窗膜 本发明涉及吸收红外线的窗膜。
反光的窗膜已被用于粘贴到象机动车窗玻璃这样的玻璃窗上。这种反光的窗膜很有用,因为它能反射太阳光、尤其是红外线以防室温升高。
近年来,曲面玻璃已被用作旅游汽车等的玻璃窗,而通常将反光的窗膜粘贴到该曲面玻璃的内表面(凹面)。
如果装有曲面玻璃窗的门处于开启状态,则阳光照射粘贴在曲面玻璃窗的内表面的反光窗膜,并反射、聚光直至烧着室内的物品。
为了避免光线只反射到反光窗膜的内表面,而考虑采用无光涂料或黑色涂料。
然而,由于这些措施也阻挡了光的透射,所以从室内看室外将很困难,故这些措施难于实际应用。
本发明提出了一种窗膜,它可将红外线的反射减至最低程度并且,甚至当曲面玻璃窗的内表面受阳光照射时可减小聚焦的红外线的光强。
本发明的发明人研究了前述问题的解决方案,发现通过将包括反光层及红外线吸收层的窗膜反光层朝内、红外线吸收层朝外地粘贴于曲面玻璃窗的内表面,则前述问题得以解决,于是完成本发明。
本发明提出由反光层及红外线吸收层构成的窗膜。
图1显示本发明的窗膜的一个实施方案的剖视图;
图2显示本发明的窗膜的另一实施方案地剖视图;
图3显示本发明的窗膜的再一实施方案的剖视图;
图4显示本发明的窗膜的又一实施方案的剖视图。
下面将详细叙述本发明。
本发明的窗膜的反光层不反射全部可见光,只反射部分或大部分可见光,并透射其余的可见光。该反光层对可见光的透光度优选是10~80%,最优选是15-55%。
反光层的实例包括金属蒸镀层、金属溅射层、电离镀层、金属粉末掺合层、电镀层及化学镀层,其中的金属蒸镀层是优选的。这些层中应用的金属实例包括铝、金、银、铜、镍、钴、铬、锡和铟,其中铝是最优选的。
反光层的厚度优选是0.001~0.1微米,更优选是0.005~0.05微米。
本发明的窗膜的红外线吸收层是能吸收红外线的薄层,且对红外线的吸光度优选是80%或更多,更优选是90%或更多。要求红外线吸收层能透射可见光,且可见光的透光度优选是50%或更多,更优选是60%或更多。
红外线吸收层的一个实例是含红外线吸收剂的薄层,更确切地说,掺合有红外线吸收剂的透明基膜层、含红外线吸收剂的涂层、或含红外线吸收剂的印制层。含红外线吸收剂的涂层、或含红外线吸收剂的印制层优选形成于透明基膜层的至少一面。
红外线吸收剂包括无机红外线吸收剂如氧化锡、氧化铟、氧化镁、二氧化钛、铬的氧化物、氧化锆、氧化镍、氧化铝、氧化锌、氧化铁、氧化锑、氧化铅及氧化铋,以及有机红外线吸收剂如酞菁、萘菁(naphthalocyanines)及蒽醌。
无机红外线吸收剂优选是粒状,且其平均粒径优选是0.005~1微米,更优选是0.01~0.5微米。无机红外线吸收剂的粒径分布优选是1微米或更小以便提高可见光的透光度。
红外线吸收剂最好是高度分散的。
红外线吸收剂的用量相对于单位面积的窗膜优选是0.5~20g/m2,更优选是1-10g/m2。
红外线吸收层的厚度不限,但对含红外线吸收剂的涂层或含红外线吸收剂的印制层来说,红外线吸收层的厚度为0.5~15微米,优选是1~10微米。对于包括掺合有红外线吸收剂的透明基膜的薄膜层,薄膜层的厚度为5~200微米,优选是10~100微米。
