波长选择性光切换设备、使用它的光通信设备以及在光通信设备中的使用方法.pdf

上传人:a2 文档编号:1314964 上传时间:2018-04-15 格式:PDF 页数:48 大小:1.80MB
返回 下载 相关 举报
摘要
申请专利号:

CN98809283.2

申请日:

1998.09.18

公开号:

CN1273755A

公开日:

2000.11.15

当前法律状态:

撤回

有效性:

无权

法律详情:

发明专利申请公布后的视为撤回|||实质审查的生效申请日:1998.9.18|||公开

IPC分类号:

H04Q11/00; H04J14/02

主分类号:

H04Q11/00; H04J14/02

申请人:

康宁股份有限公司;

发明人:

小M·J·达利; J·M·哈利斯; M·F·克罗尔; D·A·诺兰

地址:

美国纽约州

优先权:

1997.09.18 US 60/059,214

专利代理机构:

上海专利商标事务所

代理人:

徐泰

PDF下载: PDF下载
内容摘要

设计了一种光切换设备,以实现用于波分复用光通信系统的串联的切换构造。该设计允许对于选出的波长信道进行加入/分出切换,而不切换未选出的波长信道,由此避免了在加入/分出切换期间可能出现的数据丢失。在例示的实现中,使用了基于光纤的方法和基于活动光学零件的方法。串联构造容易适应新的波长方案和/或加入新的波长信道。

