一种离心压气机叶轮的优化方法和系统技术领域
本发明涉及压气机技术领域,具体地,涉及一种离心压气机叶轮的优化方法和系
统。
背景技术
在现代社会涡轮增压器发挥着越来越重要的作用,广泛应用于航空航天、能源、交
通等重要部门,随着当代社会对动力装置的动力性能要求越来越高,节能环保观念的普及
和技术的发展,涡轮增压器朝着高效率、小尺寸、重量轻、高压比、高运行范围、高可靠性方
向发展是必然的趋势。
离心压气机叶轮是涡轮增压的重要组成部分,离心压气机叶轮的多工况性能直接
影响到涡轮增压工作性能。
传统的离心压气机叶轮设计方法为:参照现有叶轮进行经验计算设计出叶轮;再
将得到的叶轮进行数值计算性能分析,或者进行实验测试;对叶轮参数进行局部修改;再进
行数值计算或实验,并与原始叶轮进行比较看性能是否提高,再次修改设计、仿真或者实
验,如此循环,形成了设计-仿真-修改-设计的循环设计周期,这种局部修改方式的有效性
依赖于设计人员的经验,对设计人员的技术水平要求非常高,得到的叶轮也只能实现局部
相对较优,设计周期较长,效率低。此外,温度和变形对离心压气机气动性能产生重要影响,
仅考虑流体或结构某单方面优化,将导致设计与实际脱节,严重影响压气机的工作性能。
针对上述传统的离心压气机叶轮设计方法中存在的不足,如何克服上述不足,是
目前离心压气机叶轮优化设计急需解决的问题。
发明内容
本发明的目的是提供一种离心压气机叶轮的优化方法和系统,采用试验设计法与
代理模型相结合,提高了优化效率,实现了全局最优分析。
为实现上述目的,本发明提供了一种离心压气机叶轮的优化方法,该方法包括以
下步骤:
选取叶轮因素参数和叶轮目标参数;
采用试验设计法,根据所述叶轮因素参数确定叶轮因素值;
根据所述叶轮因素值确定对应的所述叶轮目标参数的叶轮目标值;
根据多组所述叶轮因素值与对应的所述叶轮目标值建立代理模型;
根据所述代理模型确定最优叶轮值。
可选的,所述采用试验设计法,根据所述叶轮因素参数确定叶轮因素值具体包括:
根据所述叶轮因素参数确定参数变化范围;
采用试验设计法,在所述参数变化范围内确定叶轮因素值。
可选的,所述根据所述叶轮因素值确定对应的所述叶轮目标参数的叶轮目标值具
体包括:
根据所述叶轮因素值建立叶轮参数化模型;所述叶轮参数化模型为叶轮流体模型
和叶轮结构模型;
采用流体动力学分析软件对所述叶轮流体模型进行流场与温度场耦合分析获得
第一表面温度载荷和第一压力载荷;将所述第一表面温度载荷传递给所述叶轮结构模型后
进行温度场分析获得第一实体温度载荷;根据所述第一压力载荷与所述第一实体温度载荷
进行结构变形有限元分析确定第一结构变形数据;
将所述第一结构变形数据通过网格重生成技术传递给所述叶轮流体模型后再次
进行流场与温度场耦合分析获得第二表面温度载荷和第二压力载荷;将所述第二表面温度
载荷传递给所述叶轮结构模型后进行温度场分析获得第二实体温度载荷;根据所述第二压
力载荷与所述第二实体温度载荷进行结构变形有限元分析确定第二结构变形数据;
判断第一结构变形数据与第二结构变形数据之差是否小于第一设定值,如果是,
则确定对应的所述叶轮目标参数的叶轮目标值,如果否,则第一结构变形数据=第二结构
变形数据,重新确定第二结构变形数据。
可选的,所述根据多组所述叶轮因素值与对应的所述叶轮目标值建立代理模型具
体包括:
选取所述多组所述叶轮因素值与对应的所述叶轮目标值中的部分组数建立代理
模型;
根据所述多组所述叶轮因素值与对应的所述叶轮目标值中剩余部分组数判断所
述代理模型的精度是否已达第二设定值,如果是则确定最优叶轮值,否则重新确定叶轮因
