。被导向低压氮换热器12的低压氮被导向设于低压氮换热器12的第二冷凝部G2。
被导向第二冷凝部G2的低压氮与通过第二过冷却部K2而膨胀的低压氮进行热交换。由此,通过了第二冷凝部G2的低压氮的温度下降至例如‑90℃。在第二冷凝部G2中进行了热交换的低压氮被从低压氮换热器12导向低压氮膨胀机22。被导向低压氮膨胀机22的温度下降的低压氮发生膨胀而成为例如3MPa、‑164℃。膨胀而温度进一步下降的低压氮被导向设于低压氮换热器12的第三过冷却部K3。
被导向第三过冷却部K3的膨胀的低压氮与通过了前述的第二过冷却部K2的天然气进行热交换而加热至例如‑140℃。通过了第三过冷却部K3的膨胀的低压氮进而在第二过冷却部K2中与被从焦耳‑汤姆逊膨胀阀16导向低压氮换热器12的天然气进行热交换。与天然气进行热交换而膨胀的低压氮被加热至例如‑100℃。
通过第二冷却器K2而膨胀的低压氮还被导向设于低压氮换热器12的第二冷凝部G2。被导向第二冷凝部G2的膨胀的低压氮与从第七换热器38引导来的低压氮进行热交换。由此,膨胀的低压氮成为例如36℃而从低压氮换热器12导出。
通过设于低压氮换热器12的第三过冷却部K3、第二过冷却部K2及第二冷凝部G2而被加热的低压氮被导向低压氮升压机24。被导向低压氮升压机24的膨胀的低压氮借助低压氮升压机24升压而成为例如1MPa、85℃。升压后的低压氮被导向第八换热器39。
被导向第八换热器39的升压后的低压氮与从供水系统引导来的供水进行热交换而温度下降至例如40℃。通过第八换热器39而温度下降的低压氮被导向低压氮压缩机14。
如以上那样,低压氮在低压氮循环18内循环。
接下来,说明蒸汽的流动。
从设于低压氮换热器12的第二冷凝部G2导出而被加热至例如30℃的废气及蒸发气被导向锅炉。被导向锅炉的废气及蒸发气作为锅炉的燃料进行燃烧而产生高温高压(例如555℃、11MPa)的蒸汽。在锅炉中产生的蒸汽被导向压缩机驱动用蒸汽轮机15的高压涡轮15a。被导向高压涡轮15a的蒸汽将其热能转换成高压涡轮15a的旋转能量而驱动高压涡轮15a旋转。通过驱动高压涡轮15a旋转而第一级轴15e进行旋转。由于第一级轴15e旋转,而对设于第一级轴15e的中压涡轮15b及高压涡轮侧减速器20进行驱动。
另一方面,驱动高压涡轮15a旋转的蒸汽例如成为2MPa而从高压涡轮15a导出。从高压涡轮15a导出的蒸汽被导向未图示的再热器。被导向再热器的蒸汽借助再热器而成为例如555℃的再热蒸汽。该再热蒸汽被导向压缩机驱动用蒸汽轮机15的中压涡轮15b。
将被导向中压涡轮15b的再热蒸汽的热能转换成中压涡轮15b的旋转能量而驱动中压涡轮15b旋转。通过驱动中压涡轮15b旋转而使得第一级轴15e进一步旋转。由于第一级轴15e进一步旋转,而对设于第一级轴15e的高压涡轮侧减速器20进一步进行驱动。
中压涡轮15b从其中途段抽出蒸汽的一部分。被抽出的例如1MPa的蒸汽用于在浮式液化天然气制造设备1(参照图1)内使用的高压杂用蒸汽等。
通过了中压涡轮15b的全段后的蒸汽成为例如110℃而被导向压缩机驱动用蒸汽轮机15的第一低压涡轮15c。
将被导向第一低压涡轮15c的蒸汽的热能转换成第一低压涡轮15c的旋转能量而驱动第一低压涡轮15c旋转。通过驱动第一低压涡轮15c旋转而第二级轴15f进行旋转。由于第二级轴15f旋转,而对设于第二级轴15f的第二低压涡轮15d及低压涡轮侧减速器23进行驱动。
第一低压涡轮15c从其中途段抽出蒸汽的一部分。被抽出的例如0.1MPa的蒸汽用于在浮式液化天然气制造设备1(参照图1)内使用的低压杂用蒸汽等。
通过了第一低压涡轮15c的全段后的蒸汽被导向设于第二级轴15f的第二低压涡轮15d。
另外,在第二低压涡轮15d另外从未图示的辅助蒸汽供给系统供给例如0.6MPa的辅助蒸汽。通过供给的辅助蒸汽而驱动第二低压涡轮15d旋转。通过驱动第二低压涡轮15d旋转,而能够驱动与第二级轴15f连接的低压涡轮侧减速器23。
通过了第一低压涡轮15c的全段后的蒸汽及驱动第二低压涡轮15d后的辅助蒸汽被导向未图示的主凝汽器,与海水进行热交换而被凝汽。
如此,压缩机驱动用蒸汽轮机15通过第一级轴15e和第二级轴15f能够分别独立地控制高压涡轮侧减速器20和低压涡轮侧减速器23,而且,通过利用辅助蒸汽来驱动第二低压涡轮15d,也能够独立地控制低压涡轮侧减速器23。
在此,使用图4及前述的图5,说明本实施方式的天然气及氮制冷剂的T‑H线图。
图4表示本实施方式的天然气及氮制冷剂的T‑H线图。
在图4中,纵轴表示热负荷(kW),横轴表示温度(℃)。图4的实线表示升压至15Mpa或4Mpa的天然气,单点划线表示与升压至4MPa时的天然气进行热交换的氮。
另外,在图5中,示出表示多个压力下的天然气及氮的关系的T‑H线图。
在图5中,纵轴表示热负荷(kW),横轴表示温度(℃)。图5的实线表示升压至15Mpa的天然气,虚线表示升压至4Mpa的天然气,单点划线表示相对于4MPa的压力较低的天然气而温度差小的氮,双点划线表示相对于15MPa的高压的天然气而温度差小的氮。
如图5所示,4MPa的天然气(实线)在与氮进行热交换而温度下降的过程中产生几乎不发生温度变化的阶梯状。关于天然气的液化,与氮的温度差小而液化效率高,因此氮(虚线)与天然气的温度差变得最小的夹点成为阶梯状。因此,在阶梯状以外的热交换过程中,天然气与氮的温度差增大,作为整体液化效率下降。
