CN200680044408.2
2006.11.30
CN101316882A
2008.12.03
授权
有权
授权|||实质审查的生效|||公开
C08J7/04; B05D7/24; B32B27/08
C08J7/04
波音公司
克雷格·E·科克; 瓦森·S·森达拉姆; 沃伦·W·瓦希尔
美国伊利诺伊州
2005.11.30 US 11/289,920
北京市柳沈律师事务所
宋 莉
一种双层涂层方案以及相关的形成方法,其包括组合使用的基于硅氧烷的软涂层和基于等离子的SiOxCy硬涂层,以改善用于航空器窗户应用的丙烯酸类基材的耐用性。
1. 一种双层涂层,其包含:基材;软涂层;和硬涂层;所述软涂层涂布至所述基材的表面,所述硬涂层涂布至所述软涂层上。2. 权利要求1的双层涂层,其中所述基材包含丙烯酸类基材。3. 权利要求2的双层涂层,其中所述丙烯酸类基材包含经拉伸的丙烯酸类基材。4. 权利要求1的双层涂层,其中所述软涂层包含聚硅氧烷粘合涂层。5. 权利要求1的双层涂层,其中所述软涂层的厚度为约4至5微米。6. 权利要求1的双层涂层,其中所述硬涂层包含含有硅的基于等离子CVD的涂层。7. 权利要求1的双层涂层,其中所述硬涂层的厚度为约4至5微米。8. 权利要求1的双层涂层,其中所述硬涂层包含类金刚石碳(Diamondshield)涂层。9. 一种双层涂层,包含:经拉伸的丙烯酸类基材;聚硅氧烷粘合涂层;和含有硅的基于等离子CVD的涂层;所述聚硅氧烷粘合涂层涂布至所述经拉伸的丙烯酸类基材的表面,所述含有硅的基于等离子CVD的涂层沉积在所述聚硅氧烷涂布的经拉伸的丙烯酸类基材上。10. 权利要求9的双层涂层,其中所述聚硅氧烷粘合涂层的厚度为约4至5微米。11. 权利要求9的双层涂层,其中所述含有硅的基于等离子CVD的涂层的厚度为约4至5微米。12. 权利要求9的双层涂层,其中所述含有硅的基于等离子CVD的涂层包含类金刚石碳(Diamondshield)涂层。13. 一种在基材上形成双层涂层的方法,该方法包括:将聚硅氧烷粘合涂层沉积在基材的表面上;以及将基于等离子CVD的涂层沉积在所述聚硅氧烷粘合涂层上。14. 权利要求13的方法,其中所述基材包含经拉伸的丙烯酸类基材。15. 权利要求13的方法,其中所述聚硅氧烷粘合涂层的厚度为约4至5微米。16. 权利要求13的方法,其中所述基于等离子CVD的涂层包含基于等离子CVD的SiOxCy涂层。17. 权利要求13的方法,其中所述基于等离子CVD的涂层的厚度为约4至5微米。18. 权利要求13的方法,进一步包括:清洁所述聚硅氧烷粘合剂涂布的基材以除去污染物。19. 权利要求18的方法,其中所述清洁包括在溶剂或水性清洁剂中的超声清洁。20. 权利要求18的方法,其中所述清洁包括在真空环境中使用惰性离子和/或氧离子的溅射清洁。
用于航空器客舱窗户的耐用透明涂层 背景技术 本发明涉及用于经拉伸的丙烯酸类窗户的保护涂层,更具体地,本发明涉及保持光学质量并减少窗户在使用中的裂纹的保护涂层。 由于经拉伸的丙烯酸类物质(即丙烯酸类基材)的轻质量、柔性和可成型性,航空器客舱窗户通常由其制成。然而,丙烯酸类物质容易受到颗粒(例如砂子)和水引起的侵蚀以及裂纹的影响。而且,在飞行中,航空器窗户经受由航空器内外的压力差所产生的压差。该压差导致窗户弯曲,并由此会导致大部分涂层破裂,使得化学品可以侵袭丙烯酸类基材并在某些情况下使得涂层从丙烯酸类基材上剥离。 窗户还会经受多种化学品,例如清洁剂和航空器维护中使用的其它化学品。 目前,丙烯酸类和其它类型的航空器窗户用基于溶胶凝胶的聚硅氧烷涂层保护。该溶胶凝胶涂层是经处理以形成适当涂层的溶剂、有机硅烷、醇盐和催化剂的均匀混合物。 溶胶凝胶涂层提供高的透光率,但是对磨损和UV引起的降解表现出有限的耐用性。由现场试验结果(field result)判断,该溶胶凝胶涂层仅表现出中等耐用性。这在图1中是明显的,其中在从服务约4年的航空器上取下的窗户100的主要部分上均没有硬涂层。还可看到广泛的划痕和裂纹102。 因此,需要具有改善的耐用性的透明硬涂层,其将延长窗户寿命。该改善的涂层还应提供对航空器维护中常见化学品的改善的恢复性(resilience)以及改善的耐候性特性。 发明内容 本发明提供双层涂层方案。