权利要求书

1:  一种用于波分复用光通信的切换设备,其特征在于,所述设备包括: 波长选择性光切换组件,包括构造来接收多个光波长信道的输入端口、输出 端口、波长选择性滤光器以及光切换装置; 构造和设置所述波长选择性滤光器以引导在多个接收到的波长信道上的信号 传播至所述输出端口,并且引导在另一个接收到的波长信道上的信号至所述光切 换装置; 设置所述光切换装置并使之运行,以在直通状态和分出或加入/分出状态之 间切换所述另一个波长信道而不切换所述多个波长信道。
2: 如权利要求1所述的设备,其特征在于,所述光切换装置包括4端口无 波长选择性的光开关。
3: 如权利要求2所述的设备,其特征在于,所述波长选择性滤光器包括至 少一个波长选择性光栅。
4: 如权利要求1所述的设备,其特征在于,所述波长选择性滤光器和所述 光切换装置的所有的光学零件都是活动的光学零件。
5: 如权利要求1所述的设备,其特征在于,所述波长选择性滤光器包括对 所述另一个波长信道透射而对所述多个波长信道反射的薄膜滤光器,该薄膜滤光 器设置在从所述输入端口传播的信号的路径中,所述切换部分具有在第一位置和 第二位置之间的可切换件,所述可切换件在所述第一位置处阻挡由所述薄膜滤光 器透射的在所述另一个信道上的所述信号,以使该信号返回传播通过所述薄膜滤 光器至所述输出端口,所述可切换件在所述第二位置处允许分出该信号。
6: 一种用于波分复用光通信的切换设备,其特征在于,所述设备包括: 波长选择性光切换组件,包括构造来接收多个光波长信道的输入端口、 输出端口、第一光环行器、第二光环行器、波长选择性滤光器以及光切换装 置; 每个所述第一和第二环行器具有第一、第二和第三端口,所述第一环行 器的第一端口组成所述输入端口,所述第二环行器的第三端口组成所述输出 端口; 所述波长选择性滤光器包括连接在所述第一和第二环行器的第二端口之 间的反射光栅,该光栅构造来引导在多个接收到的波长信道上的信号经所述 第二环行器传播至所述输出端口,并且引导在另一个接收到的波长信道上的 信号至所述光切换装置; 所述光切换装置连接在所述第一环行器的第三端口和所述第二环行器的 第一端口之间,并且在直通状态和分出或加入/分出状态之间切换所述另一个 波长信道,而不切换所述多个波长信道。
7: 如权利要求6所述的设备,其特征在于,所述光切换装置包括4端 口无波长选择性的光开关。
8: 一种用于波分复用光通信的切换设备,其特征在于,所述设备包括: 波长选择性光切换组件,包括构造来接收多个光波长信道的输入端口、 输出端口、第一光耦合器、第二光耦合器、波长选择性滤光器以及光切换装 置; 每个所述第一和第二耦合器具有第一、第二和第三端口,所述第一耦合 器的第一端口组成所述输入端口,所述第二耦合器的第二端口组成所述输出 端口; 所述波长选择性滤光器包括连接在所述第一耦合器的第二端口和所述第 二耦合器的第一端口之间的反射光栅,该光栅构造来引导在多个接收到的波 长信道上的信号经所述第二耦合器传播至所述输出端口,并且引导在另一个 接收到的波长信道上的信号至所述光切换装置; 所述光切换装置连接在所述第一和第二耦合器的第三端口之间,并且在 直通状态和分出或加入/分出状态之间切换所述另一个波长信道,而不切换所 述多个波长信道。
9: 如权利要求8所述的设备,其特征在于,所述第一和第二耦合器是 光纤耦合器。
10: 如权利要求8所述的设备,其特征在于,所述光切换装置包括4端 口无波长选择性的光开关。
11: 一种用于波分复用光通信的切换设备,其特征在于,所述设备包括: 波长选择性光切换组件,包括构造来接收多个光波长信道的输入端口、输出 端口、波长选择性滤光器以及光切换装置; 所述波长选择性滤光器包括4端口的陷波滤光器装置,它具有耦合至第一端 口、第二端口、第三端口和第四端口的薄膜陷波滤光器,所述第一端口和第四端 口分别组成所述输入端口和所述输出端口; 所述陷波滤光器构造来反射在多个接收到的波长信道上的信号,用以传播至 所述第四输出端口,并且发送在另一个接收到的波长信道上的信号,用以经所述 第二端口传播至所述光切换装置; 所述光切换装置连接在所述第二端口和所述第三端口之间,并且在直通 状态和分出或加入/分出状态之间切换所述另一个波长信道,而不切换所述多 个波长信道。
12: 如权利要求11所述的设备,其特征在于,所述光切换装置包括4 端口无波长选择性的光开关。
13: 一种用于波分复用光通信的切换设备,其特征在于,所述设备包括: 波长选择性光切换组件,包括构造来接收多个光波长信道的输入端口、输出 端口、波长选择性Mach-Zehnder滤光器装置以及光切换装置; 构造和设置所述Mach-Zehnder滤光器装置,以引导在多个接收到的波长 信道上的信号传播至所述输出端口,并且引导在另一个接收到的波长信道上 的信号至所述光切换装置; 设置所述光切换装置,并且在直通状态和分出或加入/分出状态之间切换 所述另一个波长信道,而不切换所述多个波长信道。
14: 如权利要求13所述的设备,其特征在于,所述光切换装置包括4 端口无波长选择性的光开关。
15: 如权利要求13所述的设备,其特征在于,所述Mach-Zehnder滤光 器装置包括第一和第二2×2光耦合器,每个所述光耦合器具有第一端口、第 二端口、第三端口和第四端口,所述第一耦合器的第一端口组成所述输入端 口,所述第一耦合器的第三和第四端口由第一和第二移相光路分别连至所述 第二耦合器的端口,在所述第一和第二移相光路中设置反射光栅部分,而所 述光切换装置连在所述第一耦合器的第二端口和所述第二耦合器的第三端口 之间,而所述第二耦合器的第四端口组成所述输出端口。
16: 如权利要求15所述的设备,其特征在于,所述反射光栅部分包括 分别设置在所述第一和第二移相光路中的第一和第二反射光栅,所述第一和 第二反射光栅被调谐至所述另一个信道。
17: 一种用于波分复用光通信的切换设备,其特征在于,所述设备包括: 构造来接收多个多路复用的光信号的输入端口,每个所述光信号在不同 的波长信道上; 输出端口; 从所述输入端口至所述输出端口的第一光路;以及 从所述输入端口至所述输出端口的第二光路; 所述第二光路包括光切换装置而所述第一光路包括波长选择性滤光器, 如此构造所述波长选择性滤光器,从而通过包括所述第一光路的路径使所述 信号的至少一个选出的信号传播至所述切换装置,并且使得其余的所述信号 传播至所述输出端口; 所述切换装置具有第一状态和第二状态,在所述第一状态中,所述切换装置 通过所述第二光路使得从所述波长选择性滤光器传播的所述至少一个选出的信号 传播至所述输出端口,而在所述第二状态中,分出从所述波长选择性滤光器传播 的所述至少一个选出的信号,从而不传播至所述输出端口。
18: 如权利要求17所述的设备,其特征在于,所述切换装置包括4端 口无波长选择性的光开关。
19: 如权利要求18所述的设备,其特征在于,所述4端口开关具有在 所述第一状态下分别耦合至所述输入端口和所述输出端口的第一和第四端 口,以及在所述第二状态下经所述第四端口耦合至所述输出端口的第二端口 和经所述第一端口耦合至所述输入端口的第三端口,所述第二和第四端口分 别组成加入和分出端口。
20: 如权利要求17所述的设备,其特征在于,所述设备包括第一光环 行器和第二光环行器,每个所述光环行器具有第一、第二和第三端口,所述 第一环行器的第一端口组成所述输入端口,所述第二环行器的第三端口组成 所述输出端口,所述波长选择性滤光器包括连接在所述第一和第二环行器的 第二端口之间的反射光栅,而所述切换装置连接在所述第一环行器的第三端 口和所述第二环行器的第一端口之间。
21: 如权利要求17所述的设备,其特征在于,所述设备包括第一光耦 合器和第二光耦合器,每个所述光耦合器具有第一、第二和第三端口,所述 第一耦合器的第一端口组成所述输入端口,所述第二耦合器的第二端口组成 所述输出端口,所述波长选择性滤光器包括连接在所述第一耦合器的第二端 口和第二耦合器的第一端口之间的反射光栅,而所述切换装置连接在所述第 一和第二耦合器的第三端口之间。
22: 如权利要求17所述的设备,其特征在于,所述设备包括具有构成所述 波长选择性滤光器的薄膜陷波滤光器的四端口滤光器装置,所述薄膜陷波滤光器 耦合至第一端口、第二端口、第三端口和第四端口,所述第一端口和第四端口分 别组成所述输入端口和所述输出端口,所述切换装置连接在所述第二端口和所述 第三端口之间,并且构造所述薄膜陷波滤光器,用于反射所述信号的所述剩下的 部分,以传播至所述第四端口并且透射所述至少一个选出的信号,以经所述第二 端口传播至所述光切换装置。
23: 如权利要求17所述的设备,其特征在于,所述设备包括合并有所述波 长选择性滤光器的Mach-Zehnder滤光器组件,所述Mach-Zehnder滤光器组件包 括: 第一和第二2×2光耦合器,每个所述光耦合器具有第一、第二、第三和第 四端口; 所述第一耦合器的第一端口组成所述输入端口,所述第一耦合器的第三和第 四端口由第一和第二移相光路分别连至所述第二耦合器的第一和第二端口,而所 述第二耦合器的第四端口组成所述输出端口;以及 设置在所述第一和第二移相光路中的反射光栅部分; 所述切换装置连接在所述第一耦合器的第二端口和所述第二耦合器的第三端 口之间。
24: 如权利要求23所述的设备,其特征在于,所述反射光栅部分包括分别 在所述第一和第二移相光路中的第一和第二反射光栅,所述第一和第二反射光栅 被调谐至所述选出信号的信道。
25: 如权利要求17所述的设备,其特征在于,所述波长选择性滤光器 是薄膜滤光器,它透射所述的一个信号并且反射所述其余的信号,并且所述 切换装置包括在第一位置和第二位置之间可切换件,所述可切换件在所述第一 位置处阻挡所述一个信号,以使该信号返回传播通过所述薄膜滤光器至所述输出 端口,所述可切换件在所述第二位置处允许分出该信号。
26: 一种用于波分复用光通信的切换设备,其特征在于,所述设备包括: 输入端口; 第一波长选择性光切换组件;以及 输出端口和分出端口,它们经所述光切换组件在光学上耦合至所述输入 端口; 所述光切换组件包括薄膜滤光器和切换装置; 所述薄膜滤光器透射第一通信波长的光而反射第二通信波长的光,该薄 膜滤光器设置在从所述输入端口传播的一条光路中,用于反射所述第二波长 的光,以传播至所述输出端口,并且透射所述第一波长的光; 所述切换装置具有在第一位置和第二位置之间可切换件,所述可切换件在 所述第一位置处阻挡由所述薄膜滤光器透射的所述第一波长的光,以使该光传播 至所述输出端口,所述可切换件在所述第二位置处允许由所述薄膜滤光器透射的 所述第一波长的光传播至所述分出端口。
27: 如权利要求26所述的设备,其特征在于,所述可切换件具有第一反射 面,它在所述第一位置阻挡由所述薄膜滤光器透射的所述第一波长的光。
28: 如权利要求27所述的设备,其特征在于,所述切换装置具有第二反射 面,而所述第一反射面反射被阻挡的光至所述第二反射面,以传播至所述输出端 口。
29: 如权利要求28所述的设备,其特征在于,所述第二反射面反射被阻挡 的光返回通过所述薄膜滤光器。
30: 如权利要求28所述的设备,其特征在于,所述第一和第二反射面固定 设置在一个共用的可动支承件上。
31: 如权利要求30所述的设备,其特征在于,所述支承件是棱镜。
32: 如权利要求26所述的设备,其特征在于,所述设备还包括驱动机构, 用于在所述第一和第二位置之间移动所述可切换件。
33: 如权利要求26所述的设备,其特征在于,所述设备还包括: 第二分出端口; 第二波长选择性光切换组件,它包括第二薄膜滤光器和第二切换装置; 所述第二薄膜滤光器透射所述第二波长的光并且反射所述第一波长的光,该 薄膜滤光器设置在从所述第一光切换组件的所述薄膜滤光器传播的光路中,用于 反射所述第一波长的光,以传播至所述输出端口,并且透射所述第二波长的光; 所述第二切换装置包括在第一位置和第二位置之间的可切换件,所述可切换 件在所述第一位置处阻挡由所述第二薄膜滤光器透射的所述第二波长的光,以使 该光传播至所述输出端口,所述可切换件在所述第二位置处允许由所述第二薄膜 滤光器透射的所述第二波长的光传播至所述第二分出端口。
34: 如权利要求26所述的设备,其特征在于,所述设备还包括: 经所述第一光切换组件耦合至所述输出端口的加入端口; 其中,所述薄膜滤光器设置在从所述加入端口传播的光路中,并且当所述可 切换件在所述第一位置时,所述薄膜滤光器阻挡所述光路,而当所述可切换件在 所述第二位置时,所述薄膜滤光器不阻挡所述光路。
