一种基于多智能体建模和专家系统的众包平台最优投放策略生成器.pdf

上传人:a1 文档编号:1306207 上传时间:2018-04-14 格式:PDF 页数:14 大小:829.31KB
返回 下载 相关 举报
摘要
申请专利号:

CN201611136252.2

申请日:

2016.12.12

公开号:

CN106708600A

公开日:

2017.05.24

当前法律状态:

实审

有效性:

审中

法律详情:

实质审查的生效IPC(主分类):G06F 9/455申请日:20161212|||公开

IPC分类号:

G06F9/455; G06F17/30; G06N3/12

主分类号:

G06F9/455

申请人:

大连理工大学

发明人:

邹广宇; 李彤

地址:

124221 辽宁省盘锦市辽东湾新区大工路2号

优先权:

专利代理机构:

大连理工大学专利中心 21200

代理人:

梅洪玉

PDF下载: PDF下载
内容摘要

本发明属于计算机应用技术领域,本发明建立一个与众包平台同步进化的多智能体仿真模型,并根据仿真模型提供一个在各种不确定条件下依然能达到预期目标的具有鲁棒性的众包任务设计策略生成器。通过结合专家系统,和基于智能体的仿真建立一个与众包平台同步进化的计算机仿真模型,并依据此模型构建一个在各种不确定条件下具有鲁棒性的众包任务设计生成器。基于遗传算法的任务设计生成器生成的任务设计方案可以在各种不确定情况下达到预期的目标,具有很高的鲁棒性。以这种方式设计的任务不仅满足公司对于质量和进度的要求,同时维持了一个可持续发展的在线工作者群体,促进众包业务的兴盛繁荣,更好的为社会经济服务。

权利要求书

1.一种基于多智能体建模和专家系统的众包平台最优投放策略生成器,其特征在于,
1)根据搜索关键字,在专家系统的案例库内搜索相似的案例;如果其相似度大于一个
预先设定的阈值,则直接使用已有案例的解决方案作为众包任务设计方案;如果其相似度
达不到预先设定的阈值,则通过基于智能体的众包平台仿真模型生成一个新的众包任务设
计方案;
2)根据新的设计方案设计的众包任务投放到众包平台上;如果众包任务的性能指标达
到预期,则把相应的众包任务设计方案存入专家系统的案例库中;如果众包任务的性能指
标达不到预期,则丢弃这个设计方案;
3)如果此丢弃的解决方案来自于专家系统的案例库,则通过基于智能体的众包平台仿
真模型重新生成新的众包任务设计方案,并投放到众包平台上;如果此丢弃的方案来自于
基于智能体的众包平台仿真模型的输出,则说明此仿真模型已经过时,需要重新进行校准
验证。
2.根据权利要求1所述的一种基于多智能体建模和专家系统的众包平台最优投放策略
生成器,其特征在于,所述专家系统的案例库中的每一个案例都包括三部分信息:任务类
型、任务设置参数和预期的性能指标;其中任务类型与预期的性能指标构成案例库的搜索
关键字;任务设置参数为任务设计方案。
3.根据权利要求2所述的基于多智能体建模和专家系统的众包平台最优投放策略生成
器,其特征在于,所述任务类型包括视频、音频、文本、图像、手写识别;预期的性能指标包括
任务完成率、任务完成质量和任务完成时间;任务设置参数因任务和众包平台的不同而不
同。
4.根据权利要求1或2或3所述的一种基于多智能体建模和专家系统的众包平台最优投
放策略生成器,其特征在于,基于智能体的众包平台仿真模型包括任务需求者,在线工作者
和任务;其中任务具有设置参数;任务需求者和在线工作者作为众包平台的参与者,各自具
有自己的行为规则。
5.根据权利要求1或2或3所述的一种基于多智能体建模和专家系统的众包平台最优投
放策略生成器,其特征在于,众包平台包括可控参数和不可控参数:可控参数为决策变量,
即任务设置参数;不可控参数为环境参数;基于智能优化算法,将所有的任务设置参数进行
编码,而后把各编码所对应的任务放到众包平台仿真模型,并在各种可能环境参数下进行
测试,找到在所有可能情况下均表现出色的任务设置参数,得到进一步优化的任务设计方
案。
6.根据权利要求4所述的一种基于多智能体建模和专家系统的众包平台最优投放策略
生成器,其特征在于,众包平台包括可控参数和不可控参数:可控参数为决策变量,即任务
设置参数;不可控参数为环境参数;基于智能优化算法,将所有的任务设置参数进行编码,
而后把各编码所对应的任务放到众包平台仿真模型,并在各种可能环境参数下进行测试,
找到在所有可能情况下均表现出色的任务设置参数,得到进一步优化的任务设计方案。
7.根据权利要求5所述的一种基于多智能体建模和专家系统的众包平台最优投放策略
生成器,其特征在于,所述的智能优化算法为遗传算法。
8.根据权利要求6所述的一种基于多智能体建模和专家系统的众包平台最优投放策略
生成器,其特征在于,所述的智能优化算法为遗传算法。