在使天然气升压至例如15MPa的高压时(虚线),在4MPa的天然气中产生的阶梯状消失,天然气的温度变化成为大致直线状。因此,15MPa的天然气与氮(双点划线)的温度差减小,在整体上能够高效地进行液化。
需要说明的是,如图5所示,在天然气的低温部,无论是天然气的压力为15MPa的情况下还是4MPa的情况下,与氮的温度差都减小。
在本实施方式中,如图4所示,在天然气的高温部中,使天然气升压至高压(例如15MPa),在天然气的低温部,使天然气升压至较低压力(例如4MPa)而与氮进行热交换,从而在热交换过程的整个区域上形成大致均匀的温度差。
即,在天然气的高温部,使高压的天然气与高压氮循环17的高压氮进行热交换,在天然气的低温部,使低压的天然气与低压氮循环18的低压氮进行热交换。
另外,在高压氮循环17与低压氮循环18之间,设置焦耳‑汤姆逊膨胀阀16而使15MPa的高压的天然气膨胀为4MPa的低压的天然气。由此,如图4所示,减小天然气的高压部的温度与4MPa的低压的天然气的温度之差,从而能够使天然气的整个区域的温度变化成为大致直线状。
如以上那样,根据本实施方式的液化装置10及具备该液化装置10的浮式液化天然气制造设备1,起到以下的作用效果。
将单一成分的高压氮(高温侧热介质)导向高压氮换热器(高温侧热介质用换热器)11,将与高压氮同种类的低压氮(低温侧热介质)导向低压氮换热器(低温侧热介质用换热器)12,在高压氮换热器11与低压氮换热器12之间设有将天然气(被液化气)减压成规定压力的焦耳‑汤姆逊膨胀阀(减压阀)16。由此,能够利用焦耳‑汤姆逊膨胀阀16使通过了高压氮换热器11的天然气近似于低压氮的温度变化而导向低压氮换热器12。因此,能够分别使天然气与高压氮的热交换产生的温度差、及天然气与低压氮的热交换产生的温度差在热交换过程中保持为大致恒定。因此,能够使用单一成分的氮(热介质),高效地使天然气液化。
在第一级轴(高压涡轮侧轴)15e上经由高压涡轮侧减速器20而连接高压氮压缩机(高温侧热介质用压缩机)13,在第二级轴(低压涡轮侧轴)15f上经由低压涡轮侧减速器23而连接低压氮压缩机(低温侧热介质用压缩机)14。构成压缩机驱动用蒸汽轮机(并联复式涡轮)15的第一级轴15e和第二级轴15f相互分离,因此通过分别控制与第一级轴15e连接的高压涡轮15a及中压涡轮(高压涡轮)15b、及与第二级轴15f连接的第一低压涡轮(低压涡轮)15c及第二低压涡轮(低压涡轮)15d,能够分别独立地控制高压氮压缩机13和低压氮压缩机14。因此,能够相互独立地压缩高压氮和低压氮,能够独立地控制在高压氮循环17中循环的高压氮和在低压氮循环18中循环的低压氮的制冷负荷。
对于天然气与高压氮进行热交换的高压氮换热器11使用不锈钢板扩散类型(板式)。因此,能够实现高压氮换热器11的小型化。因此,能够使对构成液化装置10的高压氮换热器11进行收纳的冷箱5紧凑化。
另外,由于通过焦耳‑汤姆逊膨胀阀16而使天然气的压力下降,对于低压氮换热器12使用铝钎焊板翅片类型(板式)。因此,也能够实现低压氮换热器12的小型化。因此,能够使构成液化装置10的冷箱5更紧凑。
使用了以液化天然气中的废气及蒸发气为燃料燃烧而产生蒸汽的锅炉(蒸汽产生单元)。因此,可以使用在液化气装置10中产生的废气、蒸发气作为驱动压缩机驱动用蒸汽轮机15的蒸汽进行驱动。因此,能够有效地利用从液化装置10产生的废气或蒸发气。
将通过由蒸汽驱动的压缩机驱动用蒸汽轮机15构成的液化装置10使用于浮式液化天然气制造设备(浮式液化气制造设备)1。因此,在压缩机驱动用蒸汽轮机15中能够适用在现有的船用主机中使用的Cross pound式的蒸汽轮机。因此,不需要为了驱动高压氮压缩机13及低压氮压缩机14而进行压缩机驱动用蒸汽轮机15的新的开发,可以有效利用现有的设备。
将由在热介质中使用不燃性的氮的高压氮压缩机13及低压氮压缩机14、以及高压氮换热器11及低压氮换热器12构成的液化装置10使用于浮式液化天然气制造设备1。而且,在高压氮压缩机13及低压氮压缩机14的驱动中,使用压缩机驱动用蒸汽轮机15。由此,能够防止热介质等可燃性气体泄漏引起的爆炸的危险性。因此,能够在浮式液化天然气制造设备1的甲板下的液化装置用动力装置区域6上配置高压氮压缩机13、低压氮压缩机14、压缩机驱动用蒸汽轮机15等设备。因此,能够削减甲板上的液化装置10的配置空间。
另外,在本实施方式中,作为在液化装置10中使用的热介质,使用氮进行了说明,但只要是不燃性的热介质即可。
另外,在本实施方式中,作为被液化气,使用液化天然气(LNG)进行了说明,但也可以是液化石油气(Liquefied petroleum gas:LPG)等。
另外,在本实施方式中,说明了通过第一换热器32及第二换热器33对从升压压缩器31导向高压氮换热器11的天然气进行预冷的情况,但本发明并未限定于此,也可以不通过冷却水进行预冷,即不设置第二换热器33。通过使用冷却水预冷为‑10℃至‑30℃左右,能够提高对导向高压氮循环17及低压氮循环18的高压氮及低压氮进行压缩的动力的削减效果,但也可以不进行预冷。
另外,也可以将从设于船内动力设置区域4的燃气柴油机排出的高温的废气导向废热回收锅炉等废热回收装置(未图示)而产生蒸汽,将通过废热回收锅炉产生的蒸汽导向压缩机驱动用蒸汽轮机15而利用于压缩机驱动用蒸汽轮机15的起动等。由此,能够有效地利用来自燃气柴油机的废热。
【标号说明】
1浮式液化天然气制造设备(浮式液化气制造设备)
10液化设备
11高压氮换热器(高温侧热介质用换热器)
12低压氮换热器(低温侧热介质用换热器)
16焦耳‑汤姆逊膨胀阀(减压阀)

