改进或涉及光子晶体光纤.pdf

上传人:62****3 文档编号:1446124 上传时间:2018-06-16 格式:PDF 页数:25 大小:1.02MB
返回 下载 相关 举报
摘要
申请专利号:

CN00803964.X

申请日:

2000.02.18

公开号:

CN1341221A

公开日:

2002.03.20

当前法律状态:

授权

有效性:

有权

法律详情:

专利申请权、专利权的转移(专利权的转移)变更项目:专利权人变更前权利人:布拉兹光子学有限公司变更后权利人:晶体纤维公司变更项目:地址变更前:英国巴斯变更后:丹麦比克勒登记生效日:2005.3.25|||授权|||公开|||实质审查的生效

IPC分类号:

G02B6/17; G02B6/16; C03B37/075; C03B37/027

主分类号:

G02B6/17; G02B6/16; C03B37/075; C03B37/027

申请人:

布拉兹光子学有限公司;

发明人:

菲利普·圣约翰·鲁赛尔; 蒂莫西·亚当·比尔克斯; 乔纳森·卡夫·奈特

地址:

英国巴斯

优先权:

1999.02.19 GB 9903918.2; 1999.02.19 GB 9903923.2

专利代理机构:

中国国际贸易促进委员会专利商标事务所

代理人:

