CN200680051983.5
2006.12.12
CN101336145A
2008.12.31
驳回
无权
发明专利申请公布后的驳回IPC(主分类):B23C 3/00申请公布日:20081231|||实质审查的生效|||公开
B23C3/00; B23B27/14; B23D61/04; B27M1/00
B23C3/00
六号元素(产品)(控股)公司
C·J·比勒陀利乌斯; P·M·哈登; T·P·霍华德
南非斯普林斯
2005.12.12 ZA 2005/10083
中国国际贸易促进委员会专利商标事务所
张祖昌
一种刀具组件(10),其具有超硬材料的超薄层(14),所述超硬材料的超薄层(14)粘结到硬质合金基底(12)上。超硬材料的超薄层具有不大于0.2mm的厚度。这种刀具用来在粗加工和/或间歇的切削条件下切削工件。在工件是木制品或复合木材的场合,本发明通常扩展到切削这类工件。超硬材料优选是PCD或PCBN。
1. 一种切削工件的方法,该方法包括以下步骤:提供刀具组件,所述刀具组件包括本体,该本体包括硬质合金基底并具有至少一个工作面,该至少一个工作面为所述本体提供切削刃或切削区域,其特征在于,所述至少一个工作面包括超硬耐磨材料,所述超硬耐磨材料邻近切削刃或切削区域并从该至少一个工作面延伸到不大于0.2mm的深度,并且,所述基底具有1.0mm至40mm的厚度;和在粗加工和/或间歇切削条件下在工件中实现切削。2. 按照权利要求1所述的方法,其中,所述工件是金属、复合材料或陶瓷工件。3. 按照权利要求1所述的方法,其中,所述工件是木材或复合木材工件。4. 按照权利要求3所述的方法,其中,切削用铣削或锯制实现。5. 一种切削木制品或复合木材的方法,该方法包括以下步骤:提供刀具组件,所述刀具组件包括本体,所述本体包括硬质合金基底并具有至少一个工作面,该至少一个工作面为本体提供切削刃或切削区域,其特征在于,所述至少一个工作面包括超硬耐磨材料,所述超硬耐磨材料邻近切削刃或切削区域,并从该至少一个工作面延伸到不大于0.2mm的深度,并且,所述基底具有1.0mm到40mm的厚度;和在工件中实现切削。6. 按照权利要求5所述的方法,其中,切削用铣削、车削或锯制实现。7. 按照上述权利要求中任一项所述的方法,其中,切削刃或切削区域从所述至少一个工作面延伸到0.001mm到0.15mm的深度。8. 按照上述权利要求中任一项所述的方法,其中,刀具组件本体包括硬质合金基底和超硬材料的超薄层,所述超硬材料的超薄层结合到基底的主表面上,超薄层具有不大于0.2mm的厚度,而工作面为刀具组件提供切削刃或切削区域。9. 按照权利要求8所述的方法,其中,超薄层具有0.001mm到0.15mm的厚度。10. 按照上述权利要求中任一项所述的方法,其中,一个或多个中间层位于基底与超硬材料之间,所述一个或多个中间层是比超硬材料软的材料。11. 按照上述权利要求中任一项所述的方法,其中,所述一个或多个中间层用陶瓷、金属或超硬材料制成。12. 按照权利要求1-6中任一项所述的方法,其中,刀具本体包括硬质合金基底;所述硬质合金基底具有工作面,并具有多个从工作面延伸到基底里的凹槽或凹口,及多个位于所述凹槽或凹口中的超硬材料的条或片,所述工作面为刀具组件提供切削刃或切削区域;所述配置是这样的,即超硬材料从工作面延伸到不大于0.2mm的深度,并形成刀具组件的切削刃或切削区域的一部分。13. 按照权利要求12所述的方法,其中,所述条或片全都用性质相同或基本上相同的超硬材料制成。14. 按照权利要求12所述的方法,其中,某些条或片的超硬材料与另一些条或片的超硬材料不同。15. 按照上述权利要求中任一项所述的方法,其中,超硬材料是PCD或PCBN。16. 按照上述权利要求中任一项所述的方法,其中,在工件中的切削用超硬材料切削刃或切削区域和硬质合金基底实现。17. 按照权利要求1所述的方法,基本上如本文参照各示例中任一个所述的。18. 按照权利要求1所述的方法,基本上如本文参照附图的图1到5中任一个所述的。