液化方法、液化装置及具备该液化装置的浮式液化气制造设备.pdf_第1页
第1页 / 共18页
液化方法、液化装置及具备该液化装置的浮式液化气制造设备.pdf_第2页
第2页 / 共18页
液化方法、液化装置及具备该液化装置的浮式液化气制造设备.pdf_第3页
第3页 / 共18页
点击查看更多>>
资源描述

《液化方法、液化装置及具备该液化装置的浮式液化气制造设备.pdf》由会员分享,可在线阅读,更多相关《液化方法、液化装置及具备该液化装置的浮式液化气制造设备.pdf(18页珍藏版)》请在专利查询网上搜索。

1、(10)申请公布号 CN 102959351 A(43)申请公布日 2013.03.06CN102959351A*CN102959351A*(21)申请号 201180031178.7(22)申请日 2011.10.072010-230766 2010.10.13 JPF25J 1/00(2006.01)B63B 35/44(2006.01)C10L 3/06(2006.01)(71)申请人三菱重工业株式会社地址日本东京都(72)发明人冈胜(74)专利代理机构中原信达知识产权代理有限责任公司 11219代理人高培培 车文(54) 发明名称液化方法、液化装置及具备该液化装置的浮式液化气制造设备(。

2、57) 摘要本发明提供一种能够在使被液化气液化时抑制液化效率下降,同时安全性优异且设备能够实现紧凑化的液化方法、液化装置及具备该液化装置的浮式液化气制造设备。特征在于,对于与单一成分的高压热介质进行了热交换后的被液化气进行减压后,使减压后的被液化气与温度比高压热介质低且与高压热介质为相同种类的低温侧热介质进行热交换而发生液化。(30)优先权数据(85)PCT申请进入国家阶段日2012.12.24(86)PCT申请的申请数据PCT/JP2011/073255 2011.10.07(87)PCT申请的公布数据WO2012/050068 JA 2012.04.19(51)Int.Cl.权利要求书1页。

3、 说明书11页 附图5页(19)中华人民共和国国家知识产权局(12)发明专利申请权利要求书 1 页 说明书 11 页 附图 5 页1/1页21.一种液化方法,其中,使与单一成分的高压热介质进行了热交换的被液化气减压后,使减压后的所述被液化气与温度比所述高压热介质低且和所述高压热介质为相同种类的低温侧热介质进行热交换而发生液化。2.一种液化装置,其中,具备:高温侧热介质用换热器,供被液化气与高温侧热介质进行热交换;减压阀,对从该高温侧热介质用换热器导出的被液化气进行减压;以及低压热介质用换热器,供通过了该减压阀的被液化气与低温侧热介质进行热交换,所述高温侧热介质及所述低温侧热介质为单一成分且相同。

4、种类,所述减压阀将被导向所述低温侧热介质用换热器的被液化气减压至规定压力。3.根据权利要求2所述的液化装置,其中,具备:并联复式涡轮,具有被引导蒸汽而被驱动的高压涡轮、与该高压涡轮连接的高压涡轮侧轴、被引导从所述高压涡轮导出的蒸汽而被驱动的低压涡轮及与该低压涡轮连接的低压涡轮侧轴;高温侧热介质用压缩机,对被导向所述高温侧热介质用换热器的高温侧热介质进行压缩;低温侧热介质用压缩机,对被导向所述低温侧热介质用换热器的低温侧热介质进行压缩;以及蒸汽产生单元,产生被导向所述高压涡轮的蒸汽,使所述高温侧热介质用压缩机与所述高压涡轮侧轴连接,使所述低温侧热介质用压缩机与所述低压涡轮侧轴连接。4.根据权利要。

5、求2或3所述的液化装置,其中,所述高温侧热介质用换热器是板式。5.根据权利要求24中任一项所述的液化装置,其中,所述蒸汽产生单元以液化气中的废气为燃料而产生蒸汽。6.一种浮式液化气制造设备,具备权利要求25中任一项所述的液化装置。7.根据权利要求6所述的浮式液化气制造设备,其中,所述高温侧热介质及所述低温侧热介质使用氮。权 利 要 求 书CN 102959351 A1/11页3液化方法、 液化装置及具备该液化装置的浮式液化气制造设备技术领域0001 本发明涉及液化方法、液化装置及具备该液化装置的浮式液化气制造设备,尤其是涉及天然气的液化。背景技术0002 通常,作为陆地上的液化设备,利用级联式。