王以平

PDF下载: PDF下载
内容摘要

光子晶体光纤包含具有纵向孔(130,140)和导向纤芯(135)的块体材料,其中纤维关于纵轴具有至少两重转动对称,并且作为缺少对称的结果,该光纤是双折射的。

权利要求书

1: 一种光子晶体光纤,包含具有纵向孔和波导纤芯排列的块体材料, 其中该光纤关于纵轴具有最多两重旋转对称,和作为对称缺少的结果, 该光纤是双折射的。
2: 如权利要求1的光子晶体光纤,其中除了纤芯的出现,孔的排列基 本上是周期性的。
3: 如权利要求1或2的光子晶体光纤,其中双折射是使得在光纤中传 输的具有波长1.5微米的光具有小于5mm的差拍长度。
4: 如先前任一权利要求的光子晶体光纤,其中该光纤具有两重旋转对 称。
5: 如先前任一权利要求的光子晶体光纤,其中旋转对称是关于通过纤 芯的轴的。
6: 如权利要求1至5的任一项的光子晶体光纤,其中纤芯包括一个孔。
7: 如权利要求6的光子晶体光纤,其中该孔用不是空气的材料填充。
8: 如权利要求1至5的任一项的光子晶体光纤,其中纤芯不包括孔。
9: 如先前任一权利要求的光子晶体光纤,其中孔的排列关于平行于光 纤纵轴的轴具有最多两重旋转对称。
10: 如权利要求1至8的任一项的光子晶体光纤,其中孔的排列关 于平行于光纤纵轴的轴具有高于两重旋转对称。
11: 如先前任一权利要求的光子晶体光纤,其中较高旋转对称的缺 少至少部分由横跨光纤横截面的纤芯微结构的变化产生。
12: 如先前任一权利要求的光子晶体光纤,其中较高旋转对称的缺 少至少部分由横跨光纤横截面的孔的直径的变化产生。
13: 如先前任一权利要求的光子晶体光纤,其中较高旋转对称的缺 少至少部分由横跨光纤横截面的在块体材料中的变化产生。
14: 如先前任一权利要求的光子晶体光纤,其中较高旋转对称的缺 少至少部分由横跨光纤横截面的包含在孔中的材料的变化产生。
15: 如先前任一权利要求的光子晶体光纤,其中较高旋转对称的缺 少至少部分由横跨光纤横截面的孔的形状的变化产生。
16: 如权利要求15的光子晶体光纤,其中形状变化是由于在拉制时 光纤中的应力所造成的变形而产生的。
17: 如先前任一权利要求的光子晶体光纤,其中较高旋转对称的缺 少由横跨光纤横截面的变化产生,该变化是下述中的一种变化结合下述 中的一种或多种变化或结合其它参数的变化:纤芯的微结构,孔的直径, 块体材料,包含在孔中的材料,孔的形状。
18: 如先前任一权利要求的光子晶体光纤,其中双折射光纤具有形 状双折射。
19: 如先前任一权利要求的光子晶体光纤,其中双折射光纤具有应 力双折射。
20: 一种双折射光子晶体光纤的生产方法,该方法包括下列步骤: (a)将细丝形成细丝堆,至少一些细丝是毛细管,该细丝堆包括 排列以形成光纤纤芯区域的细丝和排列以形成光纤包层区域的细丝。 (b)将细丝堆拉成双折射光纤,该光纤关于任一纵轴具有最多两 重旋转对称。
21: 如权利要求20的方法,其中细丝的堆积被排列成关于该堆积的 纵轴具有最多两重旋转对称。
22: 如权利要求20或21的方法,其中较高旋转对称的缺少至少部 分由横跨堆积横截面的毛细管内径的变化产生。
23: 如权利要求20至22任一项的方法,其中较高旋转对称的缺少 至少部分由横跨堆积横截面的构成细丝的材料的变化产生。
24: 如任一权利要求20至23任一项的方法,其中较高旋转对称的 缺少至少部分由横跨堆积横截面的毛细管填充的材料的变化产生。
25: 如任一权利要求20至24任一项的方法,其中较高旋转对称的 缺少至少部分由横跨堆积横截面的细丝外径的变化产生。
26: 如任一权利要求20至25任一项的方法,其中细丝被提供在包 层点阵的顶点处,该点阵关于排列形成纤芯的细丝的中心具有最多两重 旋转对称。
27: 如权利要求20至25任一项的方法,其中选择的内径的毛细管 被提供在包层点阵的顶点处,该点阵关于排列形成为纤芯的细丝中心具 有最多两重旋转对称,位于包层点阵顶点处的毛细管的选择内径不同于 在其它处的毛细管的内径。
28: 如权利要求20至27任一项的方法,其中排列形成纤芯的细丝 附近的包层细丝的基本数量不同于排列形成纤芯的细丝的远处的包层细 丝的基本数量。
29: 如权利要求20至28任一项的方法,其中双折射至少部分由在 拉制光纤时在光纤中形成的应力产生。
30: 如权利要求29的方法,其中应力是由在具有最多两重旋转对称 处的细丝内含物引入的,该细丝由一种材料做成,该材料至少不同于形 成点阵中一些其它细丝的材料。
31: 如权利要求29的方法,其中应力是由在具有最多两重旋转对称 处的毛细管内含物引入的,该毛细管具有一种毛细管壁厚度,该厚度至 少不同于一些其它毛细管的厚度。
32: 如权利要求29至31任一项的方法,其中应力导致围绕在拉制 的光纤纤芯周围的孔的变形,并且该变形导致双折射。
33: 如权利要求29至31任一项的方法,其中应力导致拉制的光纤 纤芯中出现应力,并且该应力导致双折射。
34: 如权利要求20至33任一项的方法,其中旋转对称的缺少至少 部分由在提拉纤维堆的过程中至少其中一个毛细管的加压产生。
35: 如权利要求20至34任一项的方法,其中旋转对称的缺少至少 部分由在提拉纤维堆的过程中至少其中一个毛细管的抽空产生。
36: 如权利要求20至35任一项的方法,其中细丝堆的旋转对称是 两重旋转对称。
37: 一种光子晶体光纤的生产方法,包括: (a)提供多个拉长的细丝,每个细丝具有纵轴、第一端和第二端, 至少一些细丝是毛细管,每个毛细管都具有一个平行于纵轴并从细丝的 第一端延长到细丝的第二端的孔; (b)将细丝形成堆,排列细丝,使它们的纵轴基本相互平行并且 平行于堆的纵轴; (c)将堆拉成光纤,同时保持至少一个毛细管的孔和第一压力的 流体源联系,同时保持毛细管周围的压力在第二压力,该第二压力不同 于第一压力,其中在第一压力的孔在拉制过程中变成不同于在没有压差 时它会变成的尺寸。
38: 如权利要求27的方法,其中一种管至少在一部分长度上围绕细 丝堆,并且管的内部被保持在第二压力。
39: 如权利要求38的方法,其中该管限制了至少一个在第一内部压 力的孔的膨胀。
40: 如权利要求37至39任一项的方法,其中该管不经历显著不同 于在没有压差时它应当经历的变形。
41: 如权利要求37至40任一项的方法,其中在拉制过程中: 管的第一端附近被密封到可抽空结构的第一端,并且该管的第二端 位于可抽空结构中; 至少一些毛细管通过可抽空结构并且被密封到它的第二端; 并且该可抽空结构基本上被抽空,以产生第二内压。
42: 如权利要求41的方法,其中该可抽空结构是一金属管。
43: 如权利要求37至42任一项的方法,其中细丝堆关于任一纵轴 具有最多两重旋转对称。