35: 如权利要求26所述的设备,其特征在于,所述输入端口经第一透镜耦 合至所述第一光切换组件,而所述分出端口经第二透镜耦合至所述第一光切换组 件,所述第二透镜跨过所述薄膜滤光器大体上与所述第一透镜在光学上对准。
36: 如权利要求26所述的设备,其特征在于,所述设备还包括: 经所述第一光切换组件耦合至所述输出端口的加入端口,所述加入端口经第 一透镜耦合至所述第一光切换组件,而所述输出端口经第二透镜耦合至所述第一 光切换组件,所述第二透镜跨过所述薄膜滤光器大体上与所述第一透镜在光学上 对准。
37: 如权利要求26所述的设备,其特征在于,所述第一光切换组件还包括 多个反射件,由设置的所述反射件连同所述薄膜滤光器确定一条耦合所述输入端 口和所述输出端口的曲折的光路,将所述薄膜滤光器设置在所述曲折光路的顶点 处。
38: 如权利要求37所述的设备,其特征在于,所述反射件的至少一个反射 件是外加的薄膜滤光器,它透射所述第一波长的光而反射所述第二波长的光,并 且处于所述第一位置的所述可切换件使得被阻挡的所述第一波长的光通过所述外 加的薄膜滤光器传播而进入所述曲折光路。
39: 如权利要求38所述的设备,其特征在于,所述第二薄膜滤光器耦合至 加入端口,用于经所述曲折光路的一部分加入要传输至所述输出端口的信号。
40: 如权利要求26所述的串联连接的切换设备的结构,其特征在于,与各 自的薄膜滤光器相关联的第一波长是不同的。
41: 一种用于波分复用光通信的切换设备,其特征在于,所述设备包括: 构造来接收多个波长信道的输入端口; 波长选择性光切换组件;以及 经所述切换组件耦合至所述输入端口的输出端口; 构造所述切换组件,用于在直通状态和分出或加入/分出状态之间切换选 出的波长信道,而不切换在所述切换组件中存在的另一个波长信道,其中, 所述切换组件的所有的光学零件是活动的光学零件。
42: 如权利要求41所述的设备,其特征在于,所述活动的光学零件包 括薄膜滤光器和可切换件,所述薄膜滤光器透射第一通信波长的光,而反射 第二通信波长的光,该薄膜滤光器设置在从所述输入端口传播的光路中,用 于反射所述第二波长的光,以传播在所述输出端口,并且透射所述第一波长 的光,所述可切换件在第一位置和第二位置之间可切换,当所述可切换件在所 述第一位置时,所述薄膜滤光器阻挡由所述薄膜滤光器透射的所述第一波长的光, 因而使得该光传播至所述输出端口,而当所述可切换件在所述第二位置时,允许 由所述薄膜滤光器透射的所述第一波长的光传播至分出端口。
43: 如权利要求42所述的设备,其特征在于,所述活动的光学零件包括各 自的透镜,它们把所述输入、输出和分出端口与所述薄膜滤光器相耦合。
44: 如权利要求43所述的设备,其特征在于,用于所述输入端口的透镜跨 过所述薄膜滤光器与用于所述分出端口的透镜大体在光学上对准。
45: 如权利要求43所述的设备,其特征在于,所述透镜是GRIN透镜。
46: 用于波分复用光通信系统的信号加入/分出设备,其特征在于,所述设 备包括: 多个串联耦合的波长选择性加入/分出开关,构造每个所述开关,以在直通 状态和加入/分出状态之间切换相应的波长信道,而不切换在该开关中存在的另一 个波长信道。
47: 如权利要求46所述的设备,其特征在于,构造每个所述开关,以只切 换相应的波长信道。
48: 如权利要求46所述的设备,其特征在于,所述开关的至少一个开关包 括: 波长选择性光切换组件,它包括构造来接收多个光波长信道的输入端口、输 出端口、波长选择性滤光器以及光切换装置; 设置所述波长选择性滤光器,它引导在多个接收到的波长信道上的信号,以 传播至所述输出端口,并且引导在另一个接收到的波长信道上的信号至所述光切 换装置; 设置所述光切换装置,它在直通状态和分出或加入/分出状态之间切换所述 另一个波长信道,而不切换所述多个波长信道。
49: 如权利要求46所述的设备,其特征在于,所述开关的至少一个开关包 括: 构造来接收多个多路复用光信号的输入端口,每个所述信号在不同的波 长信道上; 输出端口; 从所述输入端口至所述输出端口的第一光路; 从所述输入端口至所述输出端口的第二光路; 所述第二光路包括光切换装置,而所述第一光路包括波长选择性滤光器, 构造该滤光器,通过包括所述第一光路的路径使所述信号的至少一个选出的 信号传播至所述切换装置,并且使其余的所述信号传播至所述输出端口; 所述切换装置具有第一状态和第二状态,在所述第一状态下,使从所述 波长选择性滤光器传播的所述至少一个选出的信号通过所述第二光路传播至 所述输出端口,而在所述第二状态下,分出从所述波长选择性滤光器传播的 所述至少一个选出的信号,从而使之不传播至所述输出端口。
50: 如权利要求46所述的设备,其特征在于,所述开关的至少一个开 关包括: 输入端口; 第一波长选择性光切换组件;以及 输出端口和经所述光切换组件耦合至所述输入端口的分出端口; 所述光切换组件包括薄膜滤光器和切换装置;所述薄膜滤光器透射第一 通信波长的光而反射第二通信波长的光,该滤光器设置在从所述输入端口传 播的光路中,用于反射所述第二波长的光,以传播至所述输出端口,并且透 射所述第一波长的光; 所述切换装置具有在第一位置和第二位置之间的可切换件,所述可切换 件在所述第一位置阻挡由所述薄膜滤光器透射的所述第一波长的光,并使该 光传播至所述输出端口,而在所述第二位置允许由所述薄膜滤光器透射的所 述第一波长的光传播至所述分出端口。
51: 如权利要求46所述的设备,其特征在于,所述开关的至少一个开 关包括: 构造来接收多个波长信道的输入端口; 波长选择性光切换组件;以及 经所述切换组件耦合至所述输入端口的输出端口; 构造所述切换组件,用于在直通状态和分出或加入/分出状态之间切换选 出的波长信道,而不切换在所述切换组件中存在的另一个波长信道,其中, 所述切换组件的所有的光学零件是活动的光学零件。
52: 如权利要求46所述的设备,其特征在于,每个开关是具有输入端口、 输出端口、分出端口以及加入端口的组件,并且如此连接各个开关的输入和输出 端口,从而串联耦合这些组件。
53: 如权利要求46的设备,其特征在于,所述开关的至少一个开关包括: 波长选择性光切换组件,它包括构造来接收多个光波长信道的输入端口、输 出端口、第一光环行器、第二光环行器、波长选择性滤光器以及光切换装置; 每个所述第一和第二光环行器具有第一、第二和第三端口,所述第一环行器 的第一端口组成所述输入端口,所述第二环行器的第三端口组成所述输出端口; 所述波长选择性滤光器包括连接在所述第一和第二环行器的第二端口之间的 反射光栅,它构造来引导在多个接收到的波长信道上的信号,以经所述第二环行 器传播至所述输出端口,并且引导在另一个接收到的波长信道上的信号至所述光 切换装置; 所述光切换装置连接在所述第一环行器的第三端口和所述第二环行器的第一 端口之间,它在直通状态和分出或加入/分出状态之间切换所述另一个波长信道, 而不切换所述多个波长信道。
54: 如权利要求46所述的设备,其特征在于,所述开关的至少一个开关包 括: 波长选择性光切换组件,它包括构造来接收多个光波长信道的输入端口、输 出端口、第一光耦合器、第二光耦合器、波长选择性滤光器以及光切换装置; 每个所述第一和第二耦合器具有第一、第二和第三端口,所述第一耦合器的 第一端口组成所述输入端口,所述第二耦合器的第二端口组成所述输出端口; 所述波长选择性滤光器包括连接在所述第一耦合器的第二端口和第二耦合器 的第一端口之间的反射光栅,它构造来引导在多个接收到的波长信道上的信号, 以经所述第二耦合器传播至所述输出端口,并且引导在另一个接收到的波长信道 上的信号至所述光切换装置; 所述光切换装置连接在所述第一和第二耦合器的第三端口之间,它在直通状 态和分出或加入/分出状态之间切换所述另一个波长信道,而不切换所述多个波长 信道。
55: 如权利要求46所述的设备,其特征在于,所述开关的至少一个开关包 括: 波长选择性光切换组件,它包括构造来接收多个光波长信道的输入端口、输 出端口、波长选择性滤光器以及光切换装置; 所述波长选择性滤光器包括具有薄膜陷波滤光器的4端口陷波滤光器装置, 所述薄膜陷波滤光器耦合至第一端口、第二端口、第三端口和第四端口,所述第 一端口和第四端口分别组成所述输入端口和所述输出端口; 构造所述陷波滤光器,用于反射多个接收到的波长信道的信号,以传播至所 述第四输出端口,并且透射在另一个接收到的波长信道上的信号,以经所述第二 端口传播至所述光切换装置; 所述光切换装置连接在所述第二端口和所述第三端口之间,它在直通状态和 分出或加入/分出状态之间切换所述另一个波长信道,而不切换所述多个波长信 道。
56: 如权利要求46所述的设备,其特征在于,所述开关的至少一个开关包 括: 波长选择性光切换组件,它包括构造来接收多个光波长信道的输入端口、输 出端口、波长选择性Mach-Zehnder滤光器装置以及光切换装置; 构造和设置所述Mach-Zehnder滤光器装置,以引导在多个接收到的波长 信道上的信号传播至所述输出端口,并且引导在另一个接收到的波长信道上 的信号至所述光切换装置; 设置所述光切换装置,用于在直通状态和分出或加入/分出状态之间切换所 述另一个波长信道,而不切换所述多个波长信道。
57: 如权利要求56所述的设备,其特征在于,所述开关的至少一个开关包 括: 所述Mach-Zehnder滤光器装置,它包括第一和第二2×2光耦合器,每个所 述光耦合器具有第一端口、第二端口、第三端口和第四端口,所述第一耦合器的 第一端口组成所述输入端口,所述第一耦合器的第三和第四端口由第一和第二移 相光路分别连至所述第二耦合器的端口,在所述第一和第二移相光路中设置反射 光栅部分,而所述光切换装置连在所述第一耦合器的第二端口和所述第二耦合器 的第三端口之间,而所述第二耦合器的第四端口组成所述输出端口。
58: 如权利要求1、6、8、11、13和17任一项所述的设备,其特征在于, 所述光切换装置包括多个互连的光开关,它们协同工作,以在直通状态和加入/分 出状态之间进行切换。
59: 如权利要求58所述的设备,其特征在于,所述多个光开关包括两个1 ×2光开关。
60: 一种具有冗余加入/分出切换能力的波长选择性加入/分出切换装置, 其特征在于,所述装置包括: 信号处理装置,它构造来接收和发送光信号;以及 一对波长选择性加入/分出开关,安排每个所述开关,以在不同的光传输线 上的多个光波长信道上输入和输出信号,并且具有相连的加入端口,用于从所述 信号处理装置接收在所述波长信道的一个选出的信道上的光信号,以及相连的分 出端口,用于把在选出的波长信道上的光信号分出至所述信号处理装置,还构造 每个加入/分出开关,以在直通状态和加入/分出状态之间切换选出的波长信道, 而不切换存在与该开关中的另一个波长信道。
61: 如权利要求60所述的装置,其特征在于,所述波长选择性加入/分出 开关的至少一个开关构成按照权利要求1、6、8、11、13、17、26和41任何一项 的设备。
62: 一种光通信设备,其特征在于,所述设备包括多个按照权利要求60的 波长选择性接入/分出开关装置,其中,在有关对的第一加入/分出开关在第一系 列中互相连接,而有关对的第二加入/分出开关在第二系列中互相连接。
63: 一种在波分复用光通信网络中提供至少一个新的波长信道和/或新的波 长方案的方法,其特征在于,所述方法包括: 提供网络节点,它包括如权利要求62所述的光通信设备;以及 通过下述做法中的一个或多个做法来变更所述的光通信设备: a)用工作在有关新的波长信道上的每个相同的装置来替换至少一个接入/分 出切换装置; b)重新安排加入/分出切换装置的序列次序; c)用调谐至不同的波长信道的开关对来替换至少一个加入/分出切换装置的 开关对,以在不同的波长信道上使该加入/分出切换装置工作; d)提供另一个工作在新的波长信道的所述的加入/分出切换装置,并且把所 述另一个切换装置的第一加入/分出开关和第二/分出开关分别连至所述第一序列 和所述第二序列。
64: 一种用于波分复用光通信系统的信号加入/分出设备,其特征在于,所 述设备包括: 多个串联耦合的波长选择性加入/分出切换组件,构造每个所述组件,以在 直通状态和加入/分出状态之间切换相应的波长信道,而不切换存在于该组件中的 另一个波长信道。
65: 如权利要求64所述的设备,其特征在于,所述切换组件确定了一条通 过所述序列的曲折的光路。
66: 如权利要求42所述的设备,其特征在于,处于所述第一位置的所述可 切换件使被阻挡的光传播返回通过所述薄膜滤光器。

