用于离心分离器的转子 本发明涉及用于从液体中清除悬浮在液体中且密度大于液体的颗粒的离心分离器。更准确地说,本发明涉及一种用于此类型的离心分离器的转子,该转子可绕其中心轴线旋转,且它包括一个具有两个轴向分离的端壁和一个位于两个端壁之间并围绕该中心轴线的外壁;一个在外壳中央限定一个进口通道的进口部件;一安装在外壳中的分离装置;和至少一个出口部件,该出口部件位于其中一个端壁的区域中,与中心轴线间隔有一定的距离并限定了一个出口通道,该出口通道是这样定向地,即从中流出的液体在转子的圆周方向上在转子上实施一个反作用力。
通过要清洁的液体的过压形成用于反作用驱动的此种类型的转子长期以来是公知的。通常它们被用于较小液流的清洁,并且较小和轻。
在已使用此种类型转子的连接结构中,对分离效率的要求并不是很大,但是仍然建议改进某些不同类型的转子插入件形式的某些装置。
因而,插入件被建议为不同类型的过滤器形式。专利文件GB1089355和GB1595816给出了这种过滤器插入件的例子。此外,已经建议的不同类型的分离插入件是这样构成的,即缩短了颗粒的沉降距离,此颗粒要从供应给转子的液体中在转子中分离出来。例如,专利文件GB729169给出了一个螺旋壁形式的分离插入件,该螺旋壁在转子内限定了一个用于清洁液体的螺旋流动通道。专利文件US5637217给出了一个具有圆锥分离盘的分离插入件。
专利文件US2067273给出了一个最初所定义类型的离心转子的更进一步的结构。在此离心转子中,安装有一个含有许多分离盘的分离装置,该分离盘布置在外壳内,位于中心轴线和外壳的外壁之间并绕中心轴线分布,这样它们就形成了许多轴向延伸的分离通道。每个分离盘在轴向和从中心轴线向外壳的外壁、从一径向内部边缘向一径向外部边缘延伸,与从中心轴线延伸到外壁的假想半径形成一个角度。
本发明的目的是提供一种最初所定义类型的用于反作用驱动的转子,在转子的分离空间内设有一个专门的分离装置,转子能够比已知的此类型转子具有一个更高的分离效率。
根据本发明能够实现此目的,如果一个最初所定义类型的转子设有一个根据专利文件US2067273的离心转子中所包括类型的分离部件,而且还具有一个在外壳中心限定一个进口通道的进口部件,该进口通道通过位于一第一外壳端壁和所述分离装置之间的一个分配室与分离通道连通,所述分离通道从分离室延伸到一个接近外壳的另一端壁的区域。此种转子的特征还在于:
分离盘在其径向外边缘和外壳的外壁之间留有一个用于所分离颗粒蓄聚的颗粒沉积空间;
一个隔板是这样布置在分离盘和外壳的所述另一端壁之间,即在其一侧,它限定了一个收集室,该收集室中分离通道开口,而在其另外一侧,它限定了一个输出室,
在转子中,收集室与输出室在一径向位置上连通,该径向位置基本上对应于分离盘的径向内边缘的径向位置,
上述出口通道与输出室连通,并延伸到转子的外部,它在所述径向位置之外的一径向位置处的液体自由空间开口,在该径向位置收集室和输出室互相连通。
在一个根据本发明的转子中,当液体通过转子分离装置,也就是通过限定在分离盘之间的所述分离通道时,对要清洁的液体有可能实现较小的通流阻力。与一普通过滤器或一组圆锥分离盘相比,根据本发明所建议的该种分离部件和实际上已知的另一种离心分离器对要清洁的液体产生了一个令人惊奇的小通流阻力,特别地,如果液体具有低粘度的话。尽管小的通流阻力,在上述分离通道中能够实现一个分离效率,该效率实际上相当于在圆锥分离盘之间的空间所获得的效率。与这里所述类型的离心分离器有关,重要的是尽可能大部分的利用向转子提供要清洁的液体的过压来驱动离心转子。通过利用根据本发明所建议的此种类型转子中的分离部件,比使用例如根据上述专利文件US5637217的技术的分离部件,要清洁的液体较大部分过压可以用于驱动离心分离器。这意味着,根据本发明的离心转子可以提供一个较高的转速,从而比根据专利文件US5637217的所述已知离心转子具有更高的分离效率。
同样与根据上述专利文件US2067273的离心转子相比,该转子包括一个与根据本发明的离心转子的分离装置类似的分离部件,根据本发明的离心转子可以提供一个更高的分离效率。它取决于这样的情形,即已知的离心转子有一个比根据本发明的离心转子更少有效的驱动装置。因而,用于反作用驱动已知离心转子的出口喷嘴在一个很小的半径范围内。而且,这些喷嘴的出口通道还通向承受一定过压的液体。
