防腐的具有含硅陶瓷基体的复合材料部件.pdf

上传人:b*** 文档编号:1382205 上传时间:2018-06-12 格式:PDF 页数:14 大小:1MB
返回 下载 相关 举报
摘要
申请专利号:

CN200780011236.3

申请日:

2007.04.03

公开号:

CN101410554A

公开日:

2009.04.15

当前法律状态:

授权

有效性:

有权

法律详情:

专利权的转移IPC(主分类):C23C 28/04变更事项:专利权人变更前权利人:斯奈克玛动力部件公司变更后权利人:赫拉克勒斯公司变更事项:地址变更前权利人:法国勒埃朗变更后权利人:法国勒海兰登记生效日:20140121|||授权|||实质审查的生效|||公开

IPC分类号:

C23C28/04; C23C16/24; C23C16/02; C23C16/30; F01D5/28; C04B41/00

主分类号:

C23C28/04

申请人:

斯奈克玛动力部件公司

发明人:

C·卢谢-普耶里; E·布永; H·塔维勒; G·盖尔德里; R·布维耶

地址:

法国勒埃朗

优先权:

2006.4.4 FR 0651180

专利代理机构:

北京戈程知识产权代理有限公司

代理人:

程 伟

PDF下载: PDF下载
内容摘要

本发明涉及一种在由陶瓷基复合材料构成的基材(10)上形成并包含防腐保护外层(12)的环境防渗层,所述防腐保护外层含有碱金属、碱土金属或稀土金属的铝硅酸盐的化合物。粘附次层(14)在基材(10)和保护层(12)之间形成,所述粘附次层的组成在基材侧的内表面和外表面之间由基本上纯的硅发展至基本上纯的富铝红柱石,其硅含量降低且富铝红柱石含量增加。

权利要求书

1、  一种包含含硅陶瓷基复合材料的基材(10),和在基材上形成的包含防腐保护外层(12)及在基材上形成的含硅粘合次层(14)的环境防渗层的部件,所述防腐保护外层含有包括碱金属、或碱土金属、或稀土金属元素的铝硅酸盐的一类化合物,所述部件的特征在于粘合次层(14)在基材(10)和防腐保护层(12)之间形成,粘合次层(14)的组成在基材旁边的内表面和外表面之间由基本上纯的硅变化至基本上纯的富铝红柱石,其硅含量降低且富铝红柱石含量增加。

2、
  根据权利要求1所述的部件,其特征在于具有变化组成的粘合次层(14)在其外表面旁边止于基本上纯的富铝红柱石薄层(14a)。

3、
  根据权利要求2所述的部件,其特征在于富铝红柱石薄层(14a)的厚度不超过50μm。

4、
  根据权利要求1至3任一项所述的方法,其特征在于具有变化组成的粘合次层(14)在其内表面旁边始于基材上形成的基本上纯的硅薄层(14b)。

5、
  根据权利要求4所述的部件,其特征在于硅薄层(14b)具有不超过50μm的厚度。

6、
  根据权利要求1至5任一项所述的部件,其特征在于环境防渗层还包含在防腐保护外层(12)上形成的热保护外层(16)。

7、
  根据权利要求1至6任一项所述的部件,其特征在于环境防渗层包含防腐保护层(12a)和在粘合次层(14)上形成的下层(12b),所述防腐保护层(12a)由包括碱金属、或碱土金属、或稀土金属元素的铝硅酸盐的一类化合物形成,所述下层(12b)包含所述化合物与富铝红柱石的缔合。

8、
  根据权利要求7所述的部件,其特征在于所述下层(12b)具有在位于粘合次层(14)旁边的内表面上的基本上纯的富铝红柱石和位于所述防腐保护层(12a)旁边的外表面上的形成防腐保护层的基本上唯一的化合物之间变化的组成,该组成的富铝红柱石含量递减且所述化合物含量递增。