切削方法 背景技术 本发明涉及一种切削方法和在这种方法中所用的超硬刀具组件。 利用金刚石压坯也称为PCD和立方氮化硼压坯也称为PCBN的超硬研磨切削元件或刀具组件在钻孔、铣削、切削和其它这类研磨应用中广泛使用。元件或刀具组件通常包括一层结合到支承件上的PCD或PCBN,所述支承件通常是硬质合金支承件。PCD或PCBN层可以是锋利的切削刃或刀口或是切削或研磨面。 金刚石研磨压坯包括大量的金刚石颗粒,所述大量金刚石颗粒含有基本上是金刚石与金刚石直接粘结的量。多晶金刚石通常具有第二相,所述第二相含有金刚石催化剂/溶剂,比如钴、镍、铁或者含一种或多种这些金属的合金。cBN压坯通常也将含有粘结相,所述粘结相通常是cBN催化剂或者含有这种催化剂,合适的粘结示例是铝、碱金属、钴、镍、钨等。 多晶金刚石(PCD)切削元件广泛用于机械加工各种金属和合金以及高度耐磨的木质复合材料。汽车工业、宇航工业和木材加工工业尤其是采用PCD而从其提供较高水平的生产率、精度和一致性得到好处。铝合金、双金属、铜合金、石墨增强塑料和金属基复合材料是金属加工工业中典型的用PCD机械加工的材料。层压铺面板、水泥板、刨花板、木屑板和胶合板是这类木制品的示例。PCD在石油钻探工业中还用作钻体的镶嵌物。 刀具由于逐渐磨损而失效的特征是在其工作面上产生磨损伤痕。在刀具镶嵌物上产生磨损伤痕的典型区域包括前刀面、侧面和后缘,并且磨损特点包括侧面磨损、月牙洼磨损、DOC切口磨损和后缘切口磨损。 为了用数字说明刀具表面上发生的磨损,采用许多参数。侧面磨损棱面(Land)是人所共知的刀具磨损特点。在许多情况下,侧面磨损棱面沿着主切削刃的笔直部分的中部具有相当均匀的宽度。侧面磨损棱面的宽度(VBB最大)是合适的刀具磨损量度,并将预定的VBB最大值看作是良好的刀具寿命标准[国际标准(ISO)3685,1993,具有单刃车刀的刀具寿命试验]。切削刀和温度往往会随着VBB最大增加而升高。还有较大发生振动的趋势且有工件材料的表面光洁度质量下降。在通常使用PCD和PCBN刀具的精加工应用中,侧面磨损标准是:VBB最大=0.2-0.3mm。在通常只用硬质合金的精加工应用中,侧面磨损标准是0.6mm并更大。 为了使磨损限于PCD和PCBN层,目前市场销售的PCD和PCBN刀具全都有厚度大于0.2mm的烧结PCD/PCBN(硬层)。尤其是在PCD的情况下,这些厚硬层使它们加工极难且价格昂贵。用来制造刀具的典型方法是线放电加工(w-EDM)、放电研磨(EDG)、机械研磨、激光切割、精研和抛光。包括PCBN、陶瓷、金属陶瓷和硬质合金的刀具通常用机械方法被研磨到最终ISO 1832技术要求,而包括PCD的刀具是通过EDG或w-EDM生产的成品。 凡是用机械方法研磨的PCD元件,研磨操作的成本能高达元件成本的80%。这是由于PCD比硬质合金坚硬得多,并因此更难以研磨所致。另外还不能在用来研磨PCBN、硬质合金、含各种成分的金属陶瓷或陶瓷的同一研磨机上研磨PCD。PCD要求更坚硬的机器,并且与PCBN、陶瓷和硬质合金一次能研磨4个隅角相比,PCD一次只能研磨一个隅角。 