6、制冷循环、或使用了多种制冷剂的混合制冷剂的制冷循环对被液化气进行液化(例如专利文献1)。关于该液化设备的设置场所,近年来,讨论了海洋浮体。在海洋浮体上设置与陆地上同样的液化设备时,在对于抗摇摆性能、设置空间、液化的容易性、安全性的考虑中,存在船用化的必要条件。因此,作为液化设备,虽然使用于LNG船的蒸发气(boil off gas)的再液化中,但在液化效率差的氮制冷剂的氮膨胀循环中也有适用的余地。0003 【在先技术文献】0004 【专利文献】0005 【专利文献1】日本特表2006-504928号公报0006 【专利文献2】日本特表2006-503252号公报发明内容0007 使用图5,说明。

7、氮制冷循环中的天然气及氮的热交换。在图5中,纵轴表示温度(),横轴表示热负荷(kW)。而且,图5中的实线表示升压至4Ma的天然气,虚线表示升压至15MPa的天然气。而且,图5中的单点划线表示与升压至4MPa的天然气进行热交换时的氮,双点划线表示与升压至15MPa的天然气进行热交换的氮。0008 如图5所示,在使天然气(实线)升压至4MPa时,在温度变化的过程中,产生天然气相对于热负荷的温度变化减小的阶梯状。该阶梯状由于在作为制冷剂的氮进行热交换的过程中在液相和气相之间进行相变的期间温度变得恒定而产生。因此,在对应于升压至4Ma的天然气与氮的温度差最小的夹点(pinch point)的方式设定氮。

8、(单点划线)时,在夹点以外的热交换过程中,天然气与氮的温度差变大,与通常温度差小的情况相比,液化效率差。0009 热介质氮的压缩循环如专利文献2记载的发明那样,由于大的所需动力的氮压缩机而多是通过燃气轮机来驱动的例子,但假定应液化的原料气体的一部分作为由燃气轮机消耗的燃料。在液化过程中产生的废气作为燃气轮机的燃料为低压,因此需要再加压,使用困难。为了使作为产品的液化气最大化,还存在工艺废气的高效的燃料化的课题。0010 另外,在液化过程中产生的废气的压力大致为大气压,氮成分多,存在难以使用作驱动氮压缩机的燃气轮机的燃料的问题。0011 此外,如专利文献2记载的发明那样,利用燃气轮机与蒸汽轮机、。

9、或蒸汽轮机与电动机的混合动力来驱动氮压缩机时,适用于海洋浮体,因此船上检修困难,需要预备品、及确保电动化带来的冗余度成为问题。说 明 书CN 102959351 A2/11页40012 另一方面,如图5的虚线所示,在使天然气升压至15MPa时,实线所示的升压至4MPa的天然气产生的阶梯状消失而成为大致直线状。因此,升压至15MPa的高压的天然气与氮(双点划线)的温度差在整体上减小而能够进行热交换,因此能够高效地液化。然而,为了使高压的天然气与氮进行热交换,需要使用管壳式的换热器,因此存在换热器大型化,而无法削减液化装置的设置空间的问题。0013 本发明鉴于这种情况而作出,提供一种抑制液化效率的。

10、下降,同时安全性优异且能够实现设备的紧凑化的液化方法、液化装置及具备该液化装置的浮式液化气制造设备。0014 为了解决上述课题,本发明的液化方法、液化装置及具备该液化装置的浮式液化气制造设备采用以下的手段。0015 本发明的第一方式涉及一种液化方法,其中,使与单一成分的高压热介质进行了热交换的被液化气减压至规定压力后,使减压后的所述被液化气与温度比所述高压热介质低且和所述高压热介质为相同种类的低温侧热介质进行热交换而发生液化。0016 被液化气的液化通过与热介质进行热交换来进行。被液化气的液化效率优选被液化气与热介质的温度差在热交换过程中均匀且小。然而,在被液化气为高压时,虽然与热介质的温度差。

11、在热交换过程中大致均匀且小,但与热介质进行热交换的换热器变得大型化。而且,在被液化气为低压的情况下,被液化气在其热交换过程中成为阶梯状。因此,在对应于被液化气与热介质的温度差最小的部位(夹点)来设定热介质的压力时,在夹点以外的过程中,被液化气与热介质的温度差增大,热交换效率变差。0017 因此,为了减小被液化气与热介质的温度差,使用通过多个换热器对烃、氮等混合热介质或多个单一成分的热介质进行热交换的级联方式。然而,在级联方式的情况下,存在换热器等设备增加的问题。而且,在使用混合热介质的情况下,由于由多个成分构成,因此虽然对应于被液化气的特性而使用多个热介质,但由于其一部分使用可燃性的热介质,因。

12、此在安全性上存在问题。0018 因此,在本发明中,使被液化气与单一成分的高温侧热介质进行热交换,然后,减压至规定压力。而且,减压后的被液化气与高温侧热介质为相同种类,且与温度比高温侧热介质低的低温侧热介质进行热交换。由此,能够使与高温侧热介质进行了热交换的被液化气减压成近似于低温侧热介质的温度变化,之后与低温侧热介质进行热交换。因此,能够将被液化气与高温侧热介质及低温侧热介质的温度差保持为大致恒定。因此,能够使用单一成分的热介质,高效地使被液化气液化。0019 需要说明的是,规定压力是指与热介质进行热交换的被液化气的临界点所对应的压力。0020 另外,被液化气是液化前的原料气体,可列举天然气(。