素值。
可选的,所述根据所述代理模型确定最优叶轮值具体包括:
在所述代理模型基础上建立优化数学模型;
采用优化算法,根据所述优化数学模型确定最优叶轮值;所述最优叶轮值包括叶
轮因素最优值、叶轮目标最优值。
所述优化算法为遗传算法、粒子群算法、蚁群遗传算法中任意一种。
可选的,所述叶轮因素参数为叶片进口角、叶片出口角、叶顶间隙和叶片厚度、叶
轮出口宽度、材料弹性模量、进口轮毂直径、进口叶片宽度、工作轮出口直径、叶片前缘倾
角、叶片后弯角中任意两种或两种以上;
所述叶轮目标参数为效率、压比、应变、应力、固有频率中任意二种或两种以上;
所述试验设计法为正交设计方法、均匀设计方法、拉丁超立方设计方法中任意一
种;
所述代理模型为克里金代理模型或多项式响应面代理模型。
本发明还提供了一种离心压气机叶轮的优化系统,该系统包括:
获取模块,用于选取叶轮因素参数和叶轮目标参数;
叶轮因素值确定模块,用于采用试验设计法,根据所述叶轮因素参数确定叶轮因
素值;
叶轮目标值确定模块,用于根据所述叶轮因素值确定对应的所述叶轮目标参数的
叶轮目标值;
代理模型建立模块,用于根据多组所述叶轮因素值与对应的所述叶轮目标值建立
代理模型;
最优叶轮值确定模块,用于根据所述代理模型确定最优叶轮值。
可选的,所述叶轮因素值确定模块具体包括:
参数范围确定单元,用于根据所述叶轮因素参数确定参数变化范围;
叶轮因素值确定单元,用于采用试验设计法,在所述参数变化范围内确定叶轮因
素值。
可选的,所述叶轮目标值确定模块具体包括:
参数化模型建立单元,用于根据所述叶轮因素值建立叶轮参数化模型;所述叶轮
参数化模型为叶轮流体模型和叶轮结构模型;
第一结构变形数据确定单元,采用流体动力学分析软件对所述叶轮流体模型进行
流场与温度场耦合分析获得第一表面温度载荷和第一压力载荷;将所述第一表面温度载荷
传递给所述叶轮结构模型后进行温度场分析获得第一实体温度载荷;根据所述第一压力载
荷与所述第一实体温度载荷进行结构变形有限元分析确定第一结构变形数据;
第二结构变形数据确定单元,将所述第一结构变形数据通过网格重生成技术传递
给所述叶轮流体模型后再次进行流场与温度场耦合分析获得第二表面温度载荷和第二压
力载荷;将所述第二表面温度载荷传递给所述叶轮结构模型后进行温度场分析获得第二实
体温度载荷;根据所述第二压力载荷与所述第二实体温度载荷进行结构变形有限元分析确
定第二结构变形数据;
第一判断单元,判断第一结构变形数据与第二结构变形数据之差是否小于第一设
定值,如果是,则确定对应的所述叶轮目标参数的叶轮目标值,如果否,则第一结构变形数
据=第二结构变形数据,重新确定第二结构变形数据。
可选的,所述代理模型建立模块具体包括:
代理模型建立单元,用于选取所述多组所述叶轮因素值与对应的所述叶轮目标值
中的部分组数建立代理模型;
第二判断单元,根据所述多组所述叶轮因素值与对应的所述叶轮目标值中剩余部
分组数判断所述代理模型精度是否已达第二设定值,如果是则确定最优叶轮值,否则重新
确定叶轮因素值。
可选的,所述最优叶轮值确定模块具体包括:
优化数学模型建立单元,用于在所述代理模型基础上建立优化数学模型;
最优值确定单元,用于采用优化算法,根据所述优化数学模型确定最优叶轮值;所
述最优叶轮值包括叶轮因素最优值、叶轮目标最优值;
所述优化算法为遗传算法、粒子群算法、蚁群遗传算法中任意一种。
可选的,所述叶轮因素参数为叶片进口角、叶片出口角、叶顶间隙和叶片厚度、叶
轮出口宽度、材料弹性模量、进口轮毂直径、进口叶片宽度、工作轮出口直径、叶片前缘倾