由要清洁的液体供应给一反作用驱动离心转子的过压,对于离心转子的驱动可能是关键的,这已经在专利文件WO96/23589中作为例子提到了。在此情况下,所述液体由从一个可自动清洁的过滤器中返回的液体所构成。在此连接中,有时很难获得一个足够高的返回液体压力,用于完成反作用驱动离心转子的良好运行。在专利文件WO96/23589中,这个问题是这样解决的,即离心转子不仅连续供应返回液体,而且连续供应一个分离驱动液体。此种配置复杂而且昂贵,经常能够通过使用本发明来避免这一点,同时能保持转子良好的分离效率。
下面将参照附图对本发明进行更详细的描述,其中图1和图2表示根据本发明的离心转子的第一实施例。其中,图1表示沿图2中Ⅰ-Ⅰ线穿过离心转子的截面,而图2表示图1中从上往下看的离心转子,仅仅示出了围绕离心转子的外壳的一半。 图3-5表示根据本发明的离心转子的第二实施例。图3表示的截面与图1所示的类似。图4是一个混合视图,且表示沿图3中A-A线的截面,以及在离心转子上部的几个旋翼的径向延伸。图5表示移去部分周围外壳的离心转子的部分。
图1和图2中的转子包括一个圆形底板1,该底板有一个中心孔2并在中心支撑一个管柱3。管柱3的内部形成一个通道4,该通道与底板的中心孔2相连通。
一个环形盖5围绕管柱3放置并保持固定在管柱上以及通过一螺母6固定到底板1上。盖5和底板1构成了一个围绕转子内的一分离室7的外壳。在此外壳中,底板1构成了一第一端壁,而盖5构成了第二端壁8和一外壁9。外壁9在端壁1和8之间绕管柱3同心地延伸。
转子可绕中心轴线10旋转,为此目的,中心管柱3分别在其端部支撑轴承部件3a和3b。
在分离室7内,转子有一个分离装置,该装置包括许多绕转子中心轴线10均匀分布的分离盘11。每个分离盘从中心轴线10以弧形向着外壁9延伸,如从图2中可看到的,并且在流量分布和液体夹带上部径向翼12与下部弧形伸展翼13之间径向伸展,如从图1中可看到的。分离盘11在其本身之间形成细的分离通道,通道与分离盘具有相同的范围。在图2中分离盘部分被省略,这样可以看到某些下部弧形伸展翼13。
与旋翼12和13一样,分离盘11由一包括一个套筒14的中心支撑件支撑,套筒14围绕中心管柱3并由中心管柱3导向。套筒14与有一下部环形支撑件15构成一体,支撑件通过一个轴向向上的环形紧固法兰延伸到分离盘11的下部边缘部分的凹槽中。相应地在分离盘的上部边缘部分形成的凹槽形成了一个向上的环形开口槽,该槽用于上部环形支撑件16的轴向向下的环形紧固法兰。
支撑件15和16可以互相轴向分离和由在标记17处分开的套筒14从分离盘11上轴向分离(图1)。
分离盘11的径向外部部分通过三个环18互相保持一定的位置,各环在不同的轴向高度围绕所有的分离盘。从下面明显可以得出,这些环18中的最上面的环充满了分离盘11和外壳的外壁9之间的整个空间。通过与分离盘成一体形成的并以一定的合适方式横过其表面分布的隔离部件19,分离盘11彼此互相保持一定的距离。
在下部翼13和底板1之间,一个环形隔板适于从外壳的外壁9径向向内延伸到分离盘11的径向最里面部分的区域。隔板有一个中心平面部分20,该部分位于与分离盘11轴向上相反的位置;一个围绕翼13的短圆柱中间部分21;和一个径向最外面的另一平面部分22,该部分充填了外壳的外壁9和分离盘11的径向外部的最低部分之间的空间。
在转子中被清洁的液体通过过压经由底板1中的孔2进入通道4。作为选择,液体可以从相反的方向进入通道4。通道4的液体通过管柱3中的开孔23被导入一分配室24,该分配室形成在外壳5的上部,且在该室中有径向上部翼12。
然后,液体将沿轴向流过形成在分离盘11之间的分离通道。在那里悬浮在液体中的并比液体重的颗粒被分离出来,液体继续向下流动到一个收集室25,在该收集室中具有弧形伸展的下部翼13。如可从图中看到的,翼13有一个与分离盘11的伸展相反的弧形伸展。因此,翼13比如果仅仅径向延伸的情况可以轴向上支撑较大数量的分离盘,而且起收集室25中夹带液体转动的部件的作用。最上边的环18防止轴向液体径向流动到分离盘之外。
底板1设有两个凹陷区,该凹陷在隔离部分20的下面形成了两个输出室26。 这些输出室26与上述收集室25在隔离部分20的径向内边缘连通。
在面向转子的圆周方向的每个输出室26的限制壁上,底板1设有一个有一出口通道27的喷嘴。出口通道27开口在液体自由空间,该自由空间在隔离部分20的内边缘径向外边的位置处,它在转子的外边,其压力为大气压。当增压的液体通过出口通道27离开输出室26时,转子由反作用力驱动,使得转子围绕中心轴线10转动。