说明书


改进或涉及光子晶体光纤

    本发明涉及光子晶体光纤和光子晶体光纤的生产方法。

    光子晶体光纤是光纤的一种特殊形式。光纤被用于很多领域,包括通讯,激光加工和焊接,激光束和功率发送,光纤激光,传感器和医学诊断及外科手术。光纤完全由诸如玻璃的固态透明材料典型做成,并且每个光纤沿着其长度典型具有相同的横截面结构。在横截面一部分(通常在中间)中的透明材料比其它部分具有较高的折射率,并形成纤芯,在其中光以全内反射的方式传输。我们把所述光纤称作标准光纤。

    由于它们优越的波导特性,单模光纤对许多应用来说是优选的。然而,即使所谓的单模光纤通常不能对传输光的偏振提供足够的控制。称其为单模光纤是因为它只支持在重要频率的横向空间模,但该空间模以两种偏振状态存在;即存在正交方向上偏振的两种简并模。在实际的光纤中,缺陷将打破这两种模的简并,并且将发生模态双折射;也就是说,对于每个正交模,模传播常数β将轻微不同。由于模态双折射由无规则的缺陷产生,传播常数将沿着光纤无规则变化。通常,导入到光纤中的光将以这两种模传输,并且通过光纤中的小弯曲或扭曲被从一种耦合到另一种上。线性偏振光在沿着光纤传输时,将被扰频为任意的偏振状态。

    为了在标准光纤中维持模的偏振,可故意将双折射引入到光纤中(使得这两种模的有效指数(折射率)是不同的),以使小缺陷效应无关紧要。如果光在光纤一个光轴平行的方向上被线性偏振,那么光将维持其偏振。如果在沿着光纤传输时,光在其它角度被线性偏振,偏振将发生变化,从线性到椭圆到线性再到椭圆并再次返回到线性,具有通常所说的差拍长度的周期LB,其中,βX和βY是正交模的传播常数。这种变化是模的正交分量间的相位差地结果,相差由它们的传播常数间的差别产生。差拍长度越短,光纤对偏振不规则性效应越具有弹性。常规的偏振保留(保偏)光纤典型具有毫米级的差拍长度,双折射的强度也可以参数表示,其中(其中λ是波长),nX和nY是正交模所观测到的折射率。

    最近几年,已论证了一种光纤的非标准类型,称为光子晶体光纤(PCF)。该光纤由单一固态和基本透明材料典型做成,在材料中植入空气孔的周期排列,空气孔平行于光纤轴并延伸至光纤的全长。以规则排列中缺少单一空气孔的形式的缺陷形成折射率增加的区域,在其中光以类似于标准光纤中全内反射的方式传输。引导光的另一机理是基于光子带隙效应而不是全内反射。通过空气孔排列的合适设计可得到光子带隙引导。具有特定传播常数的光可被束缚在纤芯中并在其中传输。

    通过将玻璃丝(其中一些在宏观尺寸上为毛细状)堆积成所需的形状,然后使其熔化在一起将其固定在适当的位置,并且将其拉成光纤可制作光子晶体光纤。PCF具有非凡的性能,例如能够在单模中传输波长范围非常大的光,并且能够传输具有相当大的保持单模的模式区域的光。