角、叶片后弯角中任意两种或两种以上;
所述叶轮目标参数为效率、压比、应变、应力、固有频率中任意二种或两种以上;
所述试验设计法为正交设计方法、均匀设计方法、拉丁超立方设计方法中任意一
种;
所述代理模型为克里金代理模型或多项式响应面代理模型。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
1、本发明采用试验设计法确定叶轮因素值,根据叶轮因素值确定叶轮目标值,然
后根据多组叶轮因素值与对应的叶轮目标值代理模型,实现了将试验设计法与代理模型相
结合进行优化叶轮,从而减少了优化设计计算的工作量,提高了优化效率,实现了全局最优
分析,提高了系统的可靠性。
2、本发明先进行流场与温度场耦合分析后再进行温度场分析,最后再进行结构分
析,综合考虑热-流-固多物理场耦合影响,从而提高了优化设计的精度和工作性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所
需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施
例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图
获得其他的附图。
图1为本发明的离心压气机叶轮的优化方法实施例一的流程图;
图2为本发明的离心压气机叶轮的优化系统实施例二的结构框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完
整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于
本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他
实施例,都属于本发明保护的范围。
本发明的目的是提供一种离心压气机叶轮的优化方法。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实
施方式对本发明作进一步详细的说明。
图1为本发明离心压气机叶轮的优化方法实施例一的流程图,详见图1。
本发明的离心压气机叶轮的优化方法实施例一包括以下步骤:
步骤S1:选取叶轮因素参数和叶轮目标参数。
步骤S2:采用试验设计法,根据所述叶轮因素参数确定叶轮因素值。
步骤S3:根据所述叶轮因素值确定对应的所述叶轮目标参数的叶轮目标值。
步骤S4:根据多组所述叶轮因素值与对应的所述叶轮目标值建立代理模型。
步骤S5:根据所述代理模型确定最优叶轮值。
下面对各个步骤进行详细的介绍:
步骤S1:选取叶轮因素参数和叶轮目标参数。
所述叶轮因素参数为叶片进口角、叶片出口角、叶顶间隙和叶片厚度、叶轮出口宽
度、材料弹性模量、进口轮毂直径、进口叶片宽度、工作轮出口直径、叶片前缘倾角、叶片后
弯角任意两种或两种以上。
所述叶轮目标参数为效率、压比、应变、应力、固有频率中任意二种或两种以上。
步骤S2:采用试验设计法,根据所述叶轮因素参数确定叶轮因素值,其具体步骤包
括:
步骤S21:根据所述叶轮因素参数确定参数变化范围。
不同的叶轮因素参数对应着不同的参数变化范围,其参数范围统一用[Xmin,
Xmax]表示,其中X表示某一叶轮因素参数。
步骤S22:采用试验设计法,在所述参数变化范围内确定叶轮因素值;
所述试验设计法为正交设计方法、均匀设计方法、拉丁超立方设计方法中任意一
种。
步骤S3:根据所述叶轮因素值确定对应的所述叶轮目标参数的叶轮目标值,其具
体步骤包括:
步骤S31:根据所述叶轮因素值建立叶轮参数化模型。
所述叶轮参数化模型为叶轮流体模型和叶轮结构模型。
所述叶轮流体模型用于流场与温度场耦合分析,所述叶轮结构模型用于流场、温
度场和结构场耦合分析。
步骤S32:采用流体动力学分析软件对所述叶轮流体模型进行流场与温度场耦合
分析获得第一表面温度载荷和第一压力载荷;将所述第一表面温度载荷传递给所述叶轮结
构模型后进行温度场分析获得第一实体温度载荷;根据所述第一压力载荷与所述第一实体
温度载荷进行结构变形有限元分析确定第一结构变形数据。
步骤S33:将所述第一结构变形数据通过网格重生成技术传递给所述叶轮流体模
型后再次进行流场与温度场耦合分析获得第二表面温度载荷和第二压力载荷;将所述第二
表面温度载荷传递给所述叶轮结构模型后进行温度场分析获得第二实体温度载荷;根据所
述第二压力载荷与所述第二实体温度载荷进行结构变形有限元分析确定第二结构变形数
据。
步骤S34:判断第一结构变形数据与第二结构变形数据之差是否小于第一设定值,
如果是,则确定对应的所述叶轮目标参数的叶轮目标值,如果否,则第一结构变形数据=第
二结构变形数据,重新确定第二结构变形数据。
步骤S4:根据多组所述叶轮因素值与对应的所述叶轮目标值建立代理模型,其具
体步骤包括:
步骤S41:选取所述多组所述叶轮因素值与对应的所述叶轮目标值建立样本数据
库。
步骤S42:选取所述样本数据库中的部分组数建立代理模型。
所述代理模型为克里金代理模型或多项式响应面代理模型。
步骤S43:根据所述样本数据库中剩余部分组数判断所述代理模型的精度是否已
达第二设定值,如果是则确定叶轮最优值,否则重新确定叶轮因素值。
步骤S5:根据所述代理模型确定最优叶轮值,其具体步骤包括:
步骤S51:在所述代理模型基础上建立优化数学模型;
步骤S52:根据所述优化数学模型采用优化算法确定最优叶轮值;所述最优叶轮值
包括叶轮因素最优值、叶轮目标最优值。
所述优化算法为NSGA-II遗传算法、粒子群算法、蚁群遗传算法中任意一种。
本发明的离心压气机叶轮的优化系统实施例二的结构框图,参见图2所示,该系统
包括获取模块100,叶轮因素值确定模块110,叶轮目标值确定模块120,代理模型建立模块
130,最优叶轮值确定模块140。
获取模块100选取叶轮因素参数和叶轮目标参数。
所述叶轮因素参数为叶片进口角、叶片出口角、叶顶间隙和叶片厚度、叶轮出口宽
度、材料弹性模量、进口轮毂直径、进口叶片宽度、工作轮出口直径、叶片前缘倾角、叶片后
弯角中任意两种以上。所述叶轮目标参数为效率、压比、应变、应力、固有频率中任意二种以
上。
叶轮因素值确定模块110采用试验设计法,根据所述叶轮因素参数确定叶轮因素
值;所述叶轮因素值确定模块110具体包括参数范围确定单元和叶轮因素值确定单元。
所述参数范围确定单元根据所述叶轮因素参数确定参数变化范围,所述叶轮因素
值确定单元采用试验设计法,在所述参数变化范围内确定叶轮因素值。
所述试验设计法为正交设计方法、均匀设计方法、拉丁超立方设计方法中任意一
种。
叶轮目标值确定模块120根据所述叶轮因素值确定对应的所述叶轮目标参数的叶
轮目标值;所述叶轮目标值确定模块120具体包括参数化模型建立单元,第一结构变形数据
确定单元,第二结构变形数据确定单元,第一判断单元。
第一结构变形数据确定单元,采用流体动力学分析软件对所述叶轮流体模型进行
流场与温度场耦合分析获得第一表面温度载荷和第一压力载荷;将所述第一表面温度载荷
传递给所述叶轮结构模型后进行温度场分析获得第一实体温度载荷;根据所述第一压力载