掺合有红外线吸收剂的透明基膜包括各类树脂的薄膜或层压膜,这些树脂包括:聚烯烃树脂如聚乙烯和聚丙烯、氯乙烯树脂、苯乙烯树脂、ABS树脂、聚乙烯醇、丙烯酸树脂、丙烯腈-苯乙烯树脂、1,1-二氯乙烯树脂、AAS树脂、AES树脂、聚氨酯树脂、聚乙烯醇缩丁醛树脂、聚4-甲基戊烯-1树脂、聚丁烯-1树脂、1,1-二氟乙烯树脂、氟乙烯树脂、碳氟树脂、聚碳酸酯树脂、聚酰胺树脂、聚缩醛树脂、聚苯氧树脂、聚酯树脂如聚对苯二甲酸丁二醇酯和聚对苯二甲酸乙二醇酯、聚苯硫树脂、聚酰亚胺树脂、聚砜树脂、聚醚砜树脂、芳族聚酯树脂及聚烯丙基酯树脂。这些膜中,聚酯树脂膜、氯乙烯树脂膜及聚烯烃树脂膜是优选的,而聚酯树脂膜是最优选的。
含红外线吸收剂的涂层或含红外线吸收剂的印制层是由红外线吸收剂及粘合剂构成的一层。粘合剂例如包括:热塑性树脂及紫外线固化树脂如丙烯酸树脂、聚酯树脂、环氧树脂、酚醛树脂、聚氨酯树脂、丁醛树脂、邻苯二甲酸二烯丙酯树脂及硅氧烷树脂。优选的粘合剂是丙烯酸树脂、聚酯树脂及丁醛树脂。
含红外线吸收剂的涂层或含红外线吸收剂的印制层优选是贴在透明基膜的至少一面。该透明基膜与前述掺合有红外线吸收剂的基膜相同。
该透明基膜的厚度可以适当地选择,且通常是5~200微米,优选是10~100微米。
本发明的窗膜可带有一保护层以保护红外线吸收层的表面。该保护层可以是防止污染或损坏的任何薄层,且优选是透明的基膜层或透明的涂层。
本发明的窗膜优选是在反光层的一面具有红外线吸收层,而在反光层的另一面具有粘合剂层用以粘贴到玻璃表面。
该粘合剂层例如包括:含诸如压敏粘合剂、热敏粘合剂及湿敏粘合剂这样的粘合剂的一层。压敏粘合剂可以是天然橡胶、合成橡胶、丙烯酸类、聚乙烯醚、尿烷、或硅氧烷压敏粘合剂。合成橡胶压敏粘合剂的实例有丁苯橡胶、聚异丁烯橡胶、异丁橡胶、异戊二烯橡胶、苯乙烯-异戊二烯嵌段共聚物、苯乙烯-丁二烯嵌段共聚物、苯乙烯-乙烯-丁烯嵌段共聚物及乙烯-醋酸乙烯酯热塑性弹性体。丙烯酸类压敏粘合剂的实例有:丙烯酸、丙烯酸甲酯、丙烯酸乙酯、丙烯酸丙酯、丙烯酸丁酯、丙烯酸2-乙基己酯、甲基丙烯酸乙酯、甲基丙烯酸丁酯和丙烯腈的聚合物或共聚物。聚乙烯醚树脂压敏粘合剂的实例有聚乙烯基醚及聚乙烯基异丁基醚。硅氧烷压敏粘合剂的实例是聚二甲基硅氧烷。在这些压敏粘合剂中,丙烯酸树脂压敏粘合剂是优选的。
这些粘合剂可单独用,也可将两种或多种粘合剂组合使用。
需要的话,这些粘合剂可含有增粘剂、填料、软化剂、热和光稳定剂、抗氧化剂、或交联剂。增粘剂包括松脂、萜烯-酚醛树脂、萜烯树脂、芳烃改性萜烯树脂、石油树脂、苯并呋喃-茚树脂、苯乙烯树脂、酚醛树脂及二甲苯树脂。填料包括氧化锌、二氧化钛、二氧化硅、碳酸钙及硫酸钡。软化剂包括操作油、液体橡胶及增塑剂。热和光稳定剂包括二苯酮、苯并三唑及化合胺。抗氧化剂包括N-酰基苯胺、酚类、亚磷酸盐及硫羟酸酯。
粘合剂层的形成方法很多,包括下列各种方法:将溶于适当溶剂中的粘合剂涂敷在基膜上;将分散或乳化于适当的介质中的粘合剂涂敷在基膜上;用砑光辊而不用溶剂涂敷粘合剂;将形成于隔离衬里上的粘合剂层移膜粘贴;及将双面胶带覆盖于基膜上。
粘合剂层的厚度并不局限于某特定厚度值,而通常是10~100微米厚,优选是20~50微米厚。
隔离衬里可覆盖于粘合剂层的表面。
本发明的窗膜可具有如上所述粘合剂层的热敏粘合剂层或湿敏粘合剂层。
热敏粘合剂层中所用的热敏粘合剂可以是各种热敏均聚物或共聚物,例如:乙烯-醋酸乙烯酯共聚物、乙烯-丙烯酸酯共聚物、苯氧基树脂、尼龙11、尼龙12、饱和聚酯、苯并呋喃-茚树脂、松脂、苯乙烯-异戊二烯-苯乙烯共聚物橡胶、苯乙烯-丁二烯-苯乙烯共聚物橡胶、聚乙烯树脂及聚氨酯树脂。这些原料中,乙烯-醋酸乙烯酯共聚物及乙烯-丙烯酸酯共聚物是优选的。