伴随着在现有硬质合金研磨机上不能研磨PCD的更高加工成本是限制PCD深入传统的硬质合金应用的主要障碍之一。终端用户通常规定伴随某一周期时间的最小刀具寿命标准(通常是一班),所述周期时间视生产线的总速度而定。因为硬质合金只能在低切削速度下使用,所以硬质合金刀具通常包括多个镶嵌物。使用多个镶嵌物使每个齿的进刀或者切削载荷能保持相同状况,同时提高必需的生产速度。然而,PCD和PCBN能在高得多的切削速度下使用,使其能在本体中使用较少的镶嵌物或者得到长得多的刀具寿命。因为硬质合金刀具的成本仅约为PCD成本的10%,所以PCD的刀具寿命必定比硬质合金的刀具寿命长10倍,以便证明使用PCD是合算的。这导致PCD刀具只用于极严格和研磨的应用以及硬质合金刀具不能满足最低刀具寿命标准的大量应用。 除此之外,PCD比硬质合金低的屑抗力将其使用甚至进一步限制到仅是精加工应用。在切削刃上的载荷高得多的粗加工和间歇的应用中(高进刀速率和切削深度),PCD可能容易断裂,致使刀具过早失效。从另一方面来说,硬质合金比PCD磨损更快,但能抗更多的屑。不像在精加工操作中那样,在粗加工操作(VBB最大>0.6mm)中尺寸公差不是那样关键,这意味着刀具磨损不是关键。然而,屑抗力(chipresistance)在粗加工应用中是重要的,并可能引起刀具过早失效。另外,在不太严格的应用中,像MDF、低SiAl合金、刨花板等,磨损通常不是问题,且由于经济原因优选使用硬质合金。 为了考虑将PCD和PCBN用于典型的硬质合金应用,必须对加工更容易和更便宜,并具有较高的屑抗力,而在耐磨性方面依然优于硬质合金。 目前现有的PCD刀具的另一个缺点是,它们未被设计用来机械加工黑色金属材料。例如,当机械加工铸铁时,在切削刃上的切削刀并由此切削温度要比有色金属机械加工高得多。因为PCD在大约700℃开始石墨化,所以当机械加工黑色金属材料时,限制了它对较低切削速度的使用,从而使其在某些应用中与硬质合金刀具相比变得不经济。 美国专利3,745,623描述了一种制造刀具组件的方法,所述刀具组件包括一层粘结到硬质合金基底上的PCD。PCD层的厚度可以在从0.75mm到0.012mm范围内。刀具组件预定提供一种造价不太贵的金刚石刀具的形式,这种金刚石刀具将在机械加工金属、塑料、石墨复合物和陶瓷中使用,以往这里通常使用较贵的合成或天然金刚石。 美国专利No.5,697,994描述了一种供木材加工应用的刀具,所述刀具包括一层在硬质合金基底上的PCD。PCD通常在粘结相中设有耐腐蚀或抗氧化的辅助合金材料。提供一个示例,其中PCD层的厚度为0.3mm。 EP 1053984描述了一种金刚石烧坯刀具,所述金刚石烧坯刀具包括粘结到硬质合金基底上的金刚石烧坯,其中,金刚石层的厚度满足与硬质合金基底的特殊关系。公开了金刚石压坯层的厚度从0.05mm到0.45mm不等。通常,硬质合金基底薄,尤其是当使用薄金刚石层时,因为基底厚度必须与PCD的厚度匹配。 发明内容 按照本发明,切削工件的方法包括以下步骤:提供刀具组件,所述刀具组件包括本体,所述本体包括硬质合金基底,并具有至少一个工作面,所述至少一个工作面提供用于本体的切削刃或切削区域,其特征在于,该至少一个工作面包括邻近切削刃或切削区域的超硬耐磨材料,并从该至少一个工作面延伸到不大于0.2mm的深度,而且其中,基底具有1.0mm到40mm的厚度;并在粗加工和/或间歇的机械加工条件下进行工件中的切削。 在本发明的一个优选实施例中,刀具组件本体包括硬质合金基底和结合到基底主要表面上的超硬材料的超薄层,超硬材料的超薄层具有不大于0.2mm的厚度,而基底具有1.0mm至40mm之间的厚度,超薄层限定工作面。 