荷与所述第一实体温度载荷进行结构变形有限元分析确定第一结构变形数据。
第二结构变形数据确定单元,将所述第一结构变形数据通过网格重生成技术传递
给所述叶轮流体模型后再次进行流场与温度场耦合分析获得第二表面温度载荷和第二压
力载荷;将所述第二表面温度载荷传递给所述叶轮结构模型后进行温度场分析获得第二实
体温度载荷;根据所述第二压力载荷与所述第二实体温度载荷进行结构变形有限元分析确
定第二结构变形数据。
第一判断单元,判断第一结构变形数据与第二结构变形数据之差是否小于第一设
定值,如果是,则确定对应的所述叶轮目标参数的叶轮目标值,如果否,则第一结构变形数
据=第二结构变形数据,重新确定第二结构变形数据。
代理模型建立模块130根据多组所述叶轮因素值与对应的所述叶轮目标值建立代
理模型;所述代理模型建立模块130具体包括代理模型建立单元,第二判断单元。
代理模型建立单元选取所述多组所述叶轮因素值与对应的所述叶轮目标值中的
部分组数建立代理模型;所述代理模型为克里金代理模型或多项式响应面代理模型。
第二判断单元根据所述多组所述叶轮因素值与对应的所述叶轮目标值中剩余部
分组数判断所述代理模型的精度是否已达第二设定值,如果是则确定叶轮最优值,否则重
新确定叶轮因素值。
最优叶轮值确定模块140根据所述代理模型确定最优叶轮值;所述叶轮最优值包
括叶轮因素最优值、叶轮目标最优值;所述最优叶轮值确定模块140具体包括优化数学模型
建立单元,最优值确定单元。
优化数学模型建立单元在所述代理模型基础上建立优化数学模型。
最优值确定单元采用优化算法,根据所述优化数学模型确定叶轮最优值;所述叶
轮最优值包括叶轮因素最优值、叶轮目标最优值。
具体例子一
本例安排20组试验样本数据,但本发明并不局限于该种试验设计安排。
选取叶片出口角β2、叶顶间隙e为叶轮因素,以热流固耦合作用下的效率η、应变ε
为叶轮目标。
在某范围内通过拉丁超立方试验设计抽样方法确定叶轮因素值β2=bi,e=ci,其
中,bi为第i个叶轮的叶片出口角β2的因素值,ci为第i个叶轮的叶顶间隙e的因素值,i=1…
20。
根据所述叶轮因素值bi,ci在三维建模软件里建立第i个叶轮的叶轮流体模型和叶
轮结构模型,首先对第i个叶轮的所述叶轮流体模型进行流场与温度场耦合分析,然后再对
所述叶轮结构模型进行结构场与温度场耦合分析,最后在对所述的叶轮结构模型进行结构
分析,判断相邻两次的叶轮结构变形数据是否小于第一设定值,如果大于或等于第一设定
值,则重新确定叶轮结构变形数据,如果小于第一设定值,则确定输出第i个叶轮的叶轮目
标值η=xi,ε=zi,其中,xi为第i个叶轮效率η的叶轮目标值,zi为第i个叶轮应变ε的叶轮目
标值,i=1…20。
将以上20组叶轮因素值和20组叶轮目标值填入表1获得第一样本数据库,详见表
1。
表1第一样本数据库
![]()
![]()
将第一数据库中的前15组叶轮因素值和前15组叶轮目标值建立克里金代理模型,
其中克里金代理模型将叶轮目标和叶轮因素的非线性函数关系描述为回归模型和非参数
随机函数可表示为:
y(x)=F(β,x)+z(x) (1)
其中,F(β,x)为回归模型,β为回归模型系数,z(x)为非参数部分随机函数,x为叶
轮因素,y(x)为叶轮目标函数。
本案例中具体的叶轮目标与叶轮因素之间的具体关系可表示为:Y=F(β,X)+z
(X),
其中,X为前15个样本叶轮因素值集合,即
Y为前15个样本叶轮因素
值对应的叶轮目标值集合,即![]()
将第一样本数据库中的后5组样本数据的叶轮因素值代入到克里金代理模型后得