9、
  根据权利要求1至8中任一项所述的部件,其特征在于该部件构成燃气轮机的热端组件。

10、
  根据权利要求1至9中任一项所述的部件,其特征在于该部件构成至少一部分的燃气轮机的燃烧室壁。

说明书

防腐的具有含硅陶瓷基体的复合材料部件
背景技术
本发明涉及由含硅陶瓷基复合(CMC)材料构成的部件,特别是具有碳化硅(SiC)基体的CMC材料部件的防腐蚀保护。本发明的特别但非独占的应用领域为如燃烧室壁的燃气轮机的热端部件,特别是航空发动机的部件。
对于燃气轮机,对提高效率和降低污染排放的需求导致产生燃烧室内更高温度的设想。
因此已提出建议,特别对于燃烧室壁,由CMC材料替代金属材料。已知CMC材料同时表现良好的机械性质使其能够用于结构部件,并能在高温下保持这些性质。CMC材料包含由耐火纤维,通常为碳纤维或陶瓷纤维构成的纤维增强件,由通常是SiC的陶瓷基体增密所述纤维增强件。
在腐蚀性环境(氧化气氛,特别是在湿气和/或含盐气氛下)中,当使用具有SiC基体的CMC材料时,由于通过CMC材料表面的氧化形成的二氧化硅(SiO2)开始挥发,观察到表面下陷(surface-retreat)现象。
已推荐在CMC材料表面形成环境防渗层。图1为具有SiC基体的CMC材料的基材1的现有技术的防渗层的高度概括的剖视图。由包含如化合物BaO0.75·SrO0.25·Al2O3(SiO2)2(一般由缩写BSAS指代)的碱土金属的铝硅酸盐的一类化合物的层2提供防腐功能。化学防渗层3插入BSAS层和基材之间以避免BSAS和基材的SiC之间的化学相互作用。通常层3包含富铝红柱石(占大部分)和BSAS的缔合,相比于在自身之上的富铝红柱石层,BSAS的存在降低了对裂化的灵敏度。在基材上形成硅(Si)的次层4以促进化学防渗层3的粘合。US2004/0151840、US 6 866 897和US 6 787 195的文件与其他文件说明了现有技术。
已发现这种环境防渗层的缺点。
当温度达到高值,通常高于约1300℃,由于在BSAS层内含有的二氧化硅的挥发,观察到所述层的表面的下陷。能通过增加BSAS层的厚度以获得所需的寿命进行补救。另一解决方法包括提供具有热保护外层,特别是钇稳定的氧化锆(或“钇化氧化锆”)的层的环境防渗层,如US 6 740 364、US 6 558 814、US 6 699 607、US 6 607 852、EP1 416 066和EP 1 142 850的文件中的实施例所描述。此外,在这些高温下,通过化学防渗层包含的BSAS与基材上的粘合次层中的Si之间化学相互作用发生恶化作用。为了对此进行补救,可在由Si构成的粘合次层和由富铝红柱石+BSAS构成的化学防渗涂层之间插入在自身之上的富铝红柱石层,特别如US 6 759 151和US 6 733 908的文件中所描述。
申请人也观察到Si的化学粘合层对由热冲击引起的裂化敏感,导致环境防渗层的粘附的丧失。
分别发表在“International Journal of Refractory Metals and HardMetals”,Elsevier Publishers,Barking,GB的Vol.16,No.4-6,1998,pp.343-352和Vol.19,No.4-6,July 2001,pp.467-477的Basu等人的论文“Formation of mullite coatings on silicon-based ceramics by chemicalvapor deposition”和Hou等人的论文“Structure and high temperaturestability of compositionally graded CVD mullite coatings”描述了在含硅基材,特别是SiC基材上的具有组成梯度的富铝红柱石涂层的形成。通过化学气相沉积(CVD)形成富铝红柱石涂层。涂层的组成由接近基材的富含Si的相变化至接近外表面的富含铝的相,该富含铝的相表现防腐功能。
发明内容
因此本发明的一个目标是提供由基材形成的能在腐蚀性气氛和可能超过1300℃的高温下以耐久方式使用的部件,其中所述基材由含硅的CMC材料构成。
该目标由包含含硅陶瓷基复合材料的基材和在基材上形成的环境防渗层的部件实现,所述环境防渗层包含防腐保护外层和在基材上形成的含硅粘合次层,其中防腐保护外层含有包括碱金属、或碱土金属、或稀土金属元素的铝硅酸盐的一类化合物,粘合次层在基材和防腐保护层之间形成,该粘合次层的组成在基材旁边的内表面与外表面之间由基本上纯的硅变化至基本上纯的富铝红柱石,其硅含量降低且富铝红柱石含量增加。