本发明采用了具有超硬材料的超薄层,即厚度或深度不大于0.2mm的刀具组件来形成切削刃。这种超硬材料层粘结到硬质金属基底上。刀具组件在粗加工或间歇的机械加工条件下在切削工件中使用。这些均是涉及切削刃上有效载荷的严格条件,并在该技术中人所共知。在这类切削应用中通常使用更便宜的材料,比如硬质合金刀具组件。超硬材料刀具组件通常只在粗加工应用中使用,这里要求精密光洁度,并且能证明使用超硬材料的成本合算。超硬材料的超薄层使本发明的刀具组件能以与硬质合金刀具组件不相上下的成本制造,并具有另一些优点,比如自动磨锐能力,下面将予以描述。 通常,工件是金属,比如黑色金属或合金或者硬金属或合金,比如硅/铝合金、陶瓷、复合材料、木制品或复合木材。 本发明扩展到切削木制品或者复合木材,尤其是采用上述刀具组件铣削、锯制或车削。切削动作可以是连续的,例如车削,或者是间歇的,例如铣削或锯制。 在刀具组件的可替换实施例中,在硬质合金基底与超硬材料之间设置一个或多个中间层材料,所述中间层材料比超硬材料软。一个或多个中间层优选的是基于比超硬材料软的陶瓷或金属或超硬材料。 本发明的一个重要特点是通过PCD和基底进行切削。因此,基底的性能能控制和满足于使工件和切削条件最适合于特殊应用。 在刀具组件的另一可替换实施例中,本体包括具有工作面的硬质合金基底,所述工作面提供刀具组件用的切削刃或切削区域,并具有多个从工作面延伸到基底中的凹槽或凹口,和多个位于相应凹槽或凹口中的超硬材料条或片,配置是这样的,即超硬材料从工作面延伸到不大于0.2mm的深度,并形成刀具组件的一部分切削刃或切削区域。 所述条或片可以全都用具有基本上相同性能的超硬材料制造。可替换地,一些片或条的超硬材料的性能可以与另一些片或条的超硬材料的性能不同。 超硬层或镶嵌物的厚度优选从0.001mm到0.15mm。 基底的厚度从1.0mm到40mm。 超硬材料优选的是PCD或PCBN,所述PCD或PCBN可选地包含第二相,所述第二相包括从下述种类中选定的金属或金属化合物,所述种类包括铝、钴、铁、镍、铂、钛、铬、钽、铜、钨,或者它们的合金或混合物。 附图说明 现在参照附图,仅作为示例,更详细说明本发明,其中: 图1是本发明的刀具组件的第一实施例的局部透视图; 图2是本发明的刀具组件的第二实施例的局部透视图; 图3是本发明的刀具组件的第三实施例的局部透视图; 图4是本发明的刀具组件在使用时的示意侧视图,示出其“自动磨锐”作用; 图5是曲线图,示出硬层厚度对刀具组件的磨损的影响; 图6是曲线图,对比本发明的两个刀具组件与两个现有技术刀具组件的磨损进展; 图7是曲线图,对比在用18%SiAl合金切削试验期间本发明的两个刀具组件与两个现有技术刀具组件的径向力; 图8是曲线图,对比在用6%SiAl合金切削试验期间本发明的两个刀具组件与两个现有技术刀具组件的磨损进展; 图9是曲线图,示出本发明的各种刀具组件在Agathon镶嵌物研磨机上的研磨时间; 图10是曲线图,对比在用18%SiAl合金切削试验时本发明的两个刀具组件与两个现有技术刀具组件的屑抗力结果; 图11示出曲线图,该图描述不同材料在不同进刀速率下的幸存概率; 图12是曲线图,示出在对两个PCBN刀具轻载间歇的机械加工条件下的屑尺寸; 图13是箱形曲线图,示出两个PCBN刀具的断裂抗力。 具体实施方式 本发明的目的是提供一种设计的PCD和/或PCBN刀具组件,所述组件具有在硬质合金与PCD之间以及硬质合金与PCBN之间的性能。