到预测叶轮目标值,将该预测目标值与第一样本数据库中的后5组叶轮目标值进行对比判
断克里金代理模型的精度是否已达到设定值,若精度已达第二设定值要求时,进行下一步;
若精度为达设定值要求时,则返回后重新采用试验设计法确定叶轮因素值。
在克里金代理模型基础上确定优化数学模型:
![]()
其中,x为叶轮因素,η(x)为离心压气机效率;ε(x)为应变;β2为叶片出口角;e为叶
顶间隙;bmin,bmax为叶片出口角的取值范围;cmin,cmax为叶顶间隙的取值范围。但本发明并不
局限于该种多目标优化模型。
然后,采用遗传算法对优化数学模型进行寻优计算,便可得到叶轮因素最优值b21,
c21和叶轮目标最优值z21,x21。
具体例子二
本例安排17组试验样本数据,但本发明并不局限于该种试验设计安排。
选取叶片进口角β1、叶片出口角β2、叶片包角θ为叶轮因素,以热流固耦合作用下的
效率η、应变ε、压比π为叶轮目标。
在某范围内通过均匀试验设计抽样方法确定叶轮因素值β1=ei,β2=fi,θ=gi,其
中,ei为第i个叶轮的叶片进口角β1的因素值,fi为第i个叶轮的叶片出口角β2的因素值,gi为
第i个叶轮的叶片包角θ的因素值,i=1…17。
根据叶轮因素值ei,fi,gi在三维建模软件里建立第i个叶轮的叶轮流体模型和叶
轮结构模型,首先对第i个叶轮的所述叶轮流体模型进行流场与温度场耦合分析,然后再对
所述叶轮结构模型进行结构场与温度场耦合分析,最后在对所述的叶轮结构模型进行结构
分析,判断相邻两次的叶轮结构变形数据是否小于第一设定值,如果大于或等于第一设定
值,则重新确定叶轮结构变形数据,如果小于第一设定值,则确定输出第i个叶轮的叶轮目
标值η=ui,ε=vi,π=wi,其中,ui为第i个叶轮效率η的目标值,vi为第i个叶轮应变ε的目标
值,wi为第i个叶轮应变ε的目标值,i=1…17。
将以上17组叶轮因素值和17组叶轮目标值填入表2获得第二样本数据库,详见表
2。
表2第二样本数据库
![]()
![]()
将第二样本数据库的前14组叶轮因素值和前14组叶轮目标值建立多项式响应面
代理模型,其中多项式响应面代理模型为:
![]()
其中,xi,xj为叶轮因素值,取集合X中第r行的数值,y为叶轮目标,取集合Y中第r行
的数值,r=1、2…14,k即为设计变量的个数,k=3,ξ0,ξi,ξij为系数。
X为前14个样本叶轮因素值集合,即
Y为前14个样本叶轮因素
值对应的叶轮目标值集合,即![]()
将第二样本数据库中的后3组样本数据的叶轮因素值代入到多项式响应面代理模
型后得到预测叶轮目标值,将该预测目标值与第二样本数据库中的后3组叶轮目标值进行
对比判断多项式响应面代理模型的精度是否已达到设定值,若精度已达第二设定值要求
时,进行下一步;若精度为达设定值要求时,则返回后重新采用试验设计法确定叶轮因素
值。
在多项式响应面代理模型基础上确定优化数学模型:
![]()
其中,x为叶轮因素,η为离心压气机效率;π为压比;ε为应变;β1为叶片进口角;β2为
叶片出口角;θ为叶片包角;γ1,γ2,γ3为权重分配系数,且γ1+γ2+γ3=1;
ηmax,ηmin,εmax,εmin,
πmax,πmin为叶轮目标的某范围内的最大值和最小值,emin,emax为叶片进口角β1的取值范围,
fmin,fmax为叶片出口角β2的取值范围,gmin,gmax为叶片包角θ的取值范围。
最后,采用粒子群算法对优化数学模型进行寻优计算,便可得到叶轮因素最优值
e18,f18,g18和叶轮目标最优值u18,v18,w18。
具体例子三