说明书

一种基于多智能体建模和专家系统的众包平台最优投放策略 生成器

技术领域

本发明属于计算机应用技术领域,涉及一种基于多智能体建模和专家系统的众包
平台最优投放策略生成器

背景技术

众包是一种通过互联网把工作分发给分布于全球的大量的在线工作者来完成的
新型商业模式。然而不同于传统的外包业务,众包业务中任务需求者和在线工作者之间没
有契约约束,而且在线工作者是完全匿名的,这就给质量控制和进度控制带来了巨大的挑
战。同一件任务在众包平台上的不同设置和不同的投放策略会产生不同的完成质量和完成
时间。因此,在给定目标质量和目标进度的前提下,如何设计与如何投放任务是摆在每一个
想利用众包平台的决策者所不能回避的问题。目前关于众包平台的研究,多是根据平台上
的全部任务数据拟合出任务完成质量和完成时间的概率密度。而众包任务设计也多是根据
经验进行参数设定,或是根据酬劳与任务质量之间的关系进行定价,没有把任务参数和在
线工作者的特征作为一个整体来研究众包平台。同时,众包平台随着在线工作者的动态变
化而日新月异。新来者加入进来,有些人离开,已有的在线工作者工作技能不断提高而成为
高级工作者,从而有更高的薪酬预期。因此,如何制定出在各种不确定条件下依然可以实现
既定目标的具有鲁棒性的任务设计策略是摆在每一个想利用众包平台的决策者不得不面
对的挑战。

国内关于众包的研究集中在商业模式上的创新,高校管理,以及信息收集,并衍生
出一些新的词汇如威客与众筹。这些都是众包在某一领域的具体应用,从政策及理论层面
的定性研究,而没有提出可以量化的计算模型。另外也有使用改进的期望最大化法对任务
质量进行评估的研究。但都没有考虑到众包业务中任务需求者、任务、以及在线工作者本身
的特性以及相互之间的联系对整个系统的影 响。同时,基于统计数据和经验所设计的众包
任务无法在多种不确定条件下实现预期的性能指标。另一方面,考虑到国内有大量的互联
网用户和手机上网用户,国内的众包业务前景十分广阔。

为了进行众包任务设计,本发明使用专家系统(Expert System)以便任务设计生
成器基于已有的知识而不断进化。专家系统是一个利用已有相似问题的解决方案来解决新
问题的过程。与医生看病的过程相似,专家系统在已有的案例库中搜索与新问题相似的问
题,进而重用已有的医疗方案。专家系统可以总结为四个步骤:查询,重用,修改,和保留。查
询指根据新问题的特征在已有案例库中查询相似案例的过程;重用指把已有解决方案应用
到新问题的过程;修改指如果应用已有解决方案的预期与实际结果相差较大从而修改已有
解决方案的过程;保留指把能达到预期的解决方案存入到案例库的过程。