说明书


波长选择性光切换设备、使用它的光通信设备 以及在光通信设备中的使用方法

    与有关申请的相互参照

    本申请要求1997年9月18日提交的第60/059,214号美国专利申请的利益,该申请通过参照而引用于此。发明背景

    本发明涉及波分复用(WDM)光通信系统。本发明尤其涉及对于这些系统的新颖的波长选择性切换方案(它基于简单的串联构造),以及设计来实现此构造的光切换设备。在一种较佳的方式中,把设备构造为波长选择性加入/分出开关。本发明还涉及光通信设备和利用其结构的方法。

    在WDM光通信系统中,为通信把光传输谱划分为多个波长带或信道。多个光信号能够同时经共同的路径(通常是光纤)发送,而每个信号在不同地波长信道上。这允许不同组的终端用户或装置同时在不同的信道上通信。

    把典型的WDM光通信系统构造成由光纤链路互联的节点的网络。终端用户和装置在相应的节点处连至网络。为了优化网络的使用,节点设计通常包括信号加入/分出功能,由此在一个波长信道或一些波长信道的任何组合上的信号能够在节点处分出和/或加入。为了这一目的,可以将节点构造成(或包括)波长加入/分出多路复用器(WADM)。形成节点的部件对于系统增添的损耗要越小越好,它们应当非常可靠,并且应当提供对于WADM的有效可切换性,从而在各别信道上的信号能够如通信要求所命令的那样,在节点处通过、分出或加入。

    大多数具有WADM能力的节点设计依赖于并联构造,用于提供信号加入/分出功能。例如,一种建议的设计使用一种在多路复用器和多路去复用器之间并联的开关结构,从而能够切换各别的信道。另一种建议的设计使用由波选择性并联切换结构互连的一对星形(star)耦合器。

    图1a示出首先提到的设计的WADM10。WADM10包括包括连至输入线14(例如,光纤或平面光路)的多路去复用器(DEMUX)12,以接收波长λ1-λn的多路复用光信号。DEMUX12对光信号去多路复用,并且它将这些信号各别地输出至连至其输出侧的相应的2×2光开关S1-Sn。如图1a所示,把开关S1-Sn连至多路复用器(MUX)16的输入侧,该多路复用器16把来自开关的信号加以组合,以在输出线20上传输。

    在电子线路控制下,能够将开关S1-Sn的每一个假设为“直通”(bar)状态或“旁通”(cross)状态。在直通状态下,从DEMUX12进入开关的信号通过该开关而至MUX16,从而它保持在输出线20上传输。把载有这种信号的信道称之为处于“直通”状态。对于波长信道λ1和λn的开关以直通状态示出。在旁通状态下(由信道λi的开关所示),进入开关的信号被引至相应的分出线18(诸如为了传输至一个终端用户),而不通过它到输出线20。可选地,相同波长λi的另一个信号能够藉助于相应的加入线19而输入至系统,以在输出线20上传输。于是把对于波长λi的信道称之为处于“加入/分出”(add/drop)状态。

    示于图1a的WADM是复杂而昂贵的,并且基于一种不灵活的设计。说得更具体性,该设计不能加以扩充,以向通信网络增添新的波长信道。这意味着初始的节点设计必须包括过大的容量,以允许将来可能增添波长信道,或者必须增添特殊部件和一种额外的WADM结构,以在将来容纳新的信道。前一种选择在成本方面不经济,因为必须为设备分配资金,以处理比起初所需的信道更多的信道。后一种选择可能需要实质上是将来的花费并且由于额外的系统损耗而可能有问题。

    基于星形耦合器的并联构造也有问题。例如,星形耦合方法本身是有耗的,并且损耗随信道数增加而增加(损耗按n2增加,这里n是在节点一处所需的加入/分出信道数)。此外,如在图1a中的设计那样,基于星形耦合器的设计是复杂而昂贵的,并且不容易扩充以超出初始的设计容量来容纳额外的波长信道。

    图1b示出一种已知的基于串联构造的信号加入/分出部件30。如图所示,这种部件能够这样来制造,即,在两个光环行器32、36之间设置一个调谐至所需波长λi的Bragg光栅器件33。Bragg光栅器件能够以包括光纤和平面器件的各种形式来实现。每个环行器32、36包括各自的端口1、2和3。

    部件30在输入线14(例如,一条光纤或平面光路)上在光环行器32的端口1处接收到不同波长λ1-λn的信号的混合组。信号经环行器32的端口2传播至Bragg光栅33。除了波长λi的信号之外,Bragg光栅使所有的信号通过并且经环行器36的端口2和3而到达输出线20。波长λi的信号(它是要被分出的信号)被Bragg光栅反射,并且经环行器32的端口2和3而传播至分出线38。要被加入的波长λi的信号能够经加入线39至环行器36的端口1处输入,并且与其余的传输信号在输出线20上相组合。

    部件30具有设计比较简单的优点,但是它不可切换。于是,必须把被Bragg光栅33反射的信道上的信号分出。通过在环行器之间包括另外的光栅能够将该部件设计成分出/加入多个波长的信号。但是仍然必须分出由光栅反射的所有波长的信号。因此,部件30不能为有效能的WDM网络使用提供所需的自由选定的加入/分出功能。

    图1c示出一种建议的WADM设计30′,它基于一种可切换的串联构造。这种设计包括设置在一对光环行器32、36之间的多个串联的2×2光开关S1-Sn+1(n是信道数),如结合图1b所描述的那样,每个环行器具有三个端口。光环行器32、36分别连至输入线14和输出线20。此系列中的相邻的开关通过调谐至系统的相应波长的波长选择性Bragg光栅33i(i=1至n)以及附加的旁路线35而相互耦合。分出线38和加入线39分别连至光环行器32、36。

    在WADM30′的工作中,如此构造开关S1-Sn(使用直通和旁通状态),使得相应于要被分出的信号传送输入WDM信号至光栅。光栅把相应的信号反射回至经分出线38要被分出的光环行器32。其余的信号(直通信道)通过光栅至环行器36并且至输出线20。被分出的信号可被经加入线39输入至环行器36的新信号代替。

    当需要容纳额外的波长时,能够扩充WADM30′。这是通过把新的开关增添入现有的串联结构中,并且合适的调谐Bragg光栅而做到的。于是能做出WADM30′,它既可满足网络起初的信道从量,不必提供过大的容量,又能在以后视需要而加以扩充。

    虽然WADM30′的可切换的串联构造对于扩充提供了良好的灵活性,但WADN30′具有数据丢失的显著风险。这是由于所有波长信道(包括直通信道)的信号都受到切换。例如,当要分出波长λi的信号时,相应的开关S1切换至旁通状态,从而所有的信道都传送至光栅331。结果,在切换期间能够丢失在直通信道上的信号数据。

    发明概要

    本发明提供一种用于WDM网络应用的改进的可切换的串联构造。如下面将看到的,本发明提供与串联构造相关联的简单性和易扩充性,同时又避免了与需要切换直通信道的设计相关联的丢失数据的可能性(见上面对于图1c的讨论)。

    按照本发明的一个主要方面,本发明提供了用于WDM光通信的开关设备,该设备包括波长选择性光切换组件,它包括用于接收多个光波长信道的输入端口、输出端口、波长选择性滤光器和光切换装置。构造和设置波长选择性滤光器,以把多个接收到的传播波长信道上的信号引导至输出端口,并且把另一个接收到的波长信道上的信号引导至光切换装置。设置光切换装置,它能使其他波长信道在直径状态和分出或加入/分出状态之间切换,而不切换多个波长信道。