本例安排24组试验样本数据,但本发明并不局限于该种试验设计安排。
选取叶轮外径D2、叶轮出口宽度b2、叶顶间隙e、材料弹性模量E为叶轮因素,以热流
固耦合作用下的固有频率f、压比π、应力σ、效率η为叶轮目标。在某范围内通过均匀试验设
计抽样方法确定叶轮因素值D2=ai,b2=bi,e=ci,E=di,其中,ai为第i个叶轮的叶轮外径D2
的因素值,bi为第i个叶轮的叶轮出口宽度b2的因素值,ci为第i个叶轮的叶顶间隙e的因素
值,di为第i个叶轮的材料弹性模量E的因素值,其中i=1…24。
根据所述叶轮因素值ai,bi,ci,di在三维建模软件里建立第i个叶轮的叶轮流体模
型和叶轮结构模型,首先对第i个叶轮的所述叶轮流体模型进行流场与温度场耦合分析,然
后再对所述叶轮结构模型进行结构场与温度场耦合分析,最后在对所述的叶轮结构模型进
行结构分析,判断相邻两次的叶轮结构变形数据是否小于第一设定值,如果大于或等于第
一设定值,则重新确定叶轮结构变形数据,如果小于第一设定值,则确定输出第i个叶轮的
叶轮目标值f=xi,π=yi,σ=zi,η=wi,其中,xi为第i个叶轮固有频率f的叶轮目标值,yi为
第i个叶轮压比π的叶轮目标值,zi为第i个叶轮应变σ的叶轮目标值,wi为第i个叶轮效率η的
叶轮目标值,i=1…24。
将以上24组叶轮因素值和24组叶轮目标值填入表3获得第三样本数据库,详见表
3。
表3第三样本数据库
![]()
![]()
将第三数据库中的前18组叶轮因素值和前18组叶轮目标值建立克里金代理模型,
其中克里金代理模型将叶轮目标和叶轮因素的非线性函数关系描述为回归模型和非参数
随机函数可表示为:
y(x)=F(β,x)+z(x) (5)
其中,F(β,x)为回归模型,β为回归模型系数,z(x)为非参数部分随机函数,x为叶
轮因素,y(x)为叶轮目标函数。
本案例中具体的叶轮目标与叶轮因素之间的具体关系可表示为:Y=F(β,X)+z
(X),其中,X为前18个样本叶轮因素值集合,即
Y为前18个样本叶轮
因素值对应的叶轮目标值集合,即![]()
将第三样本数据库中的后6组样本数据的叶轮因素值代入到克里金代理模型后得
到预测叶轮目标值,将该预测目标值与第三样本数据库中的后6组叶轮目标值进行对比判
断克里金代理模型的精度是否已达到设定值,若精度已达第二设定值要求时,进行下一步;
若精度为达设定值要求时,则返回后重新采用试验设计法确定叶轮因素值。
在克里金代理模型基础上确定优化数学模型:
![]()
其中,x为目标因素,η为离心压气机效率;π为压比;σ为应变;f为固有频率;D2为叶轮外
径、b2为叶轮出口宽度、e为叶顶间隙、E为材料弹性模量;γ1,γ2,γ3,γ4为权重分配系数,且γ1
+γ2+γ3+γ4=1;![]()
![]()
fmax,fmin,πmax,πmin,σmax,σmin,ηmax,ηmin为叶轮目标的某范围内的最大值和最小值,amin,amax为
叶轮外径D2的取值范围,bmin,bmax为叶轮出口宽度b2的取值范围,cmin,cmax为叶顶间隙e的取
值范围,dmin,dmax为材料弹性模量E的取值范围。
最后,采用蚁群遗传算法对优化数学模型进行寻优计算,便可得到叶轮因素最优
值a25,b25,c25,d25和叶轮目标最优值x25,y25,z25,w25。
本说明书实施例所述的内容仅仅是对发明构思的实现形式的列举,本发明的保护
范围的不应当被视为仅限于实施例所陈述的具体形式,本发明的保护范围也及于本领域技
术人员根据本发明构思所能够想到的等同技术手段。