13、LNG)、液化石油气(LPG)等。0021 本发明的第二方式涉及一种液化装置,其特征在于,具备:高温侧热介质用换热器,供被液化气与高温侧热介质进行热交换;减压阀,对从该高温侧热介质用换热器导出的被液化气进行减压;以及低压热介质用换热器,供通过了该减压阀的被液化气与低温侧热介质进行热交换,其中,所述高温侧热介质及所述低温侧热介质为单一成分且相同种类,所述减压阀将被导向所述低温侧热介质用换热器的被液化气减压至规定压力。0022 将单一成分的高温侧热介质导向高温侧热介质用换热器,将与高温侧热介质为相同种类的低温侧热介质导向低温侧热介质用换热器,在高温侧热介质用换热器与低温侧热说 明 书CN 1029。

14、59351 A3/11页5介质用换热器之间设有将被液化气减压至规定压力的减压阀。由此,能够借助减压阀使通过了高温侧热介质用换热器的被液化气近似于低温侧热介质的温度变化,而导向低温侧热介质用换热器。因此,能够将被液化气与高温侧热介质及低温侧热介质的温度差保持为大致恒定。因此,能够使用单一成分的热介质,高效地使被液化气液化。0023 本发明的第三方式涉及一种液化装置,其特征在于,具备:并联复式涡轮(cross compound turbine),具有被引导蒸汽而被驱动的高压涡轮、与该高压涡轮连接的高压涡轮侧轴、被引导从所述高压涡轮导出的蒸汽而被驱动的低压涡轮及与该低压涡轮连接的低压涡轮侧轴;高温侧。

15、热介质用压缩机,对被导向所述高温侧热介质用换热器的高温侧热介质进行压缩;低温侧热介质用压缩机,对被导向所述低温侧热介质用换热器的低温侧热介质进行压缩;以及蒸汽产生单元,产生被导向所述高压涡轮的蒸汽,其中,使所述高温侧热介质用压缩机与所述高压涡轮侧轴连接,使所述低温侧热介质用压缩机与所述低压涡轮侧轴连接。0024 在高压涡轮侧轴上连接高温侧热介质用压缩机,在低压涡轮侧轴上连接低温侧热介质用压缩机。构成并联复式涡轮的高压涡轮侧轴与低压涡轮侧轴相互分离,因此通过分别控制与高压涡轮侧轴连接的高压涡轮及与低压涡轮侧轴连接的低压涡轮,而能够分别独立地控制高温侧热介质用压缩机和低温侧热介质用压缩机。因此,能。

16、够相互独立地压缩高温侧热介质和低温侧热介质,从而能够独立地控制高温侧热介质和低温侧热介质的制冷负荷。0025 在本发明的上述任一个液化装置中,所述高温侧热介质用换热器可以是板式。0026 根据该结构,被液化气与高温侧热介质进行热交换的高温侧热介质用换热器使用板式。因此,能够实现高温侧热介质用换热器的小型化。因此,能够实现液化装置的紧凑化。0027 在本发明的上述的任一个液化装置中,所述蒸汽产生单元可以是以液化气中的废气为燃料而产生蒸汽的结构。0028 根据该结构,使用了以液化气中的废气为燃料燃烧而产生蒸汽的蒸汽产生单元。因此,能够使用在液化装置内产生的大致大气压状态的废气作为驱动并联复式涡轮的。

17、蒸汽进行驱动。因此,能够有效地利用从液化装置产生的废气。0029 本发明的第四方式是一种浮式液化气制造设备,其特征在于,具备上述的任一种液化装置。0030 将由利用蒸汽驱动的并联复式涡轮构成的液化装置使用于浮式液化气制造设备。因此,作为并联复式涡轮,可以适用在现有的船用主机中使用的蒸汽轮机。因此,不需要用于驱动高温侧热介质用压缩机及低温侧热介质用压缩机的并联复式涡轮的新的开发,能够有效利用现有的设备。0031 在本发明的上述的浮式液化气制造设备中,所述高温侧热介质及所述低温侧热介质可以使用氮。0032 将由在热介质中使用不燃性的氮的高温侧热介质用压缩机及低温侧热介质用压缩机、以及高温侧热介质用。

18、换热器及低温侧热介质用换热器构成的液化装置使用于浮式液化气制造设备。而且,在高温侧热介质用压缩机及低温侧热介质用压缩机的驱动中,使用蒸汽轮机。由此,能够防止可燃性气体从热介质等泄漏引起的爆炸的危险性。因此,能够在甲板下配置高温侧热介质用压缩机、低温侧热介质用压缩机、蒸汽轮机等设备。因此,能够削说 明 书CN 102959351 A4/11页6减甲板上的液化装置的配置空间。0033 【发明效果】0034 根据本发明,使被液化气与单一成分的高温侧热介质进行热交换,之后,减压至规定压力。而且,减压后的被液化气与高温侧热介质为相同种类,且与温度比高温侧热介质低的低温侧热介质进行热交换。由此,能够将与高。

19、温侧热介质进行了热交换的被液化气减压成近似于低温侧热介质的温度变化,之后与低温侧热介质进行热交换。因此,能够将被液化气与高温侧热介质及低温侧热介质的温度差保持为大致恒定。因此,能够使用单一成分的热介质,高效地使被液化气液化。附图说明0035 图1是具备本发明的一实施方式的液化装置的浮式液化气制造设备的概略结构图。0036 图2是图1所示的液化装置的右侧放大结构图。0037 图3是图1所示的液化装置的左侧放大结构图。0038 图4是表示图2及图3所示的液化装置中的天然气及氮的关系的T-H线图。0039 图5是表示多个压力下的天然气及氮的关系的T-H线图。具体实施方式0040 基于图1,说明具备本。