    在一较佳方式中,光切换组件包括第一和第二光环行器,每个光环行器至少具有第一、第二和第三端口。第一环行器的第一端口组成输入端口,而第二环行器的第三端口组成输出端口。波长选择性滤光器包括连接在第一和第二环行器的两个第二端之间的反射光栅。光切换装置连在第一环行器的第三端口和第二环行器的第一端口之间。

    在另一种较佳方式中,光切换组件包括第一和第二光耦合器,每个光耦合器至少具有第一、第二和第三端口。第一耦合器的第一端口组成输入端口,而第二耦合器的第二端口组成输出端口。波长选择性滤光器包括连在第一耦合器的第二端口和第二耦合器的第一端口之间的反射光栅。光切换装置连接在第一和第二耦合器的两个第三端口之间。

    在又一种较佳方式中,波长选择性滤光器包括一个四端口滤光器装置,该装置具有一个薄膜陷波滤光器,该陷波滤光器耦合至第一至第四端口。第一端口和第四端口分别组成输入端口和输出端口。在第一端口处接收到的在多个信道上的信号从薄膜滤光器反射至第四端口,而在另一个接收到的信道上的信号通过滤光器至第二端口。光切换装置连在第二和第三端口之间。

    又一种较佳方式使用波长选择性Mach-Zehnder滤光器装置。Mach-Zehnder装置可以包括第一和第二2×2光耦合器,每个2×2光耦合器具有第一、第二、第三和第四端口。第一耦合器的第一端口组成输入端口。第一耦合器的第三和第四端口分别由第一和第二移相光路连至第二耦合器的第一和第二端口。在第一和第二移相光路中设置反射光栅部分。光切换装置连在第一耦合器的第二端口和第二耦合器的第三端口之间,而第二耦合器的第四端口组成输出端口。

    再一个较佳方式使用波长选择性薄膜滤光器,该薄膜滤光器对于多个接收到的波长信道是反射的,而对于另一个接收到的波长信道是透射的,并且将它设置在从输入端口传播的一条信号路径中。切换装置具有一个可在第一位置和第二位置之间切换的零件。在第一位置,可切换件阻挡通过薄膜滤光器传送的信号,使得该信号传播至输出端口。在第二位置,可切换件允许传送的信号经过滤光器而被分出。

    在还有一种较佳方式中,波长选择性滤光器和光切换装置的所有的光学元件都是活动光学零件(free-optics)的元件(非波导元件)。基于活动光学零件的结构从减少元件数目因而降低设备的总成本的观点来看是有利的。

    按照本发明的另一个主要方面,用于WDM光通信的切换设备可以包括输入端口(它构造来接收多个多路复用的光信号,每个光信号在不同的波长信道上)、输出端口,从输入端口至输出端口的第一光路以及从输入端口至输出端口的第二光路。第二光路包括光切换装置,而第一光路包括波长选择性滤光器,它构造来使得至少一个选出的信号传播至切换装置,并且使得其余的信号经包括第一光路的一条光路传播至输出端口。切换装置具有第一状态和第二状态,第一状态使得至少一个从波长选择性滤光器传播来的选出的信号经第二光路传播至输出端,而在第二状态,分出从波长选择性滤光器传播来的至少一个选出的信号,从而不传播至输出端口。

    较佳方式还包括基于使用光环行器、光耦合器、陷波滤光器装置或活动光学零件的元件的实现。

    按照本发明的还有一个主要方面,本发明提供用于WDM光通信系统的信号加入/分出设备,该设备包括多个串联耦合的波长选择性加入/分出开关,其中每个开关构造来在直通状态和加入/分出状态之间切换相应的波长信道,而不切换存在于该开关中的另一波长信道。

    如在后面将要看到的,本发明的还有一个方面涉及具有冗余加入/分出切换能力的波长选择性加入/分出切换装置的设计,以及涉及得益于此设计的设备和方法。

    通过下面结合附图的详细描述,将更充分理解本发明的上述的和其他方面,以及它的特征和优点。

    附图概述

    图1a是基于并联构造的WADM设计的示意图。

    图1b是基于串联构造的信号加入/分出部件的示意图。

    图1c是基于可切换串联构造的WADM设计的示意图。

    图2示意地画出了按照本发明的多个开关组件的串联连接。

    图3是按照本发明的波长选择性加入/分出开关的示意图。

    图4a和4b分别示出了4端口光开关的“直通”状态和“加入/分出”状态。

    图5示意地示出两个Bragg光栅的串联连接。

    图6和7为4端口光纤开关,它可用于本发明的波长选择性加入/分出开关。

    图8是使用光纤耦合器的波长选择性加入/分出开关的另一实施例的示意图。

    图9是使用Mach-Zehnder滤光器的波长选择性加入/分出开关的另一实施例的示意图。

    图10是使用4端口薄膜陷波滤光器的波长选择性加入/分出开关的另一实施例的示意图。

    图11示出波长选择性加入/分出开关在加入/分出状态和直通状态下的输出光谱。

    图12示出波长选择性加入/分出开关在加入/分出状态和直通状态下的分出端口的传输光谱。

    图13示意地画出基于活动光学零件设计的本发明的另一实施例。

    图14示出图13的实施例的一种变更。

    图15示意地画出基于活动光学零件设计的另一实施例。

    图16示出图15的实施例的一种变更。

    图17示意地画出本发明对于双向通信的应用。

    图18示意地画出用于图17的实施例的波长选择性加入/分出装置。

    图19和20示出图18的装置的改变。

    较佳实施例的描述

    图2示出按照本发明的基于可切换串联构造的WADM系统。系统的基本的标准部件(building block)是波长选择性加入/分出开关(WSA/D开关)。在所示的形式中,系统包括WSA/D开关组件的串联连接,对于系统中存在的每个波长信道λ1-λn提供一个开关组件。根据系统的要求,可以使用构造来切换多于一个波长信道的开关组件。系统的组件性质允许容易地重新构造和扩充,以适合新的信道计划和增添新信道。通过在系统内简单地重新安装各个组件,即可完成重新构造。扩充只要增添新的开关组件,它们构造来切换要增添至系统的新信道。

    对于示于图2的系统,一种较佳的WSA/D开关设计除了对所考虑的一个或一些信道之外,将对所有的信道实质上透明。它也将允许在直通状态和加入/分出状态(或分出状态,若没有信号加入的话)之间有效切换所考虑的信道,而不被切换其他信道。因此,所考虑信道的切换不会破坏其他信道的传输。

    图3是这样一种WSA/D开关设计的示意图。示于图3的WSA/D开关40包括光开关装置(这里是2×2开关Si和与之连接的波长选择性滤光器组件45),该组件45包括两个光环行器42和46以及调谐至选出的波长λi的单个光纤Bragg光栅43。环行器42的端口1和环行器46的端口3分别组成WSA/D开关的输入端口和输出端口。开关Si最好是波长不敏感的(无波长选择性的),它经过线44在环行器42的端口3和环行器46的端口1处连至组件45。WSA/D开关能够相对于波长λi的信道而采取两个状态(直通状态或加入/分出状态)之一,这取决于4端口开关Si的状态。开关Si的相应的状态概略地示于图4a和4b中。

    信道波长λ1-λn的输入信号通过输入线14提供至WSA/D开关输入端口。所有的输入信号通过环行器42传播至光栅43,该光栅调谐至选出的波长λi。直通信道信号(除了λi之外的所有波长的信号)通过光栅43和环行器46传播至输出线20。

    被光栅43选出的信道λi的信号被反射回来通过环行器42,并从该环行器的端口3传输至开关Si。当开关Si处于直通状态(图3和4a)时,选出的信号经开关的端口4传播至环行器46的端口1,并从该环行器的端口3传播至输出线20。当开关Si处于加入/分出状态(图4b)时,选出的信号经开关的端口3传播至分出线48。在此状态中,波长λi的信号能够经加入线49在开关Si的端口2处加入。于是开关Si的端口2和3分别组成WSA/D开关40的加入和分出端口。

    如从前面的描述将理解的,图3的结构提供了两条从WSA/D开关40的输入端口至输出端口的路径。说得更详细些,直通信道上的信号经包括环行器42、光栅43和环行器46的第一路径传播至输出端口。波长λi的选出信道上的信号经包括环行器42、线44和开关Si的组件和环行器46的第二路径传播至输出端口。由于直通信道信号只通过环行器42、46和光栅43传播,因此在开关Si的切换期间,不会破坏它们的传播。

    在第二路径中安排开关Si于是允许在直通状态和加入/分出状态之间切换选出的信道而不使直通信道被切换。这避免了与切换直通信道相随的丢失数据的风险。WSA/D开关40的其他的属性包括其低损耗、组件性和较少的复杂性,即,此开关只要用两个分立的部件(滤光器组件45和4端口开关Si)即可构造。

    能够改变WSA/D开关40以加入或分出多个信号,其做法是为每个信号波长提供一个光栅。例如,可以从WSA/D开关分出和加入波长λ1和λ2的信号,其做法是用图5所示的光栅66和67的串联连接来代替光栅43。