湿敏粘合剂层中所用的湿敏粘合剂可以是各种湿敏粘合剂,例如:聚丙烯酰胺、聚丙烯酸、聚丙烯酸酯、聚乙烯醇、聚乙烯醚、纤维素衍生物及精制淀粉。它们可以单独用,也可以与一种或多种其它原料组合使用。
需要的话,热敏和湿敏粘合剂层可以含有增粘剂、填料、软化剂、热和光稳定剂、抗氧化剂、或交联剂。这些添加剂与前述粘合剂中的添加剂相同。
热敏粘合剂通过受热形成粘合力而牢固地粘结在物品上。湿敏粘合剂则通过溶剂如水的作用形成粘合力而牢固地粘结在物品上。
热敏和湿敏粘合剂层的厚度可适当地选择,且通常是3~100微米厚,优选是5~50微米厚。
由于热敏粘合剂在常温下没有粘合力,而湿敏粘合剂只有在溶剂作用下才有粘合力,它们即使与其它成分接触也不会粘结到物品上,因此在其表面不需用隔离衬里。
可用各种方法形成热敏和湿敏粘合剂层。例如,可用与形成前述粘合剂层相同的方法来形成这些粘合剂层。
如果将涂有热敏或湿敏粘合剂层的双面胶带用于层压,则任一面的热敏或湿敏粘合剂层可用压敏粘合剂层代替。
本发明的窗膜中的反光层和粘合剂层可直接压合,或者可通过插进透明基膜而压合。
该透明基膜可以与前述的相同。
该透明基膜的厚度可适当地选择,且通常是5~200微米厚,优选是10~100微米厚。
本发明的窗膜的典型结构将参照图1~4的剖视图来描述:
图1中所示的实施方案结构为:由含红外线吸收剂的涂层构成的红外线吸收层2压合于反光层1的一面,透明基膜3压合于反光层1的另一面,而作为粘合剂层4的压敏粘合剂层压合于透明基膜3的表面。
图2中显示的窗膜实施方案结构为:由含红外线吸收剂的透明基膜构成的红外线吸收层2压合于反光层1的一面,而作为粘合剂层4的热敏粘合剂层压合于反光层1的另一面的表面。
图3中显示的窗膜实施方案结构为:由含红外线吸收剂的涂层构成的红外线吸收层2压合于反光层1的一面,透明基膜3压合于红外线吸收层2的表面,而作为粘合剂层4的压敏粘合剂层压合于反光层1的另一表面。
图4中显示的窗膜实施方案结构为:透明基膜3压合于反光层1的一面,红外线吸收层2压合于透明基膜3上,而作为粘合剂层4的湿敏粘合剂层压合于反光层1的另一面。
图1-4显示的上述实施方案中,由含红外线吸收剂的印制层代替含红外线吸收剂的涂层构成的窗膜可作为典型实例包括在内。
构成窗膜的各层可通过插入粘合剂层压合,或者不用插入粘合剂层而直接压合。
如果各层与粘合剂层之间的粘附力不足,则有待用粘合剂涂敷的各层表面可用电晕放电处理,或者可采用主要由聚酯、尿烷、或氯化聚烯烃构成,且需要的话含填料的底剂作为底层以供应用。可在此处应用的各种填料包括:二氧化硅、碳酸钙、碳酸镁、高岭土、烧结的陶土、皂土、沸石、滑石及硅藻土。
本发明的窗膜对可见光的透光度优选是10~80%,更优选是15~55%。
本发明的窗膜可用于各种场合。本发明的窗膜尤为有效的应用在于机动车门的曲面玻璃窗。
因此,本发明还可提供将本发明的窗膜用于窗玻璃、尤其是用于机动车门的曲面玻璃窗而吸收红外线的方法。
本发明的窗膜用于机动车门的曲面玻璃窗时的效果将描述如下。
机动车门关闭时,部分或大部分阳光被粘贴在透明曲面玻璃窗上的窗膜的反光层反射。将反光层的厚度调节到可透过部分或大部分阳光,透过反光层的余下的阳光透过红外线吸收层而进入车内。因此,乘客可在车内看到车外。