这种刀具组件在切削应用中使用,所述刀具组件包括切削刃上的有效载荷,如得到粗加工和间歇的机械加工应用。在粗加工操作中,主要目的是达到高基底,通常是金属的切削率,而粗糙度是关键的刀具材料要求。在精加工操作中,主要目的是高质量工件表面光洁度,而可预知性是关键的刀具材料要求。 现在参照图1说明刀具组件的一个实施例。参见该图,刀具组件10包括硬质合金基底12,所述硬质合金基底12具有超硬材料的超薄层14,所述超硬材料的超薄层14具有不大于,通常小于0.2mm的厚度,优选在0.001mm至0.15mm之间,并且其中,基底具有1.0-40mm的厚度。这种刀具组件用高温高压合成法生产。在切削刃16上超薄硬层14是决定材料性能的关键参数,并便于用上部硬层14(PCD或PCBN)和硬质合金基底12切削。耐磨性、屑抗力、切削力、可磨性、EDM能力和热稳定性全都是受硬层厚度影响的性能。用硬质合金基底生产PCD和PCBN刀具的各种方法存在于工业中并人所共知。 超薄硬层与较软的基底一起在切削期间产生“自动磨锐”作用,所述“自动磨锐”作用又降低了切削刃上的力和温度。硬层可以称作整体结合的结构,所述整体结合的结构包括大量多晶磨粒,比如金刚石或立方氮化硼,和第二相,所述第二相通常是金属,比如钴、铁、镍、铂、钛、铬、钽、铜,或者它们的合金或混合物,如在US 4,063,909和US 4,601,423中所述的。根据具体应用所需的性能,硬层的厚度优选在0.001mm到0.15mm之间不等。 参见图2的刀具组件30,超薄硬层32也能结合到金属或陶瓷的中间层34上,所述金属或陶瓷的中间层34又结合到硬质合金基底36上。 可替换地,参见图3所示的刀具组件,超薄硬层也可采取条42的形式(竖直层),所述条42与基底材料44交替横过刀具,这里,条的宽度46是在10到50微米之间。还设想另一些配置,这里,超硬材料的凹口部分位于基底材料内。 基底材料可以选自碳化钨、超细粒碳化钨、碳化钛、碳化钽和碳化铌,并具有1.0mm到40mm之间的厚度。用于生产硬质合金的方法在工业中人所共知。由于切削是用超硬材料和硬质合金完成的,所以基底的选择是另外的变量,所述变量可以改变,以便改变切削元件的性能来适应不同的应用。 在某些应用中,可以优选提供一种具有一定轮廓或形状的表面,这种表面与互补的形状或轮廓产生面接。 从可加工性能的远景来看,本发明的重要特点是超薄硬层将降低PCD和PCBN刀具的加工成本。 在性能方面,本发明的关键特点是调整硬层厚度,以便能达到所需的性能,并且还保证在切削期间发生“自动磨锐”作用。这可能意味着,恰好在PCBN或PCD的下方增加一较软的中间层。这意味着,在切削加工期间的某一阶段磨损通过硬质材料层进行时,切削将通过硬层和基底和/或中间层完成。传统刀具均具有大于0.2mm的硬层厚度,并因此基底决不会与工件接触(因为刀具寿命标准是VBB最大=0.2-0.3mm),而且刀具的性能和作用仅是硬层的性能和作用。 如图4所示,只要切削通过硬层14完成,磨损速率将是硬层的磨损速率。一旦磨损延伸到硬质合金基底12里,并且切削通过硬层和硬质合金完成,磨损速率则将提高包括基底和硬层的磨损速率。因此,硬层越厚,由硬层的耐磨性控制的磨损速率就越长,并且刀具寿命也越长,如图5曲线图所示。在由硬层和硬质合金完成切削的场合,超薄硬层会在硬质合金与硬层之间产生耐磨性。通过改变硬层的厚度(在0.001-0.15mm之间),使人们能将材料的性能和刀具寿命改变到具体应用所需要的程度。这使人们能为具体应用提供有特征的产品。硬层越薄,刀具性能与基底的性能就越接近。然而,由于设计刀具的“自动磨锐”作用,所以切削过程和磨损速率由硬层控制。 