众包平台是一个复杂自适应系统,这是因为没有中央控制,其整体特性是由分布
于全球的在线工作者的个人行为以及相互间的联系所决定的。因为基于智能体的仿真模型
(Agent-based Model)是由大量的相互联系的具有自主决策的个体组成,所以基于智能体
建模是从复杂自适应系统的角度来研究众包平台最为合适的方法。本发明利用基于智能体
的众包平台模型来生成、测试任务设计方案,配合智能优化算法以期获得最优设计方案。

发明内容

为了解决现有技术中存在的问题,本发明建立一个与众包平台同步进化的多智能
体仿真模型,并根据仿真模型提供一个在各种不确定条件下依然能达到预期目标的具有鲁
棒性的众包任务设计策略生成器。

本发明的技术方案是通过结合专家系统(Expert System),和基于智能体的仿真
(Agent-based Modeling)建立一个与众包平台同步进化的计算机仿真模型,并依据此模型
构建一个在各种不确定条件下具有鲁棒性的众包任务设计生成器。

一种基于多智能体建模和专家系统的众包平台最优投放策略生成器,如图1所示。

1)根据搜索关键字,在专家系统的案例库内搜索相似的案例;如果其相似度大于
一个预先设定的阈值,则直接使用已有案例的解决方案作为众包任务设计方案;如果其相
似度达不到预先设定的阈值,则通过基于智能体的众包平台仿真模型生成一个新的众包任
务设计方案。

2)根据新的设计方案设计的众包任务投放到众包平台上;如果众包任务的性能指
标达到预期,则把相应的众包任务设计方案存入专家系统的案例库中;如果众包任务的性
能指标达不到预期,则丢弃这个设计方案。

3)如果此丢弃的解决方案来自于专家系统的案例库,则通过基于智能体的众包平
台仿真模型重新生成新的众包任务设计方案,并投放到众包平台上;如果此丢弃的方案来
自于基于智能体的众包平台仿真模型的输出,则说明此仿真模型已经过时,需要重新进行
校准验证。

上述专家系统的案例库中的每一个案例都包括三部分信息:任务类型、任务设置
参数和预期的性能指标;其中任务类型与预期的性能指标构成案例库的搜索关键字;任务
设置参数为任务设计方案。

上述任务类型包括视频、音频、文本、图像、手写识别;预期的性能指标包括任务完
成率、任务完成质量和任务完成时间,即表示在众包平台上投放的任务在多长时间以多好
的质量完成。当有一个新的任务要发布在众包平台上,根据任务的类型和预期的性能指标
在案例库中搜索相似的案例,已有的相似的案例的任务设置参数就是任务设计方案。任务
设置参数因任务和众包平台的不同而不同。

在系统运行之初,专家系统的案例库为空。随着系统的不断运行,不断在众包平台
上投放任务,越来越多的案例加入到案例库中,整个众包任务设计生成器也就随着众包平
台不断进化。

当专家系统的案例库中找不到相似的案例,或者已有的案例无法实现预期的目标
时,基于智能体的众包平台仿真模型被用来生成新的任务设计方案。基于智能体的众包平
台仿真模型包括任务需求者,在线工作者和任务;其中任务具有设置参数;任务需求者和在
线工作者作为众包平台的参与者,各自具有自己的行为规则。关于众包平台仿真模型的细
节,参见文献(Guangyu Zou,Alvaro Gil,and Marina Tharayil.An agent-based model
for crowdsourcing systems.Proceedings of the IEEE/ACM Winter Simulation
Conference,December 7-10,2014.Savannah,GA.)和(Guangyu Zou,Marina Tharayil,
Alvaro E.Gil,DeepthiChander,Laura Elisa Celis.System and Method to Analyze
and Optimize Crowdsourcing Systems.US.Application No:14/190205.Feb.2014.)。

上述众包平台包括可控参数和不可控参数:可控参数为决策变量,即任务设置参
数;不可控参数为环境参数。对于不可控参数,在不同情况下可能符合不同的概率分布。为
了生成在各种不确定环境下都能实现预期目标的具有鲁棒性的众包任务设计方案,基于智
能优化算法,将所有的任务设置参数进行编码,而后把各编码所对应的任务放到众包平台
仿真模型,并在各种可能环境参数下进行测试,找到在所有可能情况下均表现出色的任务
设置参数,得到进一步优化的任务设计方案。