在本发明的一个方面中,该涂层方案包括组合使用的基于硅氧烷的软涂层和基于等离子的SiOxCy硬涂层以改善航空器窗户的耐用性。 围绕与目前使用的基于硅氧烷(1,2)的涂层有关的耐用性问题,本发明提供一种双层涂层,该双层涂层表现出柔性、对航空器维护中所使用化学品的惰性以及极好的耐用性和抗裂纹性。 在本发明的一个方面中,提供了包括聚硅氧烷粘合涂层和含有硅的基于等离子CVD的涂层的双层涂层。该聚硅氧烷粘合涂层涂布至经拉伸的丙烯酸类基材的表面。该基于等离子CVD的涂层沉积在聚硅氧烷涂布的经拉伸的丙烯酸类基材上。 在本发明的另一方面中,提供了在基材上形成双层涂层的方法。该方法包括在基材的表面上沉积聚硅氧烷粘合涂层;并且在该聚硅氧烷粘合涂层上沉积基于等离子CVD的涂层。 本发明的双层涂层改善了耐候性、耐化学暴露性、耐磨损性以及对弯曲引起的经拉伸的丙烯酸类物质的裂纹的耐受性。由Taber Wear测试(ASTMD 1044-99)测量的双层涂层的耐磨损性已经显示出比目前使用的硅氧烷涂层好大于一个数量级。该双层涂层还改善了弯曲引起的丙烯酸类基材的裂纹。 具有双层涂层的丙烯酸类基材的光学性能(在太阳光谱的可见光区域中的透光性,透明度和雾度)与具有单层聚硅氧烷涂层的窗户的光学性能大致相同。 本发明的其它优点、目的和特征将部分地在后面的详细描述中阐述。应当理解,前面的总体描述和后面的详细描述都仅仅是本发明的示例,并且旨在提供概要或框架用于理解所要求的本发明的本质和特征。 附图说明 参考附图以提供本发明的进一步理解,图示本发明的各种实施方案,并与描述一起用于解释本发明的原理和操作。在附图中,相同的组件具有相同的附图标记。所示的实施方案旨在说明而不限制本发明。附图包括以下各图: 图1是所使用的窗户的实例; 图2是涂布有本发明实施方案的双层涂层的丙烯酸类基材的简图; 图3是显示具有聚硅氧烷和本发明双层涂层的经拉伸的丙烯酸类物质的Taber磨损试验结果的图; 图4是三点弯曲试验的简图; 图5是本发明实施方案的经涂布的丙烯酸类试样的加载/温度弯曲试验周期的简图; 图6是显示将聚硅氧烷和本发明实施方案的双层涂布的经拉伸的丙烯酸类物质暴露于各种化学品(标在该图中)24小时所引起的干粘附力指数的变化的图; 图7是显示将聚硅氧烷和本发明实施方案的双层涂布的经拉伸的丙烯酸类物质暴露于各种化学品(标在该图中)24小时所引起的湿粘附力指数的变化的图;和 图8是显示将聚硅氧烷和本发明实施方案的双层涂布的经拉伸的丙烯酸类物质进行化学暴露后的Taber磨损试验结果的图。 具体实施方式 如图2所示,本发明的双层涂层200包括沉积在基材206(例如丙烯酸类基材206)上的第一涂层202和第二涂层204的组合。在一个实施方案中,丙烯酸类基材206可以是普通的航空器客舱窗户100。 在一个实施方案中,使用基于等离子的化学气相沉积(CVD)涂布工艺将第二涂层204沉积在丙烯酸类基材206上。等离子CVD涂层是相对“硬的”涂层,与其它由湿式化学方法产生的涂层(例如溶胶凝胶涂层)相比,其提供更好的耐磨损性、化学惰性等。基于硅的透明涂层的等离子CVD过程中发生的离子轰击效应已经显示出改善涂层的硬度和耐用性。沉积过程中的离子轰击趋于提高沉积物的表面迁移率并由此从涂层的雾度和透明度方面改善光学质量。 按照本发明,硬涂层204可以包括基于硅的层,例如,基于SiOxCy的层或者可以从Diamonex Inc.获得的类金刚石碳(Diamondshield)层。 尽管基于等离子CVD的或硬的涂层204具有提高的硬度和耐用性以及改善的光学特性,但仍设置第一涂层202以向基于等离子CVD的硬涂层204提供改善的粘附力和柔性特性,单独的基于等离子CVD的硬涂层204对丙烯酸类基材206表现出差的粘附力。 按照本发明,第一涂层或“软”涂层202可以包括基于粘合剂聚硅氧烷的层。软涂层202提供粘合层,因此在沉积硬涂层204之前形成。在组合中,软涂层202与硬涂层204组合形成本发明的双层涂层200。 软涂层202不需要非常厚就可以向硬涂层204提供上述益处。在一个实施方案中,软涂层202可以为约100至200埃厚就足以确保硬涂层204对丙烯酸类基材206的粘附力。在一个实例中,试验显示具有约4微米的厚软涂层202的经拉伸的丙烯酸类基材206在磨损试验中运行良好。 再次参照图2,在一个示例性的实施方案中,首先对经拉伸的丙烯酸类基材206进行处理并涂布有软涂层202。