    各种类型的光开关可用作4端口开关Si。图6示出外包层光纤开关50,其工作原理在美国专利4,763,977和5,353,363中揭示(它们均通过参照而被引用于此)。开关50包括具有两根光纤的WDM光纤耦合器51。一根光纤的端部52a和52b从耦合器51的相对端突出,而另一条光纤的端部53a和53b从耦合器51的相对端突出。用合适的固定装置使耦合器51在一端固定,而耦合器的另一端可用弯折装置56使其可切换地弯折。电磁、压电、双金属和其他类型的装置可以提供弯折耦合器所需的小的受控制的移动。开关50的功能为当耦合器未弯折时施加至光纤端52a的光信号耦合至另一根光纤,并出现在光纤端53b。类似地,当耦合器未弯折时,施加至光纤端53a的信号耦合至另一根光纤,并出现在光纤端52b。当光纤弯折时,施加至光纤的光信号保持不耦合,并出现在光纤端52b。用在美国专利Re.31,579;4,204,744;4,303,302;4,318,587和4,337,995(它们均通过参照而被引用于此)中揭示的方法,耦合器51可被偏折至弯折状态。在美国专利5,146,519(它通过参照而引用于此)中揭示的开关的旋转动作也很适于切换开关50;开关致动装置的直线运动能被简单地转换为扭转运动。

    4端口开关Si也能够按照图7来构造。在图7的结构中,可切换光纤(它连至输入端口1)如双箭头a所示可以在分出端口3和输出端口4之间切换,类似地,可切换光纤58(它连至加入端口2)可切换至或离端口4,如双箭头b所示。

    在不切换状态下,可切换光纤58和59处于由实线所代表的位置,因而信号信道从端口1连至端口4。在切换状态下,可切换光纤58和59处于由虚线58′和59′所代表的位置。因此,信号信道从端口1连至端口3,而端口2连至端口4。可以用诸如在美国专利Re31,579;4,204,744;4,303,302;4,318,587和4,337,995中揭示的那些装置在两个所示的状态之间切换。

    图8示出WSA/D开关70,其中,图3的环行器用光耦合器72、76来代替。如图8所示,滤光器组件75包括两个3dB耦合器72和76(每个具有各自的端口1-3)以及一个光纤Bragg光栅43。波长λ1-λn的信道信号在开关70的输入线14上接收,并且由耦合器72的直通端口1和2耦合至光栅43。除了波长λ1的信号之外,接收到的信号传播至耦合器76的端口1并从其端口2至输出线20。波长λi的信号被反射回耦合器72的端口2并且从其端口3至4端口开关Si,根据开关Si的状态,该信号在那里可能被分出或不被分出。当开关Si处于直通状态时,波长λi的信号传播至耦合器76的端口3,在那里该信号被耦合至端口2并且放置在输出线20上。当开关Si处于加入/分出状态时,信号传播至分出线48。取决于使用WSA/D开关70的系统,把隔离器放入线14可能是合乎需要的。

    显然,类似于图3的安排,WSA/D开关70提供了两条从其输入端口至其输出端口的光路,具有如上所述的附带优点。

    图9示出按照本发明的另一种WSA/D开关80。其中,图3的两个光环行器和一个光纤Bragg光栅用Mach-Zehnder(MZ)波长选择性滤光器组件85来代替,在美国专利4,900,119(它通过参照引用于此)中描述了各种MZ滤光器组件85。

    简单地说,MZ滤光器组件的工作原理如下。由输入线14提供具有多个波长的输入信道信号,并且该信号通过第一耦合器82的端口1进入滤光器组件85。在通过耦合器82之后,波长被分开,而在每条臂中的信号相移了π/2。不与在移相路径中的Bragg光栅83谐振的波长被发送至耦合器86。在那里,由于附加的π/2相移,所有的光再次干涉地耦合至耦合器86的端口4,并从MZ-WSA/D开关输出至输出线20。波长λi被Bragg光栅反射,并在传播回至耦合器82的遭受第二个π/2相移,于是它在耦合器的端口2处从滤光器组件输出并传播至4端口开关Si。任何从4端口开关传播至耦合器86的λi的信号将被Bragg光栅反射,并从耦合器86的端口3发送至它的端口4,这与λi的输入信号从耦合器82的端口1发送到端口2的方式相同。

    4端口开关以结合图3描述的方式工作。于是,当4端口开关处于直通状态时,由MZ滤光器组件85选出的信号围绕包含开关Si的路径被反射,并且由耦合器86的端口3和4传送出MZ-WSA/D开关80。当开关Si处于加入/分出状态时,由MZ滤光器组件85选出的信号在开关Si的端口3处分出,而相同波长的新信号能够在开关的端口4处加入(见图4b)。

    图4示出按照本发明的又一种WSA/D开关90。此开关使用4端口薄膜陷波滤光器组件95而不使用Bragg光栅。可以按照例如从American Elsevier出版社1969年出版的H.A.Macleod著的《薄膜滤光器》一书的教导来构造陷波滤光器组件95,该书通过参照而引用于此。

    开关90的工作原理如下。藉助于输入线14提供不同波长λ1-λn的输入信道信号,并且该信号通过滤光器组件95的输入端口1进入WSA/D开关90。除了λi信道信号之外的所有的输入信道信号从薄膜陷波滤光器92的表面92a反射,并且在滤光器组件的输出端口4处输出至输出线20。λi信道信号经陷波滤光器92传播,并且从其表面92b至滤光器组件的端口2,该信号在那里藉助于两条线44之一被耦合至4端口开关Si。当4端口开关处于直通状态时,λi信道信号围绕包含线44和开关Si的路径传播,并且传送至滤光器组件的端口3,该信号从滤光器组件传播回来,通过陷波滤光器92,将从端口4输出。端口1-4还在光学上耦合至薄膜滤光器92,因为各自的GRIN透镜(梯度折射率透镜—未示出)连至那些端口。当开关Si处于加入/分出状态时,传送来自端口2的λi信道信号至分出线48,而藉助于附加线49能够在同一信道上加入新的信号。加入的信号从开关Si传播至端口3,该信号从端口3通过陷波滤光器92传播至端口4和输出线20。

    已经说明了结合图3和5揭示的那种类型的双信道波长选择性加入/分出开关的工作原理。开关是用两个市售的光环行器和一个示于图6的那种类型的多包层弯折耦合器做成的。制作两个串联连接的光纤Bragg光栅,以在1554.8纳米和1555.8纳米的波长下工作。此外,已经说明了在1557纳米的波长下工作的单信道开关。单信道开关的性能与双信道开关类似。

    图11示出,当4端口开关处于加入/分出状态和直通状态时,双信道器件的输出端口透射光谱。在直通状态下,对于选出的信道和相邻的信道,插入损耗分别是3.7dB和1.9dB(曲线98和99)。方向性是36dB(曲线100和101),它受到弯折耦合器开关的限制。

    在分出端口处的反射光谱如图12所示。开关处于加入/分出状态下的插入损耗是1.8dB(曲线102和103),而方向性是34dB(曲线104和105)。相邻信道抑制受到所用的光纤Bragg光栅的边带的限制。开关的插入损耗受到环行器的损耗以及在用于Bragg光栅的高Δ光纤和用于环行器的标准单模光纤之间的熔合接头的损耗的限制(弯折开关的插入损耗仅有0.15dB)。

    通过降低接头损耗至可以忽略的大小,对于选出的和相邻的信道,能够分别将插入损耗降至1.75dB和0.8dB。假设有这些低损耗,可以估计出,在累积30dB的总插入损耗之前,能够串接32个单信道开关。事实上,通过使用结合图9描述的Mach-Zehnder滤光器型开关,对于32个开关的总的插入损耗能够低至18dB。

    实验结果指出,能够以低的插入损耗和高的方向性制造出按照本发明的WSA/D开关。

    图13-16示出另外的按照本发明的WSA/D开关。在图13、16的设计中使用波长选择性薄膜滤光器,但是不象图10的实施例那样,它们是基于使用活动光学零件(非波导元件)来得到波长选择和信道切换功能的。这允许把薄膜滤光器和信道切换部分结合为单个器件。于是能够减少整个开关设计的部分的数目以及光纤接头的数目,因而降低了生产成本。

    图13示出WSA/D开关100。开关具有四个光端口,包括连到输入线14的输入端口1、连至输出线20的输出端口4、连至加入线109的加入端口2和连至分出线108的分出端口3。藉助于各自的GRIN透镜1021-1024以及波长选择性开关组件105(它包括薄膜波滤器103和在此用可动镜部件Mi组成的可切换件),把输入端口耦合至其他端口。当然,如果不需要信号加入能力,则可省略加入端口以及相关联的GRIN透镜。

    薄膜滤光器103对于选出的信道波长λi的光是透射的,而对于其余的信道波长的光是反射的。合适地被设置滤光器来反射其余信道波长的光,以藉助于GRIN透镜1024传播至输出端口。选出波长的光由滤光器朝分出端口GRIN透镜1023透射,该透镜跨过薄膜滤光器大体上与输入端口GRIN透镜1021在光学上对准。