20、发明的一实施方式的液化装置的浮式液化气制造设备的概略结构图。0041 浮式液化天然气制造设备(Floating LNG:FLNG)1具备:储存液化天然气(液化气)的多个货物罐2;前处理装置3;液化装置(未图示);向浮式液化天然气制造设备1内供给电力的电力供给装置(未图示)。0042 浮式液化天然气制造设备(浮式液化气制造设备)1对从陆地上或海底的地层下以高压喷出的原料气体即天然气(被液化气)进行精制液化而形成作为产品的液化天然气(Liquefied natural gas:LNG),且设置于海洋上。0043 货物罐(在本图中,仅表示3个)2储存液化天然气。货物罐2是MOSS独立球形罐。0044。

21、 前处理装置3将作为原料气体的天然气中包含的二氧化碳、硫化氢、水分、重质成分等杂质除去。0045 液化装置通过使天然气与制冷剂(冷却用热介质)进行热交换而将天然气液化。液化装置分为:容纳有后述的高压氮换热器(未图示)、低压氮换热器(未图示)的冷箱5;设有向船内供给电力的电力供给装置的船内动力设置区域4;容纳有后述的高压氮压缩机(未图示)、低压氮压缩机(未图示)、压缩机驱动用蒸汽轮机(未图示)等的液化装置用动力装置区域6;设有后述的末端闪蒸罐(未图示)等的储存区域7。0046 冷箱5设置在甲板上。在冷箱5内设有作为液化装置的一部分的高压氮换热器(高温侧热介质用换热器)及低压氮换热器(低温侧热介质。

22、用换热器)。冷箱5为了防止与外部的热量的出入而实施隔热措施。0047 液化装置用动力装置区域6设置在甲板下。在液化装置用动力装置区域6设有构成液化装置的高压氮压缩机(高温侧热介质用压缩机)、低压氮压缩机(低温侧热介质用压说 明 书CN 102959351 A5/11页7缩机)、驱动这些压缩机的压缩机驱动用蒸汽轮机(并联复式涡轮)。0048 储存区域7设置在甲板下,且设有末端闪蒸罐。0049 船内动力设置区域4设置在甲板下,具备后述的锅炉(未图示)、燃气柴油机(未图示)、燃气柴油机驱动发电机(未图示)。浮式液化天然气制造设备1内所需的电力由设置在船内动力设置区域4上的这些设备来供给。0050 接。

23、下来,使用图2及图3,说明本实施方式的液化装置的结构。0051 图2表示图1所示的液化装置的右侧放大结构图,图3表示其左侧放大结构图。0052 液化装置10主要具备高压氮换热器11、低压氮换热器12、高压氮压缩机13、低压氮压缩机14、压缩机驱动用蒸汽轮机15、焦耳-汤姆逊膨胀阀(减压阀)16、锅炉(未图示)、末端闪蒸罐30。液化装置10分为制冷循环和驱动液化装置10的驱动部。0053 制冷循环具备:高压的天然气(例如15MPa至20MPa)与作为制冷剂的氮进行热交换的高压氮循环17;比较低压的天然气(例如6MPa以下)与作为制冷剂的氮进行热交换的低压氮循环18。这两个制冷循环成为相互独立的循。

24、环。0054 驱动部具备压缩机驱动用蒸汽轮机15。0055 高压氮循环17主要具备高压氮换热器11、高压氮压缩机13、高压氮膨胀机19。0056 高压氮换热器11使高压的天然气与氮(以下,称为“高压氮”)进行热交换。对高压氮换热器11优选使用例如Heatric公司的板式的不锈钢板扩散类型(diffusion-bonded heat exchangers)。0057 高压氮压缩机13对高压氮(高温侧热介质)进行压缩。在高压氮压缩机13连接有与后述的压缩机驱动用蒸汽轮机15连接的高压涡轮侧减速器20。高压氮压缩机13通过高压涡轮侧减速器20被驱动而对高压氮进行压缩。0058 高压氮膨胀机19使高压。

25、氮膨胀。在高压氮膨胀机19连接有高压氮升压机21。高压氮升压机21通过高压氮膨胀机19使高压氮膨胀并进行旋转驱动而被驱动。高压氮升压机21通过被驱动而使高压氮升压。0059 低压氮循环18主要具备低压氮换热器12、低压氮压缩机14、低压氮膨胀机22。0060 低压氮换热器12使天然气与氮(以下,称为“低压氮”)进行热交换。低压氮换热器12使用铝钎焊板翅片类型的换热器。0061 低压氮压缩机14对低压氮(低温侧热介质)进行压缩。在低压氮压缩机14连接有与后述的压缩机驱动用蒸汽轮机15连接的低压涡轮侧减速器23。低压氮压缩机14通过低压涡轮侧减速器23被驱动而对低压氮进行压缩。0062 低压氮膨胀。

26、机22使低压氮膨胀。在低压氮膨胀机22连接有低压氮升压机24。低压氮升压机24通过低压氮膨胀机22使低压氮膨胀并进行旋转驱动而被驱动。低压氮升压机24通过被驱动而使低压氮升压。0063 压缩机驱动用蒸汽轮机15是在船舶的主机中使用的并联复式的大型的蒸汽轮机。作为压缩机驱动用蒸汽轮机15,优选使用三菱重工业制的UST(Ultra Steam Turbine)。0064 压缩机驱动用蒸汽轮机15具备高压涡轮15a、中压涡轮(高压涡轮)15b、第一低压涡轮15c、第二低压涡轮15d。高压涡轮15a和中压涡轮15b设置在第一级轴15e(高压涡轮侧轴)上。第一低压涡轮(低压涡轮)15c和第二低压涡轮(低。