用超薄硬层14和基底12切削的主要好处是在刀具上具有“自动磨锐”作用。如图4所示,可以看出,由于基底12的材料比上部硬层14软得多,所以它比硬层14磨损更快,从而在硬层与底层之间边缘16处形成“唇部”18。这使刀具能主要用上部硬层14切削,从而将与工件的接触面积减至最小,这样最后在切削刃16上产生较小的力和温度。它还意味着,当刀具磨损时,保持后角(α),从而使刀具能更有效地切削。这种磨损作用对于粗加工应用和复合木材机械加工,尤其是在锯片应用中是理想的,在这里,尺寸间隙不是那么关键。另外在石油钻探应用中也是有益的,因为锐利的刀具产生较小的“钻头上重量”和较高的穿透速率。另外在用PCD机械加工黑色金属材料时也是有益的,因为力应保持最小,以防止石墨化。超薄金刚石层也可以用于精加工较软的材料如铜,因为磨损决不会延伸到硬质合金里。 超薄硬层的另一个好处是为刀具提供改善的切削抗力。层越厚,残余应力越高,且更易于剥落和断裂。另外,如果发生剥落,则硬质合金基底将阻止产生裂纹并防止它变得比上部硬层的厚度更大。薄PCD层还具有较高百分率的钴,因为在合成期间从基底的后面渗透过程增加了它的断裂韧性。 对加工性能的影响 当上部硬层变得更薄时,所有加工(EDM、EDG、研磨)都更容易和更迅速。超薄硬层将缩短加工时间,并使材料,像PCD能在传统的硬质合金研磨设备上研磨。这为PCD在木材加工和金属加工中打开了新应用的大门。在传统的PCD刀具中,镶嵌物成本的80%可为缘于研磨,而在使用本发明设计的材料情况下,该成本则降到约为总成本的5-10%,从而使设计的产品成为合理得多的刀具。 如前面所述,传统的PCD和PCBN压坯被制造成具有金刚石层厚度>0.2mm,以便使切削只通过硬层完成。然而,在合成这类厚层期间,由于PCD或PCBN与硬质合金基底之间热膨胀不同,所以压坯常常弯曲成弓形。这导致额外的加工(机械研磨、EDG或精研),以使压坯返回到平坦。在超薄硬层的情况下,使圆盘的弯曲最小化,且不需要额外加工。这样便于生产近似网状形状的PCD或PCBN压坯。 现在将参照下面非限制性示例,仅作为举例来论述本发明。 例1:18%SiAl的精加工 在车削18%SiAl工件时评估了分别为0.2mm(0.2mm PCD)和0.1mm(0.1mmPCD)超薄PCD设计的刀具的耐磨性,并对比了0.5mmPCD成层刀具(0.5mmPCD)以及市场销售的推荐用于Al车削的硬质合金牌号(HM 10(HW))刀具。这是一种十分耐磨的工件,而且通常只能用金刚石刀具进行机械加工。曾选择试验条件,模拟精加工操作,其条件如下: ·切削速度:500m/min ·进刀速率:0.1mm/转 ·切削深度:0.25mm ·PCD牌号:CTB010 从图6中很明显,硬质合金牌号(HM 10(HW))不适合于机械加工18%SiAl合金。如预计的那样,0.5mm厚PCD具有最低的磨损速率,随后是0.2mm厚的变型,然后是0.1mm厚变型。在0.5mm厚PCD刀具中,只用PCD层进行切削,而在0.2mm变型和0.1mm变型中,PCD层的硬质合金基底都与工件接触。在0.2mm变型中,接触面积(磨损伤痕)在大约35分钟内延伸到硬质合金里,并且磨损速率开始增加。在35分钟内磨损速率仅是PCD层的磨损速率。在0.1mm变型中,磨损在大约5分钟之内到达硬质合金。这意味着,对于公差并由此磨损为关键的精加工应用,所需的磨损速率可以通过改变PCD硬层的厚度设计到刀具中。虚线表示精加工操作的寿命结束标准。 因为硬质合金比PCD软得多,所以硬质合金在接触工件几乎同时磨损,从而有力地使PCD层进行切削。