    通过几种机理可产生双折射。它可由材料极化率的各向异性本质;即分子水平的各向异性产生。它可由大于原子尺度上的材料结构的元素排列产生;这种现象被称为形状双折射。它也可有机械应力产生;这种现象被称为应力双折射或光弹性效应。在标准光纤中,通过改变光纤横截面的形状得到形状双折射;例如,通过形成纤芯或包层为椭圆。在弱波导光纤中的双折射通常相当弱(B~10-6)。在光纤预型中通过将硼硅玻璃棒插入到光纤纤芯的对侧可引起应力双折射。硼硅玻璃棒的位置和形状的变化可引起双折射的不同程度。应力导致的双折射允许B~10-4。

    在标准光纤中用于产生双折射,并且因此产生标准保偏光纤的方法通常不能直接适用于光子晶体光纤。

    本发明的目的在于提供一种双折射的光子晶体光纤,使得该光纤可被用作偏振保留光纤。本发明的另一目的在于提供所述光纤的生产方法。

    根据本发明,提供一种包含具有纵向孔和导向纤芯的块体材料的光子晶体光纤,其中该光纤关于纵轴(其为任一纵轴)具有最多两重旋转对称,并且作为缺少对称的结果,该光纤是双折射的。

    除了纤芯的出现,孔的排列基本上是周期性的。

    较为有利地,双折射是在光纤中传输的具有波长1.5微米的光具有小于1cm的差拍长度的双折射。更加有利地,双折射是在光纤中传输的具有波长1.5微米的光具有小于5mm的差拍长度的双折射。更加有利地,双折射是在光纤中传输的具有1.5微米的光具有小于1mm并优选小于0.5mm的差拍长度的双折射;在标准光纤中通常得不到所述短差拍长度。当然,特殊光纤不能引导波长为1.5微米的光;在这种情况下,可容易地增加或减小引导波长的差拍长度,使其与在1.5微米处的差拍长度相等。例如,在波长1.55微米的1mm的差拍长度等于在波长633nm的0.41mm的差拍长度,在波长1.55微米的0.5mm的差拍长度等于在波长633nm的0.21nm的差拍长度。

    应当明白,在实际的光纤中,在结构中不可避免地存在着较少的不规则,这就意味着没有光纤能具有任何种类的绝对对称;然而,在常规光子晶体光纤中,很明显,实际光纤确实具有相当数量的旋转对称(最通常具有六重旋转对称),并且该对称对形成光纤性能是足够强的,该性能类似于具有绝对对称的理想光纤的性能。类似地,其中在提到具有最多两重旋转对称的光纤时,应当明白,光纤不但不严格具有任何较高的对称性,而且并不相当于具有相当数量较高对称性的光纤。

    在其最广的方面中,本发明与在光纤任何方面中缺少较高旋转对称有关。更加典型地,在光纤内部微结构的特征中,并且通常在孔的排列特征中,发生对称性的缺少,同时光纤的全部横截面形状可为圆形的,并因此具有圆形对称;具有多于两重旋转对称的孔的排列是在本发明范围内的,在某种意义上缺少多于两重旋转对称的光纤及其排列下面将给出所述排列的实例。

    光纤优选具有两重旋转对称。

    旋转对称优选是关于通过纤芯的轴的对称。

    如果光纤具有多于两重的旋转对称,那么在偏振平行于两个或多个(不是必需正交)轴时,线性偏振光应具有相同的传播常数β。在具有圆形对称的实际光纤中情况通常是这样的,光纤中的缺陷会导致偏振模之间的功率传输平行于每个轴。因此,起初是线性偏振的光会激发另外的模,并快速变成随机偏振。

    纤芯可包括一个孔。可用不是空气的材料来填充该孔。或者,纤芯可不包括孔。

    孔的排列可具有平行于光纤纵轴的最多两重的旋转对称。或者,孔的排列关于平行于光纤纵轴的轴可具有多于两重的旋转对称。旋转对称可为关于通过纤芯的轴的对称。

    较高旋转对称的缺少至少部分由光纤横截面上的下述中的一种或多种变化产生:纤芯的微结构,孔的直径,块体材料,包含在孔中的材料或孔的形状。形状的变化是由于在拉制光纤时由光纤中的应力产生的变形所造成的。较高旋转对称的缺少可由光纤横截面上的变化产生,该变化是下述中的一种变化或下述中的一种或多种协同变化或与其它参数的协同变化:纤芯的微结构,孔的直径,块体材料,包含在孔中的材料,孔的形状。