进一步限定,上述的智能优化算法为遗传算法。任务设置参数作为遗传算法中的
染色体,与环境参数合成仿真模型的设置参数构成的众包任务设计方案在遗传算法中不断
进化成更好的解决方案。因此,通过如图2所示的基于遗传算法的任务设计生成器生成的任
务设计方案可以在各种不确定情况下达到预期的目标,具有很高的鲁棒性。

本发明基于仿真模型和专家系统进行任务设计和投放策略决策来提高众包平台
的效率。效率的提高必将吸引更多的任务需求者投放更多的任务,更多的任 务会吸引更多
的在线工作者的参与,从而形成一个良性循环。以这种方式设计的任务不仅满足公司对于
质量和进度的要求,同时维持了一个可持续发展的在线工作者群体,促进众包业务的兴盛
繁荣,更好的为社会经济服务。

附图说明

图1是基于多智能体建模和专家系统的众包平台最优投放策略生成器的流程图。

图2是基于遗传算法的众包任务设计生成器图。

图3是完成质量的箱线图。

图4是完成时间的箱线图。

图5是染色体单点交叉操作示意图。

图6是染色体双点交叉操作示意图。

图7是染色体变异操作示意图。

图8是生成下一代种群示意图。

图9是改变预设目标后完成质量的箱线图。

图10是改变预设目标后完成时间的箱线图。

具体实施方式

结合附图和具体实施方式说明本发明的技术方案,

为了演示本发明的具体使用情况,在流行的众包平台Amazon Mechanical Turk
(AMT)上投放任务进行测试。在AMT上投放的任务是一个停车场的监控视频,需要在线工作
者记录车辆进入和离开停车场的时间。

表格1列出所有任务设置参数以及对应的实际性能参数。这些数据一方面存入专
家系统的案例库,另一方面用来训练和校准基于智能体的众包平台仿真模型。

表格1任务设置参数和对应的性能指标



首先,预期的性能指标为,任务准确率高于97%,完成时间在40分钟之内。通过以
任务完成质量和完成时间作为关键字搜索案例库,找到第12条案例与预期目标具有最高的
相似度。因此,以对应的配置参数设计任务,共投放30份任务到AMT上由在线工作者完成。其
得到的数据如图3、4所示。由图可知,30份任务的准确率在97%左右,完成时间也在40分钟
左右,与预期的目标一致。

然后,预设的目标是任务完成质量为99%,完成时间小于60分钟。以此任务完成质
量和完成时间作为关键字搜索案例库,案例库中没有足够相似的案例。因此,根据图1的流
程图,转到众包平台的仿真模型根据预设目标重新生成任务设计方案。本专利使用遗传算
法对众包任务设计方案进行编码,而后根据适值进行交叉、变异、选择操作,最终得到符合
目标质量和目标完成时间的最优任务设计方案。遗传算法共分6步。

步骤1,随机地生成一定数量的作为任务设计方案的染色体。比如,种群大小为
100,每一个染色体有9个基因,基因值在可行域范围内随机设置。表格2是一个表示任务设
计方案的染色体的例子,每一列是一个基因,代表任务设计中的一个参数。

表格2一个表示任务设计方案的染色体的例子



步骤2,在染色体的种群内根据适值随机的选择染色体进行交叉,产生下一代染色
体。染色体的适值由公式1计算得出。其中,fi是第i个染色体的适值。xij是第i个染色体第j
个输出参数值。Xj是第j个输出参数期望值。m是输出参数个数。


以表格2中的染色体作为众包任务设计参数,则完成质量和完成时间分别为
99.6%和275分钟。在目标完成质量和目标完成时间分别为99%和60分钟的条件下,其根据
公式1计算出的适值为0.56。每个染色体被选中进行交叉的概率由其适值决定,如公式(2)
所示。这里pj是第j个染色体被选中的概率。fj是第j个染色体的适值。是整个种群
染色体的适值和。使用轮盘法选择,即当ppi≥rand(0,1)≥ppi-1时,第i个染色体被选中。