另一方面,机动车门打开时,阳光照射粘贴在曲面玻璃窗的窗膜的内表面,其红外线被红外线吸收层吸收,而可见光、紫外线及未被吸收的红外线被反光层反射、透过红外线吸收层而进入车内。因此,应用从里到外由红外线吸收层及反光层(及玻璃)构成的本发明的窗膜,由于阳光在作为反射光被反射出之前要透过红外线吸收层两次,所以红外线被有效地吸收掉。所以,没有或极少的红外线进入车内,可防止车内的物品温度升高或着火。
若把紫外线吸收剂加入红外线吸收层、透明基膜、或粘合剂层,或者提供紫外线吸收层时,则可防止物品脱色或乘客被晒黑。
参照下列实施方案使本发明得以更确切地描述。应注意的是本发明不局限于这些实施例。实施例1
在透明基膜3(一种聚酯树脂膜,厚度:50微米,得自TorayIndustries Inc.的“Lumilar T-60”)上,通过铝的蒸镀形成对可见光的透光度为18%的反光层1(铝层的厚度:0.018微米),在反光层1的表面涂敷分散有细氧化锡粉末(平均粒径:0.2微米,粒径分布:0.01~0.5微米)的紫外光固化丙烯酸树脂(得自SumitomoOsaka Cement Co.,LTD.的“SH-1”),使得用Meyer bar固化后其厚度为7微米。经紫外线照射后固化而形成红外线吸收层2。分散的氧化锡量为3.5g/m2。
然后,将由100重量份的得自Saiden Chemical IndustryCo.,LTD.的丙烯酸酯基共聚物“T-717”与1.0重量份的得自Nippon Polyurethane Industry Co.,LTD.的“Collonate L”构成的丙烯酸压敏粘合剂,涂敷在透明基膜3的表面,使干燥后形成的窗膜的厚度为20微米。
将所得窗膜粘贴在3mm厚的透明浮法玻璃上,用得自Shimadzu Corporation的“UV-3100PC”分光光度计测定反光指数。结果列于表1。光线从透明浮法玻璃的未粘贴窗膜的一面照射,测定透过窗膜的光的透光度,结果如表2所示。
按JIS R3106测定反光指数及透光度。对比例1
按与实施例1相同的方法制备窗膜,不同的是未设置红外线吸收层2。
用与实施例1中相同的方法测定反光指数及透光度。结果列于表1及2。 表1 光的波长 反光指数 实施例1 对比例1 550nm 38% 58% 1000nm 41% 60% 1500nm 7% 70% 2000nm 5% 79% 2500nm 6% 88%表2 光的波长 透光度 实施例1 对比例1 550nm 15% 18% 1000nm 8% 10% 1500nm 3% 5% 2000nm 0% 3% 2500nm 0% 1%
从表1可知,本发明的窗膜的反光指数在红外线区内大为降低,表明窗膜吸收大部分红外线。
表2显示,本发明的窗膜的透光度与对比例1的窗膜的透光度几乎相同,且可见光的透光度没有大程度地降低。
本发明的窗膜的透光颜色仅比对比例1的窗膜的略深,且颜色变化不太大,实际上可接受。
将本发明的窗膜粘贴于曲面玻璃窗的内侧后,即使阳光照射在窗膜的表面,也减少红外线的反射、并降低聚焦的红外线的强度。
1996年3月19日提交的、包括说明书、权利要求书、附图及摘要在内的日本专利申请No.Hei 8-89066其全文并入本文作参考。