在这里自然使用的术语“基本上纯的富铝红柱石”意指基本上化学计量的富铝红柱石(3Al2O3-2SiO2)。
由于粘合次层的变化的组成,所述粘合次层对裂化,特别是源于热冲击的裂化相对不敏感。粘合次层也表现通过其由硅构成的内表面提供在基材上的化学粘合的功能,以及通过其由富铝红柱石构成的外表面提供化学防渗的功能,防腐功能由次层的富铝红柱石外表面上形成的外层提供。
为提供更好的保证使粘合次层的Si与粘合次层上的环境防渗层内包含的一个或多个化合物之间无化学相互作用,所述粘合次层可止于其外表面旁边的基本上纯的富铝红柱石的薄层内,该薄层优选占据不超过50微米(μm)的厚度。
在粘合次层内表面旁边,该粘合次层可起始于基材上形成的基本上纯的硅的薄层。这种薄层无需很厚而促进基材上的化学粘合。厚度优选小于50μm,与该粘合次层的组成梯度一起用于减小热应力影响下的任何裂化风险。
有可能以已知的方式缔合环境防渗层和在防腐保护外层上形成的热防渗保护层。
此外,环境防渗层可包括防腐保护层(该防腐保护层由包含碱金属、或碱土金属、或稀土金属元素的铝硅酸盐的一类化合物形成)和在粘合次层上形成的包含所述化合物与富铝红柱石的缔合的下层。所述下层可具有在基本上纯的富铝红柱石和基本上仅有形成防腐保护层的化合物之间变化的组成,该变化的组成富铝红柱石含量降低且所述化合物含量增加,其中基本上纯的富铝红柱石在位于粘合次层旁边的内表面的附近,基本上仅有形成防腐保护层的化合物在位于所述防腐保护层旁边的外层的附近。
本发明的部件最好构成燃气轮机,特别是航空发动机的热端部件,如燃烧室壁的部位。
附图说明
在阅读以非限制方式给出的下列描述时显示本发明的其他特征和优点。对附加的附图提供了参考,其中:
·图1为在具有SiC基体的CMC材料的基材上形成的现有技术的环境防渗层的高度概括的剖视图;
·图2为本发明的部件的一个具体实施方案的高度概括的剖视图,该具体实施方案具有在含硅CMC材料的基材上形成的环境防渗层;
·图3至5为表示图2的环境防渗层的不同具体实施方案的剖视图;
·图6和7为受到热冲击之后的根据本发明制得的环境防渗层和现有技术的环境防渗层的剖面的两个扫描电子显微视图;以及
·图8至10为在腐蚀试验和疲劳试验后本发明的环境防渗层的剖面的扫描电子显微视图。
具体实施方式
图1为具有构成本发明一个具体实施方案的环境防渗层的基材10的高度概括视图。
基材10为含硅CMC材料。所述CMC材料的纤维增强件可为碳纤维(C)或陶瓷纤维,特别是SiC纤维。CMC材料的基体由或者全部或者至少部分在外部基体相内的Si化合物,特别是SiC或三元Si-B-C体系构成。术语外部基体相用于意指最后形成的相距增强纤维件最远的基体相。在这种情况下,基体可由多个不同种类的相组成,例如:
混合的C-SiC基体(SiC在外面);或者
具有交替SiC相和较低劲度的基体相(如热解碳PyC、氮化硼BN或掺硼碳BC)的顺序基体,该顺序基体的末段由SiC组成;或者
具有可能包括自由碳(B4C+C、Si-B-C+C)的碳化硼(B4C)或三元Si-B-C体系的基体相以及Si-B-C或SiC的末端相的自修补基体。
在US 5 246 736、US 5 965 266、US 6 291 058和US 6 068 930的文件中特别描述了这种CMC材料。
环境防渗层包含防腐保护层12和在基材10和层12之间的粘合次层14。
防腐保护层12包含外层12a,该外层12a由包含如BSAS的碱金属、或碱土金属、或稀土金属元素的铝硅酸盐的一类化合物构成。可以设想其他化合物,如:
CaO·Al2O3·(SiO2)2或CAS;
(MgO)2·(Al2O3)2·(SiO2)5或MAS;
BaO·Al2O3·SiO2或BAS;
SrO·Al2O3·SiO2或SAS;
35BaO·15CaO·5Al2O3·10B2O3·35SiO2或BCAS;
或选自稀土金属的元素的铝硅酸盐,这里一般指定为“碱金属、或碱土金属、或稀土金属元素的铝硅酸盐型化合物”。
防腐保护层包括形成化学防渗层的内层12b,该内层12b由富铝红柱石和构成层12a的化合物的混合物构成,该混合物在本实施例中为富铝红柱石+BSAS。富铝红柱石占多数,优选介于50重量%至100重量%,优选为约80重量%。