    可切换件Mi具有安装在共用支承件107上的第一和第二镜面104、106,并且可以在两个位置之间移动,其中一个位置相应于波长λi的信道的直通状态(图13中用实线示出的位置),另一个位置相应于信道的加入/分出状态(用虚线示出的位置)。在直通位置,第一镜面104设置得与由薄膜滤光器103透射的波长λi的光线相交。然后该光线被反射至第二镜面106,该镜面106又把光线反射回来,通过薄膜滤光器至输出端口GRIN透镜1024,以将光线置于输出线20上。在可切换件Mi的加入/分出位置,第一和第二镜面104、106从各自的在输入和分出GRIN透镜1021、1023之间的光路和在输出与加入GRIN透镜1024、1022之间的光路移开。于是,由薄膜滤光器透射的波长λi的光藉助于GRIN透镜1023传播至分出端口3。可选地,分出信号可以被一个相同波长的信号取代,该信号藉助于线109在加入端口2处引入。新的信号从加入端口经过GRIN透镜1022、薄膜滤光器103以及输出端口GRIN透镜1024传播至输出端口4。

    能够用各种机构来容易地向可动件Mi提供动力。例如,能够把一个永久磁铁附着于镜子支承件,并且把两个电磁铁设置在各自的止动位置处,这两个位置相应于可动件的直通状态和加入/分出状态位置。

    应该理解,如前面描述的实施例那样,直通信道(不被光切换装置切换的信道)的光和选出信道波长λi的光沿着从WSA/D开关100的输入端口至输出端口的不同路径,而只有选出信道波长的光路被切换。说得更详细些,直通信道沿着一条包括输入端口GRIN透镜1021、薄膜滤光器103的入射面和输出端口GRIN透镜1024的路径。选出波长λi的光沿着一条包括输入端口GRIN透镜1021、第一次通过薄膜滤光器103、可动件Mi的第一和第二反射面104和106、第二次通过薄膜滤光器103以及输出端口GRIN透镜1024。于是,如在先前的实施例中那样,波长λi的选出信道能够在直通和加入/分出状态之间切换,而不切换直通信道。

    虽然实际上不必如此,但把第一和第二镜面104、106安排在共用的活动支承件上的做法是有利的,这是因为它便于准确而稳定地对准镜面。作为一种变更,可切换件可以用棱镜做成,而镜面由棱镜上的反射端面构成。在构造时,GRIN透镜1021-1024的对准能够简单地由“沿着光路”的做法完成,它从输入端口开始,并且进至输出端口、加入端口和分出端口(在后面两种情形中,镜子移出路线)。输出端口和加入端口GRIN透镜1024、1022大体上跨过薄膜滤光器103在光学上相互对准,如输入端口和分出端口GRIN透镜1021、1023那样。

    活动光学零件设计的另一个优点是它允许所有与WSA/D开关100相关联的光纤永久附着,从而它们是固定不动的。与此相反,光—机械开关(诸如结合前面的实例所讨论的那些开关)允许光纤在开关内移动。

    WSA/D开关的光学性质对于直通信道优化,对于直通信道,希望插入损耗仅为大约0.5dB。可切换信道将在直通状态下出现最多的损耗,但即使在此情形中,也希望插入损耗小于1.5dB。因为切换在滤光器103的背侧发生,故在切换期间直通信道不受影响。串话也只限于能够由滤光器元件获得的带外串话。此外,因为薄膜滤光器将只允许选出波长λi的光通过它,因此防止了光信号簇(bundle)中有未经认可的波长。任何进入加入端口的器件的带外波长将被薄膜滤光器反射入分出端口并离开输出端口。对于安全的目的来说,这是有利的。此外,由于第二反射面106设置在从加入端口至输出端口的路径中的切换件的直通位置,因此除非在开关的加入/分开状态,甚至选出波长的光也不能藉助于加入端口而被引入。

    图14示出了一个实施例,它在图13设计的变更中提供附加的信道加入/分出能力。在图14中,WSA/D开关100’包括两个串联耦合的波长选择性切换组件105、105’,每个组件具有一个调谐至不同波长的薄膜滤光器,(光学上)设置在输入端口1和输出端口4之间,提供额外的加入和分出端口2’、3’以及相关联的GRIN透镜102’2和102’3,以适合对于附加波长的加入/分出功能。

    在图14的实施例中,直通信道信号沿着包括输入端口GRIN透镜1021、第一薄膜滤光器103、第二薄膜滤光器103’和输出端口GRIN透镜1024的第一光路。被第一滤长选择性切换组件105切换的信道信号沿着(在直通状态下)从输入端口至输出端口的一条路径,该路径包括刚刚描述的直通信道,再加上包括可切换Mi’的部分。说得更详细些,此光线所沿路径包括输入端口GRIN透镜1021、通过薄膜滤光器103的第一通路、可切换件Mi的第一和第二镜面,通过薄膜滤光器103的第二通路和第二薄膜滤光器103’的入射面,该光线从第二薄膜滤光器103’的入射表面反射至输出端口GRIN透镜1024。被第二光切换组件105’切换的信道信号沿着(在直通状态下)沿着一条类似的路径,只是其光线被第一薄膜滤光器103反射并由第二薄膜滤光器103’透射,并且由第二可切换件MI’再引导至输出端口GRIN透镜1024。

    如从图4将理解的,图13的基本的活动光学零件设计能够被有利地扩充,只需插入额外的波长选择性切换装置和相应的加入和分出GRIN透镜,而不必回至光纤。

    示于图13和14的结构偶而可能对某些应用不提供合适的光学性能,这是由于入射在滤光器上的大的入射角造成的与极化有关的损耗的缘故。然而,活动光学零件方法能够容易地用较小的反射角来实现。图15示出了这样一个实施例。

    在图15的实施例中,WSA/D开关300包括多个调谐至选出波长λi并且安装在一组平行的安装轨道350上的多个波导选择性薄膜滤光器303a-303c,用以确定耦合输出端口1和输出端口4的光路的曲折(zig-zag)部分。在端口1处经输入线14接收到的直通信道信号从GRIN透镜3021传播至第一滤光器303a。滤光器303a(它对于直通信道滤长是反射的)把信号反射至滤光器303b,信号从滤光器303b反射至滤光器303c,然后至GRIN透镜3024,用以在输出线20上传播。

    可切换件Mi’包括一对安装在公用的可动支承平台307上的镜子304、306。如由双头箭头所指出的那样,平台307可在相应于对于波长λi的直通位置的第一位置(实线)和相应于加入/分出状态的第2位置(滤线)之间移动。为使附图简化,在图15中未示出镜子304、306的替换位置。

    在平台307的第一位置中,镜子304设置在分出端口GRIN透镜3023和第一薄膜滤光器303a之间,而镜子306设置在加入端口GRIN透镜3022和第三薄膜滤光器303c之间。进入开关的选出信道波长λi的光起初由第一滤光器303a传送,以向分出端口GRIN透镜3023传播。然而,传送的光被镜子304阻挡,它将光线反射至镜子306。镜子306把光反射回来,藉助于滤光器303c进入直通信道路径。然后,光线传播至GRIN透镜3024和输出端口4。在此状态中,镜子306的定位还将防止由加入端口引入外来的信号。

    在加入/分出位置,如此设置可动支承件307,从而镜子304、306不阻挡在分出端口GRIN透镜3023和第一薄膜303a之间以及在加入端口GRIN透镜3022和第三薄膜滤光器之间的各自的光路。因此,进入开关的在选出信道波长λi上的光透过第一薄膜滤光器然后经GRIN透镜3023传播至分出端口3。在信道波长λi上的加入信号可经加入端口3加入,加入信号将从端口2传播通过3022、第三薄膜滤光器303c和GRIN透镜3024而至输出端口4。

    在示于图15的构造的一种变更中,第二薄膜滤光器303b能够用镜子来替代。然而,最好使用所示的滤光器。特别,滤光器将发送(因此移去)波长λi的未在滤光器303a处移去的剩余的光,于是允许使用对于波长λi有较小透射性的滤光器。

    如前面的实施例那样,图15所示的WSA/D开关提供了两条从输入端口至输出端口的光路。对于直通信道,光路包括输入端口GRIN透镜3021、第一至第三滤光器单元303a-303c以及输出端口GRIN透镜3024。另一方面,可切换信道沿着包括输入端口GRIN透镜3021、通过滤光器303a、镜子304、镜子306以及通过滤光器303c的路径至输出端口GRIN透镜3024。在此设计中,加入/分出信道的切换同样发生在对该信道而不是对直通信道透射的薄膜滤光器之外,由此切换操作不破坏直通信道的传播。

    图15的结构是容易扩充的,其做法是在安装轨道350上提供增添的合适地调谐的薄膜滤光器,以延伸曲折路径,以及提供增添的加入和分出端口,可动镜子以及GRIN透镜,其安排与图15中的相应结构类似。当然,相应于延伸的曲折路径的端部要重新安置输出端口。