没有表示或描述转子是如何支撑和如何转动并且要清洁的液体是如何导入通道4中的,因为这对相关技术领域的技术人员来说是公知的。
与件14-16一样在转子中保持一定位置的分离盘11可以,最好用塑料制成。如果需要,分离盘可以以这样一种方式制成,即它们基本上贯穿转子的整个分离室。这里所描述类型的分离盘与圆锥形分离盘相比,其优点是,所有这些分离盘可以同一地用相同方式形成,尽管这样,还是给出了这样一种形式,即它们延伸到分离室的所有需要的部分。因而,这样分离盘的组件并不局限于一定的几何形状,例如是一叠同一形成圆锥形分离盘,而是可以采用所需要的转子形状。因此,对于所述离心分离器可以最大程度地利用转子内可利用的空间。
在根据图1和图2形成的离心转子中,比液体重的颗粒在分离通道中被分离出来,然后沿着分离盘滑向颗粒沉积空间并被收集在该颗粒沉积空间中,该颗粒沉积空间在转子的外壁9上。在工作一定时间后或当一定量的颗粒收集在转子中时,中断工作,打开盖5清除颗粒。
在本发明的范围内,有可能提供一种这里所述类型的带有一个插入件的转子,该插入件收集被分离的颗粒,它能够在工作中断期间从转子中清除,且与颗粒一起被扔掉,随后一个这种新的插入件能被安装在该转子内。
这种插入件可能包括上述隔板20-22和一个与之成整体形成的圆柱容器,该容器用于在所述盖5中形成一个可移动的衬套。此种衬套可能从隔板20-22向上延伸到围绕分离盘的最上边的环18。
可选地,如果分离盘11和它们的支撑部件14-16制造可以足够便宜,即使这些件与隔板20-22和上述衬套一起也可能形成一个可互换的插入件。这种可互换插入件就没必要被扔掉,而是可以在清洁后替换和重新使用。
图3-5表示一个根据本发明有一些改形的离心转子。对于相应的细节,在图3-5中与图1-2中使用的参考标记相同。
在图3-5中所示的转子中,分离盘11安装在一个支撑件上,该支撑件包括一个下部支撑件15a和一个上部支撑件16a。支撑件15a和16a通过一个卡锁装置17a可移去地连接,并由中心柱3导向。卡锁装置17a放置在其轴端之间大约一半的地方并在分离盘11的径向内部,因此它较难于接触到,因而不能够被无意中打开。因此,分离盘不能被无意中从支撑件15a和16a上松开。
下部支撑件15a与隔板20和收集室25中的翼13是形成为一体的。上部支撑件16a与分配室24中的翼12是形成为一体的。
如图4-5中所能看到的,翼12有两种不同类型。两个翼12a位于柱3直径上的两个相对侧,它们在柱3的进口23所在的平面中基本上延伸到柱3中。另外的翼12b在此平面上不延伸到柱3中,而是在它们与柱3之间留有一个自由空间28。
柱3有两个用于在转子中的要处理液体的进口23。从转子的旋转方向来看,每个进口在紧接位于延伸到柱3内的其中一个翼12a的前面的区域开口。在图4中此旋转方向用箭头W表示。因而,通过进口23进入转子的液体将在转子转动方向上由相邻的翼12a带走,从而避免了液体相对于转子在其转动方向的相反方向上滑动。由过压通过一进口23提供的液体的主要部分将在转子的转动方向上受压,该液体通过一个靠近柱3形成的通道,尤其是所述空间28,直至另一个延伸到柱3的翼12a。因此,进入翼12a和12b之间的空间的输入液体达到了平均分配,从而达到了在分离盘11之间的所有分离通道的平均分配。
上述不同类型翼12a和12b的配置,以及与翼有关的进口23的具体位置具有一个优点,举例来说,用在相邻翼之间的每个空间上的一个进口,取代了柱3上的大数量的较小进口,该进口用于在转子分离室内完成液体平均分配。翼12的数量一超过进口23的数量就可以使用上述配置。
在根据图3-5的转子中,围绕分离盘的最上边环18a不延伸出外壳5,而是在环与外壳之间留有一个小空间29。此空间的尺寸设计成这样,即它允许固体通过,该固体是从已经在分配室24中输入液体中分离出来的,从而沉积在外壳5内部于环18a的区域内。转子在短时间运行后,沉积在外壳的内部的一个颗粒层将至少充满部分空间29。只要没有同样厚度颗粒层形成在外壳5的内部于环18a的下面,无论如何,分离的颗粒将沿着外壳5穿过环18a缓慢向下移动,从而避免了颗粒在分配室24中的蓄聚。
如可从图中看到的一样,外壳5也稍微呈圆锥形,所以它的直径在轴向上离开分配室24而增加,这有助于彻底避免空间29的阻塞。