粘合次层14具有由在基材旁边的几乎纯的Si变化至在防腐保护层旁边的几乎纯的富铝红柱石(或几乎化学计量的富铝红柱石3Al2O3-2SiO2)的组成。组成的变化可基本上连续地或逐步地发生。粘合次层最好止于几乎纯的富铝红柱石的薄层14a。所述层14a具有有限的厚度,优选具有不超过50μm的厚度。在基材10旁边,粘合次层可始于促进基材上的化学粘合的几乎纯的Si的薄层14b。所述层14b具有有限的厚度,优选具有不超过50μm的厚度。所述有限的厚度与次层14的组成梯度一起用于限制裂化风险。
富铝红柱石层14a构成防腐保护层12的BSAS型化合物和粘合层14的Si之间的化学反应防渗层。
图3至5表示了不同的具体实施方案。给在图2至5的具体实施方案中相同的元素以相同的参考值。
在图3中,以已知方式将如钇改性的氧化锆(或“钇化氧化锆”)的热防渗层16覆盖于防腐保护层12之上。
在图4中,防腐保护层12局限为碱金属、或碱土金属、或稀土金属元素的铝硅酸盐的一类化合物的层,如BSAS层,粘合次层的最后的富铝红柱石层14a形成防Si的化学防渗层。
在图5中,防腐保护层12的内层12b具有由在粘合次层旁边的几乎纯的富铝红柱石变化至在外层12a旁边的BSAS或几乎纯的其他类似化合物的组成,具有组成梯度的所述层12b提供了改进的承受热应力的能力。
环境防渗层的各个层通过物理气相沉积进行沉积,如通过常压空气中或真空下的等离子喷镀或热等离子喷镀。进而使用不同组成的连续来源或通过交替活化且为了改变被沉积的组成的两个成分来源的持续时间形成组成梯度层。因此,特别对于富铝红柱石,可能以其等离子体增强形式(PE-CVD)使用化学气相沉积(CVD)工艺。也可能设想使用液体中的悬浮体中的粉末进行沉积。
通过下述实施例理解包含具有在Si和富铝红柱石之间的组成梯度的粘合次层在承受热冲击的能力方面的优点。
实施例1
具有图2所示的类型的本发明的环境防渗层在复合材料的基材上形成,所述复合材料由使用SiC纤维(由日本供应商Nippon Carbon以“Hi-Nicalon”为参考生产)的纤维增强件和B4C+C、SiC、Si-B-C+C顺序的自修补基体(通过在纤维上沉积PyC界面层后的化学气相渗透制得)组成。
使用热等离子体喷镀沉积技术。
使用两个粉末容器(一个为硅粉容器,另一个为富铝红柱石粉容器)在低压下生产具有由Si至富铝红柱石的组成梯度的粘合次层(14)。调节沉积条件以形成厚度为30μm的纯Si层(14b),进而形成厚度为70μm的富铝红柱石比例递增的Si+富铝红柱石层,进而形成厚度为30μm的纯富铝红柱石层(14a)。
在常压下制备防腐保护层(12)。由质量比为80至20的富铝红柱石和BSAS粉末的混合物得到厚度为100μm的内层(12b),使用BSAS粉末得到厚度为170μm的BSAS外层(12a)。
实施例2(对比)
在与实施例1中使用的相同复合材料的基材上形成图1表示的现有技术的环境防渗层。
与实施例1相同,使用热等离子体喷镀沉积技术。
在低压下使用硅和富铝红柱石粉末制备厚度为120μm的纯Si粘合次层(4)和厚度为170μm的纯富铝红柱石防渗层(3)。
进而在等离子气体的常压下使用BSAS粉末制备厚度为150μm的BSAS防腐保护层(2),所述等离子气体由氩气和氦气的混合物形成。
试验1
通过将在实施例1和2的应用中得到的涂有防渗层的基材置入加热至1200℃的烘箱中2分钟然后返回至室温空气中,将所述基材用于热冲击试验。
由图6的剖视图可知,在进行2个上述热冲击后,在实施例1得到的粘合次层中未观察到裂化。
相比之下,由图7可知,在实施例2得到的环境防渗层的Si粘合次层中观察到裂化。
试验2
将涂有实施例1的环境防渗层的基材分别用于:
·腐蚀试验,将所述基材在1400℃下暴露于流速为5厘米每秒(cm/s)的湿空气流(700克(g)水每公斤(kg)空气)600小时(h);以及
·严格疲劳和腐蚀试验:在1200℃和160兆帕(MPa)下实施牵引应力30h,随后在1200℃下暴露于流速为2cm/s的湿空气流(700g水每kg空气)250h。
图8为在第一次上述两个试验之后环境防渗层的剖面的照片。未观察到环境防渗层的降解。
图9和10为在第二次上述两个试验之后环境防渗层的剖面的照片,选择图10的照片寻找裂化的出现。可发现图10中可见的裂化仅涉及到环境防渗层厚度的部分,裂化始于该环境防渗层的外表面,止于混合硅/富铝红柱石层。因此,该混合层有助于分散裂化能以防止裂化到达基材表面形成的硅薄层,从而防止环境防渗层粘附的丧失的风险。