27、压涡轮)15d设置在第二级轴(低压涡轮侧轴)15f上。说 明 书CN 102959351 A6/11页80065 在第一级轴15e的端部连接有高压涡轮侧减速器20,在第二级轴15f的端部连接有低压涡轮侧减速器23。0066 高压涡轮侧减速器20将从第一级轴15e传递的输出向高压氮压缩机13传递。由此,高压氮压缩机13通过高压涡轮15a或中压涡轮15b被进行旋转驱动而被驱动。0067 低压涡轮侧减速器23将从第二级轴15f传递的输出向低压氮压缩机14传递。由此,低压氮压缩机14通过第一低压涡轮15c或第二低压涡轮15d被进行旋转驱动而被驱动。0068 锅炉(蒸汽产生单元)是使用后述的废气或蒸发气。

28、等液化天然气和重油作为燃料的混烧锅炉。0069 末端闪蒸罐30使通过高压氮循环17及低压氮循环18后的液化天然气膨胀而使温度下降。在末端闪蒸罐30中,液化天然气被除去含有的氮成分。需要说明的是,也可以取代末端闪蒸罐30而使用减压阀。0070 焦耳-汤姆逊膨胀阀16设置在高压氮循环17与低压氮循环18之间。焦耳-汤姆逊膨胀阀16通过其节流机构而使通过了高压氮循环17的天然气发生焦耳-汤姆逊膨胀。0071 接下来,说明天然气的液化方法。0072 从陆地上或海底的地层下喷出的原料气体即天然气被导向设置在浮式液化天然气制造设备1(参照图1)的甲板上的前处理装置3。天然气在前处理装置3中,被除去含有的二。

29、氧化碳、硫化氢、水分、重质成分等。0073 通过前处理装置3精制的天然气被导向冷箱5。被导向冷箱5的天然气通过升压压缩器31(参照图2)等而升压至例如15MPa以上。需要说明的是,该升压优选为10MPa以上。0074 通过升压压缩器31而成为高压的天然气被导向第一换热器32。被导向第一换热器32的天然气与海水进行热交换而温度下降至例如30。通过第一换热器32而温度下降后的天然气还被导向第二换热器33。被导向第二换热器33的天然气与作为冷却水的清水进行热交换而温度下降至例如-20。通过如此与冷却水进行热交换而进行预冷,能够提高与高压氮循环17中的高压氮的热交换效率。0075 通过第二换热器33而。

30、预冷的天然气被导向高压氮循环17。被导向高压氮循环17的天然气被导向构成高压氮循环17的高压氮换热器11。被导向高压氮换热器11的天然气在设于高压氮换热器11内的第一过冷却部K1中与高压氮进行热交换。通过在第一过冷却部K1中与高压氮进行热交换,天然气下降至例如-80。0076 温度下降后的天然气被导向焦耳-汤姆逊膨胀阀16。被导向焦耳-汤姆逊阀16的天然气由于通过焦耳-汤姆逊膨胀阀16而压力膨胀(减压)至例如10MPa。由此,通过了焦耳-汤姆逊膨胀阀16的天然气的温度下降至例如-90。0077 需要说明的是,优选通过基于焦耳-汤姆逊膨胀阀16的膨胀而使天然气成为10MPa以下。0078 由于通。

31、过焦耳-汤姆逊膨胀阀16而发生膨胀从而温度下降的天然气被导向低压氮循环18。被导向低压氮循环18的天然气被导向构成低压氮循环18的低压氮换热器12。被导向低压氮换热器12的天然气以两阶段与低压氮进行热交换。即,天然气在设于低压氮换热器12的第二过冷却部K2中使温度下降至例如-135之后,在设于低压氮换热器12的说 明 书CN 102959351 A7/11页9第三过冷却部K3中使温度下降至例如-160而液化。0079 如此液化的液化天然气被导向末端闪蒸罐30。被导向末端闪蒸罐30的液化天然气在末端闪蒸罐30内发生膨胀从而其温度下降,并且液化天然气中的氮成分被排出。温度进一步下降而氮成分被排出后。

32、的液化天然气被导向图1所示的货物罐2而储存。0080 被导向末端闪蒸罐30的液化天然气的一部分发生气化。关于气化后的液化天然气(以下,称为“废气”)的量,通过调节导向末端闪蒸罐30的液化天然气的温度,而闪蒸率成为例如10%以下。0081 废气(例如-140)被从末端闪蒸罐30导向低压氮换热器12。被导向低压氮换热器12的废气在设于低压氮换热器12的第二过冷却部K2中与前述的天然气进行热交换。由此,废气的温度成为例如-100。而且,废气被导向设于低压氮换热器12的第二冷凝部G2。被导向第二冷凝部G2的废气与后述的低压氮进行热交换。在第二冷凝部G2中进行了热交换后的废气的温度被加热至例如30而从低。

33、压氮换热器12导出。0082 另外,在货物罐2(参照图1)内,液化天然气的一部分气化后的蒸发气也与废气同样地被导向低压氮换热器12。被导向低压氮换热器12的蒸发气在设于低压氮换热器12的第二过冷却部K2及第二冷凝部G2中进行热交换,其温度被加热至例如30而从低压氮换热器12导出。0083 接下来,说明高压氮的流动。0084 在高压氮循环17内循环的高压氮通过由高压涡轮侧减速器20驱动的高压氮压缩机13而被压缩为例如12MPa、120。成为高压的高压氮被导向第三换热器34。被导向第三换热器34的高压氮与从未图示的供水系统引导的供水进行热交换而温度下降至85。0085 通过了第三换热器34的高压氮。