在该实施方案中,软涂层202包括4微米厚的基于聚硅氧烷的粘合透明涂层。 接着,使用离子辅助等离子工艺,将基于硅的透明硬涂层204(例如,Diamondshield)沉积在软涂布的丙烯酸类基材206上。该沉积工艺包括使用含有硅的前体,例如六甲基二硅氧烷和氧。可以按照熟知的等离子CVD原理优化等离子CVD的条件(例如气流、沉积压力、等离子功率等)以生产硬的透明涂层。 在一个实施方案中,丙烯酸类基材206在装载到用于涂布硬涂层204的真空室中之前可以首先进行化学清洁以除去污染物,例如烃类和其它不想要的物质。清洁过程可以使用例如在溶剂或水性清洁剂中的超声清洁来完成。一旦获得需要的真空条件,即可使用惰性离子和/或氧离子对基材206进行溅射清洁。一旦完成清洁步骤,即可开始硬涂层的涂布。 在一个实施方案中,例如在窗户应用中,硬涂层204可以为4至5微米厚。 涂层性能评价 在不用以限制本发明的情况下,为了证实双层涂层200在使用丙烯酸类基材的应用中相对于目前使用的聚硅氧烷涂层具有改善的性能,进行了如下对比。 为了进行对比,将第一组(组I)经拉伸的丙烯酸类基材用聚硅氧烷涂层涂布约4微米厚。将第二组(组II)经拉伸的丙烯酸类基材先用聚硅氧烷涂层涂布4微米厚,然后用基于等离子的硬涂层涂布约5微米厚以形成本发明的双层涂布的丙烯酸类基材。 磨损试验: 按照ASTM D-1044-99“透明塑料抗表面磨损的标准试验方法”中描述的方法测试涂布基材(组I和组II)的磨损。该试验在于使用各自施加了500gm预定载荷的两个CS-10F轮子。使该轮子在旋转时磨损该经涂布的丙烯酸类基材表面。雾度的提高用作测量磨损的严重程度的标准。进行该试验直至磨损使雾度提高5%。该试验的结果示于图3。如图3中的图所示,与聚硅氧烷涂层相比,双层涂层表现出耐磨损性的大于一个数量级的改善。 弯曲试验: 使用改进的ASTM D-790试验方案,对涂布的组件进行弯曲试验。对带有涂层的尺寸为1”×12”×0.5”的各样品(组I和组II)进行如图4所示的三点弯曲试验。在该图中,具有硬涂层的侧面朝下。使用纤维玻璃过滤器和Teflon带,向该涂层涂布75wt%硫酸水溶液的薄膜。使试验品经历如图5所示的循环载荷/温度曲线。在这些试验中,使用3600PSI的极限载荷。继续该试验直至涂层破裂或表面显示出裂纹(无论哪个先发生)。结果显示聚硅氧烷涂布的基材(组I)在50个周期内失效,而本发明的双层涂布的基材(组II)即使在500个周期后也未显示出破裂或裂纹。 化学暴露试验: 将具有本发明的双层涂层的经拉伸的丙烯酸类基材暴露于进行航空器维护中常用的化学品中。将各样品暴露于各化学品中24小时(例外:暴露于MEK 4小时),然后测试粘附力(改进的ASTM D 3330-BSS 7225)并且测试按照ASTM D-1044-99进行试验时由磨损引起的雾度变化%。聚硅氧烷涂布的基材(组I)和双层涂布的基材(组II)的结果示于图6、7和8。具有双层涂层的样品在化学暴露后未表现出粘附力的下降(如粘附力指数所示)或磨损引起的雾度变化。 UV/湿气暴露: 按照SAE J1960将涂布的(组I和组II)基材暴露于紫外光(峰值波长在340nm处的UV-A灯)/湿气,总暴露量为300KJ/m2。该暴露由40分钟的光、具有前喷雾的20分钟的光、60分钟的光以及具有前喷雾和后喷雾的60分钟的黑暗组成。另一组来自组I和II的样品首先暴露于各种化学品中(按照上述化学试验),然后经受UV/湿气试验方案。在这两个试验中,具有双层涂层的样品在UV/湿气暴露后未显示出降解,并且比仅具有单层聚硅氧烷涂层的样品表现更好。 因此,本发明的范围不应限于本文中图示和描述的具体实施方案,因为这些实施方案本身仅是示例性的,本发明的范围应完全等同于权利要求书及其功能等价物所限定的范围。
《用于航空器客舱窗户的耐用透明涂层.pdf》由会员分享,可在线阅读,更多相关《用于航空器客舱窗户的耐用透明涂层.pdf(14页珍藏版)》请在专利查询网上搜索。
一种双层涂层方案以及相关的形成方法,其包括组合使用的基于硅氧烷的软涂层和基于等离子的SiOxCy硬涂层,以改善用于航空器窗户应用的丙烯酸类基材的耐用性。。
copyright@ 2017-2020 zhuanlichaxun.net网站版权所有经营许可证编号:粤ICP备2021068784号-1