这样产生一种“自动磨锐作用”,如前面所描述的。在硬质合金刀具(HM 10(HW))的情况下,仅在3分钟之后就已磨损整个切割深度,而且不能进一步进行切削。 图7示出曲线图,该图对比了0.5mm、0.2mm和0.1mm厚PCD层的径向力。显然,0.5mm厚PCD层的力使得随着磨损伤痕的变大而继续增加。然而,由于“自动磨锐”作用,用于0.2mm和0.1mm厚PCD变型的力小得多。这样我们就可以假定,这些刀具在粗加工应用以及在公差不是关键的一些应用中是理想的。它还意味着,由于较小的力,这些刀具能以比传统的0.5mm厚PCD更高的切削速度进行机械加工。 例2:6%SiAl的粗加工 为了评估设计刀具的粗加工能力,曾对6%SiAl合金进行了车削试验。机械加工条件如下: ·切削速度:800m/min ·进刀速率:0.5mm/转 ·切削深度:0.5mm ·PCD牌号:CTB0 10 在粗加工应用中,工件公差并由此刀具磨损不像精加工操作中那样关键,而屑抗力和切削力(震动)是关键。图8示出曲线图,该图对比了不同变型的径向力。如在精加工示例中那样,曲线图证明,只要0.2mm PCD和0.1mm PCD变型的磨损延伸到硬质合金里(如相应虚线所反映的),则径向力一点也不增加。这样,我们就可以假定,对于粗加工应用,PCD厚度越薄(<0.1mm),材料被切削应越有效。另外,不同的PCD刀具可通过改变切削刃上超薄硬层的厚度设计成适合具体的应用。 例3:机械可磨性 为了证明在现有硬质合金研磨机上研磨超薄PCD层厚度材料的能力,曾将分别具有0.1mm PCD层和0.2mm PCD层的刀具与0.5mm厚PCD刀具作了比较。各刀具全都在下列条件下在Agathon 250型镶嵌物研磨机上从10.15×10.15方形研磨到SPMN 090108F: 0.2mm 0.1mm 0.1mm较快速率 砂轮转速(m/s) 21 21 21 横切率(mm/sec) 10 30 50 每分钟转数 3 8 10在这种研磨机上机械加工0.5mm厚PCD层刀具曾是不可行的。在研磨75分钟之后,停止了试验。图9清楚地证明,在现有硬质合金/PCBN镶嵌物研磨机上研磨超薄层PCD刀具是可行的。0.1mm厚PCD能以比PCBN更快的速率研磨。 例4:对18%SiAl的屑抗力 屑抗力曾通过在18%SiAl合金上进行刃口铣削试验作了评估。为了促进屑形成,在刀具上采用了大后角。试验条件如下: ·切削速度:500m/min ·每个齿进刀:0.5mm ·切削深度:2mm ·后角:18° ·切削宽度:15mm ·PCD牌号:CTB010 图10示出每个变型连同95%置信区间八次试验的平均屑尺寸。很明显,平均屑尺寸和屑尺寸中的散射是0.1mm超薄PCD刀具(0.1mm PCD)最小。因为屑全都小于200微米,所以在0.5mm层PCD(0.5mm PCD)和0.2mm层(0.2mm PCD)之间未曾观察到明显的差别。 例5:机械加工压坯石墨铸铁(CGI)的灾难性断裂抗力 因为在数据通常遵循非正规分布的情况下灾难性断裂具有随机性质,所以采用了Weibull统计学来评定断裂抗力。用Weibull分析,可以计算特征断裂抗力(α)以及形状参数(β)。在这个具体试验中,特征断裂抗力称为α,表示每个齿在其产品的63.2%失效处的进刀。然后采用这两个参数(α和β)用下列方程计算两种产品的可靠性: R=e-[xα]β]]> 式中,x是每个齿在其发生失效处的进刀。 进行了间歇铣削操作,因此曾选择条件和工件,以将任何磨损事件减至最小,作为回报促进断裂。