    双折射光纤可具有形状双折射和/或应力双折射。尽管在标准光纤中的形状双折射不足以给出所需的短差拍长度,但是在光子晶体光纤中潜在的较大折射率对比可导致强的形状双折射。当在拉制过程中,光纤中的应力分布形式扭曲某些沿着轴围绕光纤纤芯的空气孔,给出另外的双折射时,发现了标准光纤不可能有的新效应。

    并且根据本发明,提供一种双折射光子晶体光纤的生产方法,该方法包括下列步骤:

    (a)形成细丝堆,至少一些细丝是毛细管,该细丝堆包括排列以形成光纤纤芯区域的细丝和排列以形成光纤包层区域细丝;以及

    (b)将细丝堆拉成双折射光纤,该光纤关于纵轴具有最多两重旋转对称。

    通过修改用于制作光子晶体光纤预型的方法,从而引入了双折射。制作工序的修改可由在包括预型的细丝周期堆积中的材料对称性的减小组成,材料对称性减小到最多两重对称特性。所述结构通常改变波导模的形状和光子晶体结构中的应力分布形式。

    引入双折射的一种方法可为在预型中包含在格点双重对称线对上的不同毛细管。这些内含物可放置在纤芯的附近,以便改变导模(“形状双折射”)的形状或它们可放置在离开纤芯处,但是它们由不同特性的材料做成,因此改变光纤纤芯(“应力双折射”)中的应力分布形式。预型可被构造得通过用不同类型的毛细管形成光纤预型的相当一部分而引入双折射,同样引入应力和形状双折射。形成波导包层的基本周期点阵可为具有正常同一外径的毛细管的简单密堆积排列,或它可为通常具有不同形态特性并且形成不同周期结构的毛细管的排列。由毛细管和具有不同直径的棒可形成方点阵。对于包层,对于简化光子晶体光纤偏振保留的设计来说,可用方形和矩形点阵自然建造双折射晶体结构。

    较高旋转对称的缺少至少部分由堆积横截面上的毛细管内径的变化,形成细丝的材料的变化,填充毛细管的材料的变化和/或细丝的外径的变化产生。

    可将细丝提供在关于排列形成纤芯的细丝中心具有最多两重旋转对称的包层点阵的顶点处。选择的内径的毛细管可被提供在关于排列形成纤芯的细丝中心具有最多两重旋转对称的包层点阵的顶点处,在包层点阵顶点处的毛细管的选择的直径和在其它点处的毛细管的直径不同。

    排列以形成纤芯的细丝附近的包层细丝的基本数量可以是不同的。

    双折射可至少由在拉制光纤时在光纤中形成的应力产生。该应力可通过在具有最多两重旋转对称的点处由一种材料做成的细丝的内含物而引入,该材料不同于做成点阵中至少一些其它细丝的材料。该应力可通过在具有最多两重旋转对称的点处由具有不同毛细管壁厚度的毛细管的内含物而引入,毛细管的厚度不同于至少其它的一些毛细管的厚度。

    该应力可导致拉制的光纤纤芯周围的孔出现变形并且该缺陷可导致双折射。

    该应力可导致拉制的光纤纤芯中出现应力,并且这些应力可导致双折射。

    较高旋转对称的缺少至少部分地由细丝堆拉制过程中至少一个毛细管的增压和/或抽空产生。

    在上述的任一方法中,细丝堆的旋转对称优选为两重旋转对称。

    并且根据本发明,提供光子晶体光纤的生产方法,包括:  

    (a)提供多个拉长的细丝,每个细丝具有纵轴,第一端和第二端,至少一些细丝是毛细管,每个毛细管都具有一个平行于纵轴并从细丝的第一端延长到细丝的第二端的孔;

    (b)将细丝形成细丝堆,排列细丝,使它们的纵轴基本相互平行并且平行于细丝堆的纵轴;

    (c)将堆积拉成光纤,同时维持至少一个毛细管的孔与在第一压力的流体源相联系,同时维持毛细管周围的压力在第二压力上,该压力不同于第一压力,其中在第一压力中的孔在拉制过程中变成不同于在没有压差时它将变成的尺寸。