    图16示出一实施例,其中,扩充了图15的安排,以对于处于波长λi的第二信道提供选择性的加入/分出功能。相应于控制波长λi的第一信道的部件的增添的部件在图16中用相应的带撇的标号来表示。在此实例中,从镜子306(直通状态)或从GRIN透镜3022(加入/分出状态)通过滤光器303c的波长λi的信号光沿曲折的光路部分从滤光器303c传播至输出端口GRIN透镜3024,这是由于薄膜滤光器303a’-303c’调谐至λj。波长λi的信道可在直通状态和加入/分出状态之间切换,如结合图15所描述的那样。用相应的增添的部件和相同的方法,波长λj的信道是可切换的。

    图17示出能够怎样使用本发明的基本的串联构造来提供支持冗余通信的节点构造(例如,在双向环(ring)网络中那样)。简单地说,双向环网络使用用一对或多对光纤传输线互连的多个节点,以形成环。两条光纤线可以沿不同的路线安装,并且相对于环相互沿相反方向传送信息。这在出现多个故障(诸如光纤割断和/或节点部件失效)的事件中提高了网络的幸存能力。对于双向网络更详尽的描述请见Morgan Kaufmann出版社1998年出版的R.Ramaswami等人所著的《光网络,一种实际的观点》,它通过参照而引用于此。

    在图17的结构中,一个网络节点N包括多个双向波长选择性加入/分出装置AD1-ADn。这些装置包括各自的信号处理装置SPD1-SPDn,每个信号处理装置构造来接收和发送波长λ1-λn中的一个相应的波长。例如,信号处理装置可以是同步光网络(SONET)加入/分出多路复用终端、SONET线终端设备或者互联网协议(IP)路由器。当然,根据节点的设计要求,不同类型的信号处理装置可用于不同的波长信道。信号处理装置对接收到的数据以及要被作为光信号经WDM光通信网络传送的数据用电子学的方式来处理。

    对于相应的光波长信道,每个信号处理装置连至一对波长选择性加入/分出(WSA/D)开关的各自的加入和分出端口。每个WSA/D开关属于两个串联结构(它们分别用于切换东行和两行信号)之一。

    每个WSA/D开关的结构都按照前面所述的本发明的原理。例如,可以使用图3、8-10和13中的任何一种结构,或者使用它们之中多个构成的组合。当然也可以使用诸如示于图14和16的结构,以对于多个信号处理装置提供加入/分出切换,除非对于各别的波长而言,分立的开关组件更好。

    可以理解,示于图17的结构能够容易地变更和/或扩充,以适应改变系统的要求。为了改变结构,可以按不同的串联次序安排加入/分出装置AD1-ADn。或者,可以用工作在新波长(或各自的新波长)的同样的装置来代替这些装置中的一个(或数个)。另一种变更可以包括代替或扩充一个或多个装置的WSA/D开关对,并且设置相关联的信号处理装置以工作在它们新的WSA/D开关对所调谐的各自的波长上。通过增加一个或多个加入/分出装置来完成扩充,每个装置工作在各自的新波长上,这些装置可增加在串联结构的端部或中间。

    图18是示出图17的双向波长选择性加入/分出装置ADi的例示结构的更详细的图。该装置包括信号处理装置SPDi、东行(如图上部所示)WSA/D开关和西行(如图下部所示)WSA/D开关。在所示的结构中,每个WSA/D开关包括调谐至波长λi的波长选择性滤光器组件和由2×2光纤开关组成的光切换装置Si。于是,例如可以结合图3和8-10的任何图来说明这种具体结构。信号处理装置SPDi由加入线49和分出线48连至东行和西行WSA/D开关的各自的2×2开关Si。

    在东行WSA/D开关的直通状态下,在东行输入光纤14上接收到的波长λi的信号将传播至东行输出光纤20,以与东行直通信道信号一起传输。在东行2×2开关的加入/分出状态下,接收到的信道波长λi的信号经西分出线分出至信号处理装置SPDi。信号处理装置也可以在同一信道上经东加入线引进新信号,以与直通信道在东行输出光纤20上传播。西行2×2开关的切换对于信道波长λi的西行传播提供相同的加入/分出功能。

    信号处理装置SPDi和光开关由共用的网络管理和控制系统(未示出)控制。网络管理和控制系统的特定的控制操作将取决于所包含的网络的类型以及它的故障防止过程。例如,在所谓单向路径切换环(UPSR)网络中,信号通信量同时沿东行和西行方向传送。在此情形中,信号处理装置将处理从分出线48之一接收到的信号并在选出的波长信道上经加入线49沿两个方向输出任何新信号。在同现故障(诸如光纤割断或2×2开关在选出的分出线一侧失效)时,信号处理装置将根据失效模式切换至“保护”模式,以经其他的分出线接收数据并且经一条或两条加入线继续发送新信号。对于UPSR和其他环网络的更为详细的讨论,参见上述Ramaswami等人的书。

    图19和20示出变更的实施例,它使用光切换装置Si’,该装置包括多个互连的开关(这些开关最好对波长不敏感),以共同地提供上述2×2开关的加入/分出功能。

    参见图19,每个切换装置包括两个互连的1×2光开关S1i、S2i。最好这四个1×2开关独立供电,从而对于一个开关的电力故障将不会使任何其他开关不工作。

    每个开关S1i具有连至光纤44的输入端(光纤44从相应的波长选择性滤光器组件引来),以接收波长λi的选出的信号;连至相应的分出线48的第一输出端口;以及连至相应的开关S2i的输入端口的第二输出端口。每个开关S1i的输入端口可在其两个输出端口之间切换,从而在输出端口上的信号可以传播至相应的开关S2i或信号处理装置SPDi。

    每个开关S2i具有连至相应的加入线49的第二输入端口和连至光纤44的输出端口(光纤44引回至相应的滤光器组件)。每个开关S2i的输出端口可在两个输入端口之间切换,从而在一个输入端口上的信号可以传播至相应的滤光器组件,以在相应的输出光纤上传输。

    在图19中,每个光切换装置Si’的加入/分出状态用有关的开关对S1i、S2i的实线状态来表示。直通状态用虚线状态来表示。

    与图18中的构造相比,示于图19的构造提高了节点承受第二个故障的能力。例如,如果图18中的东行2×2开关失效(机械上或由于丧失供给开关的功率),则加入/分出装置ADi仍能藉助于西行2×2开关发送和接收。但是,如果在西行一侧发生第二个故障,诸如西行光纤被割断或西行2×2开关出故障,则加入/分出装置ADi与网络隔离(不能发送和/或接收)。

    在图19的加入/分出装置ADi’中,在东行(或西行)一侧的单个开关故障将只阻止东行(或西行)接收或发送,而不是两者。在该侧的剩下的开关仍能使用。例如,如果两分出开关失效了,则东加入开关仍能用于东行传输。于是,能将加入/分出装置与网络隔离的在西行侧的唯一的额外故障是阻止西行接收的故障,诸如在输入光纤14’上的割断或东分出开关的失效。破坏西行传输的额外的故障(诸如在输出光纤20’上的割断或者西加入开关的故障)将不隔离加入/分出装置,这是因为装置藉助于东加入开关仍然能够在输出光纤20上作东行发送。

    图20示出具有与图19相同的切换结构的加入/分出装置ADi″。此装置与图19的装置的不同之处在于,西加入和分出开关共享电源供给以及东加入和分出开关共享另一个电源供给。图20装置对于机械开关故障的故障承受能力类似于图19装置的承受能力。然而,对于开关的功率故障的承受能力相对于图19的装置而言有所降低,这是由于共享电源供给之故。总的可靠性仍比图18的装置的可靠性高些。

    熟悉本领域技术的人将理解,这里示出和描述的实施例仅仅是说明性的,并且在保持本发明的基本原理和范围的情形下可以作各种改变和变更。

波长选择性光切换设备、使用它的光通信设备以及在光通信设备中的使用方法.pdf_第1页
第1页 / 共48页
波长选择性光切换设备、使用它的光通信设备以及在光通信设备中的使用方法.pdf_第2页
第2页 / 共48页
波长选择性光切换设备、使用它的光通信设备以及在光通信设备中的使用方法.pdf_第3页
第3页 / 共48页
点击查看更多>>
资源描述

《波长选择性光切换设备、使用它的光通信设备以及在光通信设备中的使用方法.pdf》由会员分享,可在线阅读,更多相关《波长选择性光切换设备、使用它的光通信设备以及在光通信设备中的使用方法.pdf(48页珍藏版)》请在专利查询网上搜索。

设计了一种光切换设备,以实现用于波分复用光通信系统的串联的切换构造。该设计允许对于选出的波长信道进行加入/分出切换,而不切换未选出的波长信道,由此避免了在加入/分出切换期间可能出现的数据丢失。在例示的实现中,使用了基于光纤的方法和基于活动光学零件的方法。串联构造容易适应新的波长方案和/或加入新的波长信道。 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 电通信技术


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1