防腐的具有含硅陶瓷基体的复合材料部件.pdf_第1页
第1页 / 共14页
防腐的具有含硅陶瓷基体的复合材料部件.pdf_第2页
第2页 / 共14页
防腐的具有含硅陶瓷基体的复合材料部件.pdf_第3页
第3页 / 共14页
点击查看更多>>
资源描述

《防腐的具有含硅陶瓷基体的复合材料部件.pdf》由会员分享,可在线阅读,更多相关《防腐的具有含硅陶瓷基体的复合材料部件.pdf(14页珍藏版)》请在专利查询网上搜索。

本发明涉及一种在由陶瓷基复合材料构成的基材(10)上形成并包含防腐保护外层(12)的环境防渗层,所述防腐保护外层含有碱金属、碱土金属或稀土金属的铝硅酸盐的化合物。粘附次层(14)在基材(10)和保护层(12)之间形成,所述粘附次层的组成在基材侧的内表面和外表面之间由基本上纯的硅发展至基本上纯的富铝红柱石,其硅含量降低且富铝红柱石含量增加。。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 化学;冶金 > 对金属材料的镀覆;用金属材料对材料的镀覆;表面化学处理;金属材料的扩散处理;真空蒸发法、溅射法、离子注入法或化学气相沉积法的一般镀覆;金属材料腐蚀或积垢的一般抑制〔2〕


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1