    在新方法中,在拉制光纤时,在光纤结构中可发生相当的和可控制的变化;例如,在拉制过程中也可存在空气孔的可控制的膨胀。在现有技术光子晶体光纤中,在宏观尺度上形成所需的微结构,然后通过将其拉入光纤中减小其尺度。

    优选为管围绕在细丝堆周围至少一部分长度上,并且管的内部维持在第二压力。

    应当明白,术语“空气孔的膨胀”指的是尺寸(在垂直于毛细管纵轴的横截面内)大于在没有压差时它应当具有的尺寸的空气孔的产物。实际上,通过拉制产生出的光纤具有比做成光纤的预型(这里是细丝堆积)小得多的总横截面积,因此本发明中的空气孔通常不是在绝对术语中的“膨胀”。

    可以以两种主要的方式控制拉制过程中的变化:通过使用施加到特定孔的压差,和优选通过在管中密封全部预型,该管优选为厚壁和包含二氧化硅并且拉进和形成部分最终光纤。该管优选不经历显著不同于在没有压差时它应当经历的变形。

    该管优选限制了至少一个在第一内压的孔的膨胀。

    细丝堆关于任一纵轴优选具有最多两重旋转对称。所述细丝堆可被用于拉制双折射光纤。

    在拉制过程中优选为:

    该管被密封到抽空结构的第一端并且该管的第二端位于抽空结构中;

    至少一些毛细管通过抽空结构并且被密封到其第二端;  

    抽空结构基本上被抽空,以产生第二内压。

    抽空结构优选为金属管。

    仅以实施例的方法,根据附图描述本发明的实施方案,其中:

    图1是标准光纤实施例的示意图。

    图2是具有高指数纤芯缺陷的常规光子晶体光纤的示意图。

    图3是具有低指数纤芯缺陷的常规光子晶体光纤(光子带隙光纤)的示意图。

    图4是局部被拉成光纤的光子晶体光纤预型的示意图。

    图5是根据本发明第一偏振保留光子晶体光纤的横截面示意图,其中包层孔形成矩形点阵。

    图6是根据本发明第二偏振保留光子晶体光纤的横截面示意图,其中靠近纤芯的包层孔的图案具有两重对称。

    图7是根据本发明第三偏振保留光子晶体光纤的横截面示意图,其中远离纤芯的包层孔的图案式具有两重对称。

    图8是根据本发明第四偏振保留光子晶体光纤的横截面示意图,其中在点阵纤芯中的电介质包含物的图案具有两重对称。

    图9是用于形成具有方点阵的光子晶体光纤的细丝排列的横截面示意图。

    图10是具有孔的方点阵的部分光子晶体光纤的横截面示意图,每一个孔都具有两个不同直径中的一个直径。

    图11示出了具有方点阵的光子晶体光纤。

    图12示出了形成部分细丝堆的细丝,该细丝堆用于形成光子晶体光纤。

    图13示出了由诸如图12中的所述细丝堆形成的光子晶体光纤。

    图14示出了适合在根据本发明另一方法中应用的毛细管堆。

    图15示出了图14的毛细管堆使用的装置。

    图16a示出了由类似于图14的预型和图15中的装置做成的光子晶体光纤的裂开的端面。

    图16b示出了图16a的光纤纤芯附近的结构详图。

    图17a示出了由图15的装置做成的高双折射光纤。

    图17b示出了在图17a的光纤中在波长为1550nm处观测到的偏振差拍。

    诸如图1中实例的标准光纤,它们的简单形式基本包括圆柱纤芯10和同心圆柱包层20。纤芯和包层典型以相同的材料做成,通常为二氧化硅,但是纤芯和包层掺杂其它材料,以提高纤芯10的折射率并降低包层20的折射率。合适波长的光被束缚到纤芯19并且在那里通过纤芯-包层边界15处的全内反射而被传输。