34、还被导向第四换热器35。被导向第四换热器35的高压氮与从未图示的清水系统引导来的清水进行热交换而温度下降至40。温度下降至40的高压氮被导向高压氮换热器11。被导向高压氮换热器11的高压氮被导向设于高压氮换热器11的第一冷凝部G1。0086 被导向第一冷凝部G1的高压氮与通过第一过冷却部K1而膨胀的高压氮进行热交换。由此,通过了第一冷凝部G1的高压氮的温度下降至例如-25。在第一冷凝部G1中进行热交换而温度下降的高压氮被导向高温氮膨胀机19。被导向高温氮膨胀机19的高压氮膨胀为例如2MPa、-85。膨胀而温度下降的高压氮被导向设于高压氮换热器11的第一过冷却部K1。0087 被导向第一过冷却部。

35、K1的膨胀的高压氮与前述的天然气进行热交换而被加热至例如-30。在第一过冷却部K1中被加热的高压氮在第一冷凝部G1中与从第四换热器35引导来的高压氮进行热交换而被加热至例如35。0088 通过设于高压氮换热器11的第一过冷却部K1及第一冷凝部G1而被加热的膨胀的高压氮被导向高压氮升压机21。被导向高压氮升压机21的膨胀的高压氮由高压氮升压机21升压而成为例如3MPa、85,被导向第五换热器36。0089 被导向第五换热器36的升压后的高压氮与从清水系统引导来的清水进行热交换而温度下降至例如40。通过第五换热器36而温度下降的高压氮被导向高压氮压缩机13。0090 如以上所述,高压氮在高压氮循环。

36、17内循环。0091 接下来,说明低压氮的流动。说 明 书CN 102959351 A8/11页100092 在低压氮循环18内循环的低压氮通过由低压涡轮侧减速器23驱动的低压氮压缩机14而被压缩为例如5MPa。被压缩后的低压氮被导向第六换热器37。被导向第六换热器37的低压氮与从供水系统引导来的供水进行热交换而温度下降至例如85。0093 通过了第六换热器37的低压氮再被导向第七换热器38。被导向第七换热器38的低压氮与从供水系统引导来的供水进行热交换而温度下降至例如40。通过第六换热器37及第七换热器38而温度下降的低压氮被导向低压氮换热器12。被导向低压氮换热器12的低压氮被导向设于低压。

37、氮换热器12的第二冷凝部G2。0094 被导向第二冷凝部G2的低压氮与通过第二过冷却部K2而膨胀的低压氮进行热交换。由此,通过了第二冷凝部G2的低压氮的温度下降至例如-90。在第二冷凝部G2中进行了热交换的低压氮被从低压氮换热器12导向低压氮膨胀机22。被导向低压氮膨胀机22的温度下降的低压氮发生膨胀而成为例如3MPa、-164。膨胀而温度进一步下降的低压氮被导向设于低压氮换热器12的第三过冷却部K3。0095 被导向第三过冷却部K3的膨胀的低压氮与通过了前述的第二过冷却部K2的天然气进行热交换而加热至例如-140。通过了第三过冷却部K3的膨胀的低压氮进而在第二过冷却部K2中与被从焦耳-汤姆逊。

38、膨胀阀16导向低压氮换热器12的天然气进行热交换。与天然气进行热交换而膨胀的低压氮被加热至例如-100。0096 通过第二冷却器K2而膨胀的低压氮还被导向设于低压氮换热器12的第二冷凝部G2。被导向第二冷凝部G2的膨胀的低压氮与从第七换热器38引导来的低压氮进行热交换。由此,膨胀的低压氮成为例如36而从低压氮换热器12导出。0097 通过设于低压氮换热器12的第三过冷却部K3、第二过冷却部K2及第二冷凝部G2而被加热的低压氮被导向低压氮升压机24。被导向低压氮升压机24的膨胀的低压氮借助低压氮升压机24升压而成为例如1MPa、85。升压后的低压氮被导向第八换热器39。0098 被导向第八换热器。

39、39的升压后的低压氮与从供水系统引导来的供水进行热交换而温度下降至例如40。通过第八换热器39而温度下降的低压氮被导向低压氮压缩机14。0099 如以上那样,低压氮在低压氮循环18内循环。0100 接下来,说明蒸汽的流动。0101 从设于低压氮换热器12的第二冷凝部G2导出而被加热至例如30的废气及蒸发气被导向锅炉。被导向锅炉的废气及蒸发气作为锅炉的燃料进行燃烧而产生高温高压(例如555、11MPa)的蒸汽。在锅炉中产生的蒸汽被导向压缩机驱动用蒸汽轮机15的高压涡轮15a。被导向高压涡轮15a的蒸汽将其热能转换成高压涡轮15a的旋转能量而驱动高压涡轮15a旋转。通过驱动高压涡轮15a旋转而第一。

40、级轴15e进行旋转。由于第一级轴15e旋转,而对设于第一级轴15e的中压涡轮15b及高压涡轮侧减速器20进行驱动。0102 另一方面,驱动高压涡轮15a旋转的蒸汽例如成为2MPa而从高压涡轮15a导出。从高压涡轮15a导出的蒸汽被导向未图示的再热器。被导向再热器的蒸汽借助再热器而成为例如555的再热蒸汽。该再热蒸汽被导向压缩机驱动用蒸汽轮机15的中压涡轮15b。0103 将被导向中压涡轮15b的再热蒸汽的热能转换成中压涡轮15b的旋转能量而驱动中压涡轮15b旋转。通过驱动中压涡轮15b旋转而使得第一级轴15e进一步旋转。由于第一级轴15e进一步旋转,而对设于第一级轴15e的高压涡轮侧减速器20进一步进行驱动。0104 中压涡轮15b从其中途段抽出蒸汽的一部分。被抽出的例如1MPa的蒸汽用于在说 明 书CN 102959351 A10。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 机械工程;照明;加热;武器;爆破 > 制冷或冷却;加热和制冷的联合系统;热泵系统;冰的制造或储存;气体的液化或固化


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1