每个齿的进刀曾从0.1提高到0.2到0.3等,直到观察出刀尖的灾变失效。每个齿的进刀表示切削刃上的载荷,并因此是合适的断裂抗力指示物。曾用的试验条件如下: -工件材料:GJC 400(>95珠光体,10%球化性) -切削速度:200m/min -每个齿进给量:不同 -DOC:1mm -WOC:1/2块体 -后角:18度 -前角:0度 图11示出幸存曲线图,该图描述每种材料在不同进刀速率下的幸存概率。可以看出,FGPCD 01(细粒PCD)在不同的进刀速率下具有比FGPCD 05高得多的幸存概率。对两种材料Weibull计算出的特征断裂抗力如下: ·FGPCD 05=0.577 ·FGPCD 01=0.774 这样我们就可以假定,0.1mm层具有比0.5mm层高34%的断裂抗力。由此很明显,断裂抗力可以用不同厚度的PCD层设计。 例6:AISi 4340“钻孔”轻载间歇的机械加工试验 试验被认为是很有代表性的硬机械加工。在试验中使用了上述两种类型PCBN刀具组件。一种具有厚度为0.1mm的超薄PCBN层,而另一种PCBN层厚度为0.5mm。记录了最大屑尺寸。试验条件如下: 试验 进刀,f (mm) 切削深度, ap’(mm) 切削速度, Vc(m/min) 镶嵌物 几何形状 (AlSi)4340 钻孔的车端面 0.15 0.2 150 SNMN 090308 S0220从图12的曲线可以看出,超薄PCBN显示比较厚0.5mm层的断裂小。PCD的情况曾是这样,一旦断裂路径到达硬质合金,切削刃上的实际屑便被“停止”。从此以后,磨损是关键特点而不是断裂。 例7:粗加工示例:机械加工压坯石墨铸铁(CGI)的灾难性断裂抗力 曾用例6的两个相同PCBN刀具组件进行了间歇铣削操作,因此曾选择条件和工件,以将任何磨损事件和促进断裂减至最小。每个齿的进刀曾从0.1提高到0.2到0.3等,直到观察出刀尖的灾变失效。每个齿的进刀表示切削刃上的荷载,并因此是合适的断裂抗力指示器。曾用的试验条件如下: -工件材料:GJV 400(>95%珠光体,10%球化性) -切削速度:300m/min -每个齿进刀:不同 -DOC:1mm -WOC:1/2块体 -后角:18度 -前角:0度 从图13的箱式曲线看来似乎是,01层具有比05层高的断裂抗力。因为这个数据不是正常分布,所以曾进行了Kruskal-Wallis统计试验,以便评估这种改进是否明显。因为P值小于0.05,故能得出结论,薄层比0.5mm层更显著地抗断裂。 Kruskal-Wallis试验:Fz失效与对刀具材料的关系 对Fz失效的Kruskal-Wallis试验 刀具材料 N 中值 平均级别 Z PCBN01 5 0.5000 7.5 2.09 PCBN05 5 0.3000 3.5 -2.09 总合 10 5.5 H=4.36 DF=1 P=0.037 H=4.50 DF=1 P=0.034(用于联系被调整)
《切削方法.pdf》由会员分享,可在线阅读,更多相关《切削方法.pdf(23页珍藏版)》请在专利查询网上搜索。
一种刀具组件(10),其具有超硬材料的超薄层(14),所述超硬材料的超薄层(14)粘结到硬质合金基底(12)上。超硬材料的超薄层具有不大于0.2mm的厚度。这种刀具用来在粗加工和/或间歇的切削条件下切削工件。在工件是木制品或复合木材的场合,本发明通常扩展到切削这类工件。超硬材料优选是PCD或PCBN。。
copyright@ 2017-2020 zhuanlichaxun.net网站版权所有经营许可证编号:粤ICP备2021068784号-1