    图2示出的典型光子晶体光纤,包含透明块体材料30(例如二氧化硅)的圆柱,其具有沿着其长度的圆柱孔40的点阵。孔被排列在规则六边形的顶点和中心,该六边形具有六重旋转对称。这些孔具有规则周期,通过在光纤中心附近缺省一个孔而打破该周期。围绕在缺少孔的格点周围的光纤区域50具有块体材料30的折射率。光纤其它部分的折射率归因于块体材料30和孔40中的空气的折射率。空气的折射率低于例如二氧化硅的折射率,因此,具有孔的材料的“有效折射率”低于围绕在缺少孔周围的区域50的折射率。因此该光纤以标准光纤中全内反射波导的相似方式,可将光近似地束缚到区域50。因此区域50被称作光子晶体光纤的“纤芯”。

    在光子晶体光纤的另一形式中,光子带隙引导担当将光束缚到光纤“纤芯”的作用。在图3示出的所述光纤的实施例中,在块体材料30中具有孔70的矩阵。这些孔被排列在规则六边形的顶点(与图2相比不在中心),该六边形具有六重旋转对称。矩阵的规则性被缺陷再次打破,但是在实例中,它为在点阵六边形中心的附加的孔60,该六边形位于光纤中心附近。围绕在附加孔60周围的区域被再次称作光纤的纤芯。不管孔60(暂时),光纤中的孔的周期性导致在光纤中传输的光的传播常数中可存在带隙。附加的孔60有效地产生了具有不同周期性的区域,并且该区域可支持不同于在光纤其它部分中所支持的一些传播常数。如果在孔60的区域中支持的传播常数进入到光纤其它部分禁止的传播常数的带隙中,那么具有这些传播常数的光被限定在该纤芯中并在其中传输。注意到由于孔60是低指数缺陷(其导致空气代替块体材料),全内反射效应不是该实例中的波导的原因。

    光子晶体光纤可通过一种方法生产,在图4中示出了该方法的一个阶段。在该方法的第一阶段(未示出),研磨块体材料(例如,二氧化硅)的圆柱,使其具有六边形横截面,并且沿着它的中心钻一孔。然后使用光纤拉制塔将棒拉成细丝。对细丝进行切割成段,堆积短的结果细丝80以形成细丝堆,如图4所示。在示出的排列中心的细丝100不是毛细管,即它没有孔;示出的排列将形成光纤的有效折射率引导类型。细丝80的排列被熔化在一起,然后将其拉成最终的光子晶体光纤110。

    图5的光纤具有孔的点阵120,这些孔排列在矩形顶点,该矩形不是正方形。通过在光纤横截面中心附近的区域125中的孔的缺少,打破点阵的周期性。在平行于X轴(∧x)方向上,这些孔的中心到中心的间隔(间距)不同于平行于Y轴方向上的间距(∧Y)。通过使用被磨成具有矩形横截面的细丝可生产出图5示出的光纤。图5的点阵具有双重旋转对称性,因此是双折射的。

    图6和7示出了其为有效折射率波导光纤的光子晶体光纤,其具有类似于图2光纤的六边形。所述点阵在本质上不是双折射的。然而,在图6和7的点阵中,孔140的直径大于130的直径。在点阵中的这种备向异性形成了关于区域135的孔的两重旋转对称图案,在区域135中一个孔从点阵中消失。

    图6中大孔140的图形具有与标准光纤中形状双折射类似的效果。在“纤芯”135附近的孔的直径变化直接形成被波导模所观察到的有效折射率的变化。

    图7中大孔的图案在纤芯中产生应力,该应力以标准光纤形成双折射相同的方式形成双折射。标准光纤不可能有的新效应是在拉制过程中,光纤中的应力分布形式(模式)可扭曲某些沿着轴围绕光纤纤芯135的空气孔,给出另外的双折射。

    在图8中示出的另一方法为一些孔150中填充材料而不是空气(使得它们具有不同的介电常数)。再次,点阵的六重旋转对称被减约到两重旋转对称。

    图9示出的细丝堆有三种类型:其为毛细管的大直径细丝160,小直径实体(实心)细丝170和大直径实体细丝180。排列这些细丝使得大直径细丝160形成方点阵,其被中心格点处的缺陷打破,该缺陷为大直径实体细丝180。由细丝160的圆形横截面的非镶嵌本质所造成的空隙间隙被小直径细丝170填充。

    图10示出了具有两重对称性的光子晶体光纤。该光纤具有点阵结构,该结构可以类似于图9的堆积方式排列的细丝堆构建成。实体细丝180导致与缺陷210相似的缺陷。然而,在这种情况下,孔的交替行(190,200)分别具有大和小的直径。通过提供具有大和小内径(但是具有恒定的外径)细丝160的交替行可得到具有图9的点阵的所述效果。

    图11的光纤可被看作近似具有诸如可从图9的细丝堆产生的方点阵。

    图12示出了其为毛细管的细丝220的堆积。细丝排列在六边形点阵上,该结构的周期性被实体细丝240打破。应当注意到在相片上大约一半处的一行细丝是具有比其他毛细管的壁230厚的壁250的毛细管。当从细丝的堆积中拉制光纤时,所述的排列会导致诸如在图13中示出的光纤,其具有一行孔260,孔260的直径比光纤中其它的孔小。

    在本发明的范围中,可设计各种参数变化的毛细管和细丝的许多其它图案。

    在图14和15中示出了制作光纤的另一方法。毛细管300规则排列的堆积被放置在厚壁石英玻璃管310中(图14)。石英玻璃管310在拉制后形成部分光纤,用作外壳以提供机械强度。在拉制过程中(图15),通过在密封结构中将其密封,管310的内部被抽空,而例如,一些或所有毛细管300的内部被保持在不同的和较高的压力中,因为它们被留下开放于空气中。

    抽空结构是铜柱320。最初它在两端被打开。然后在其一端将其密封到管310上。该管终止在铜柱320中。一些或所有毛细管300正好通过铜柱320,然后围绕在上端正好通过该柱的毛细管密封该柱。在拉制过程中抽空铜柱320。

    在拉制过程中,其中管310和毛细管300被从铜管中向下拉出,外管310尽管被抽空,但由于具有厚壁而没有坍缩。相反,已经很小并且具有被毛细管壁限定的相对薄的边界的毛细管300间的空隙孔快速坍缩,并且在最终的光纤中不存在(这是所需的)。如果在毛细管周围存在较高压力,被抽空的毛细管也完全坍缩。另一方面,被大气压空气填充的毛细管膨胀。

    通过采用刚才描述的方法,形成非常规则和薄壁结构和制作具有非常小的波导纤芯的光纤是可能的。图16示出了所述的光纤,其具有拉制后的包含管310的外包层330和包含毛细管的内包层340。内包层半径近似10μm,并且包含膨胀孔的蜂窝状结构。这些孔围绕波导纤芯350,该纤芯直径近似1μm,并且已经从不是毛细管的拉长细丝中形成。应当明白,图16中的光纤是通过使所有的毛细管300正好通过圆柱320而形成的,并且该光纤基本上具有多重旋转对称;因此该光纤主要地不是双折射的。

    相对比,图17a示出了通过在特定位置上堆积厚壁毛细管形成具有较高双折射的光纤;小的空气孔360形成在那些位置上。生产光纤的另一种方法可为使四个选择的毛细管终止在圆柱320中;在那些选择的毛细管300中的孔在拉制过程中不会膨胀因此会提供四个小的孔360。图17a的光纤由于只有两重对称因而是高双折射的,该对称由沿着内包层的直径,纤芯任一端的四个小孔360造成。

    图17b示出了图17a的光纤的偏振差拍数据。从该数据中,在波长1550nm处的光纤的差拍长度可示出为0.92mm;所述的差拍长度对充当偏振保留单模光子晶体光纤的光纤来说是足够短的。

改进或涉及光子晶体光纤.pdf_第1页
第1页 / 共25页
改进或涉及光子晶体光纤.pdf_第2页
第2页 / 共25页
改进或涉及光子晶体光纤.pdf_第3页
第3页 / 共25页
点击查看更多>>
资源描述

《改进或涉及光子晶体光纤.pdf》由会员分享,可在线阅读,更多相关《改进或涉及光子晶体光纤.pdf(25页珍藏版)》请在专利查询网上搜索。

光子晶体光纤包含具有纵向孔(130,140)和导向纤芯(135)的块体材料,其中纤维关于纵轴具有至少两重转动对称,并且作为缺少对称的结果,该光纤是双折射的。。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 物理 > 光学


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1