对于选中的染色体所进行得交叉操作有两种:单点交叉和双点交叉。图5是一个单
点交叉的例子,交叉点为6,则位置为6和其后的基因交换。

图6是一个双点交叉的例子,其中交叉点1是3,交叉点2是5,则在交叉点1和交叉点
2之间的区间[3,6]之间的基因进行交换。

步骤3,变异操作。以与步骤2中相同的选择过程,根据适值随机选择染色体进行变
异操作。变异操作就是随机选择染色体的一个基因,而后在可行域范围内随机地改变为一
个新值。图7是一个变异的例子,首先随机地选择一个变异点。这个例子中随机选择的变异
点是2,而后第二个位置的基因在可行域内随机地替换为一个新值,这里是7。

步骤4,单纯形算子。为了实现遗传算法的快速收敛,本发明结合了单纯形算子
(John Yen,Bogju Lee.A Simplex Genetic Algorithm Hybrid.IEEE International
Conference on Evolutionary Computation,13-16Apr 1997.175–180.)。在n维空间中,一
个单纯形是具有n+1个顶点的多胞形。单纯形算子通过最坏顶点经过单纯形中心点
反射点XR替代这个最坏顶点(XW)形成新的单纯形。这个过程如公式(3)所示。


然后根据反射点XR的不同情形,确定替代原有单纯形最坏顶点的新的顶点XN







这里,XB表示适值最大的点;X2ndW是第二差的点。α是从最差点反射程度的系数。XN
是用来在新生成的单纯形中替换最差点XW的新的点。

步骤5,选择操作,生成新的种群。经过交叉、变异、和单纯形算子操作生成的新的
染色体与原有的染色体放在一起,根据其适值随机地选择出与原有种群数相同的新的种
群,保持种群数量的稳定。选择过程与步骤2中的选择过程完全一致,使得适值高的染色体
有更大的可能性被选中,从而提高整个种群的适值, 进而算法逐渐收敛到最优值。生成新
的种群的具体过程如图8所示,其中,适值最高的10%的染色体保留进入新的种群;适值最
高的50%的染色体进行单纯形算子操作生成新种群中20%的染色体;父辈种群中的全部染
色体都有机会进行交叉和变异操作生成新种群中剩余70%的染色体。

步骤6,终止条件。当下面2个条件中任意一个满足,则遗传算法终止。

·达到最大迭代次数。此算例中最大迭代次数为1000次。

·这里是整个种群的平均适值,fB是整个种群的最好适值。

T是一个阈值。此算例中的T为1%。

遗传算法经过不断迭代以上的6步,得到的最优设计方案中各任务设置参数如表
格3所示。

表格3基于仿真模型生成的设计方案



以如表格3的参数值设计众包任务,并投放30份到AMT上,统计任务的完成质量和
完成时间,如图9、10所示。从图可以看出,根据任务设计方案设计的任务,其完成准确率在
99%左右,完成时间在60分钟左右,与预设目标一致。因此,本发明提出的众包任务设计生
成器可以为使用众包平台的决策者提供辅助决策。

一种基于多智能体建模和专家系统的众包平台最优投放策略生成器.pdf_第1页
第1页 / 共14页
一种基于多智能体建模和专家系统的众包平台最优投放策略生成器.pdf_第2页
第2页 / 共14页
一种基于多智能体建模和专家系统的众包平台最优投放策略生成器.pdf_第3页
第3页 / 共14页
点击查看更多>>
资源描述

《一种基于多智能体建模和专家系统的众包平台最优投放策略生成器.pdf》由会员分享,可在线阅读,更多相关《一种基于多智能体建模和专家系统的众包平台最优投放策略生成器.pdf(14页珍藏版)》请在专利查询网上搜索。

本发明属于计算机应用技术领域,本发明建立一个与众包平台同步进化的多智能体仿真模型,并根据仿真模型提供一个在各种不确定条件下依然能达到预期目标的具有鲁棒性的众包任务设计策略生成器。通过结合专家系统,和基于智能体的仿真建立一个与众包平台同步进化的计算机仿真模型,并依据此模型构建一个在各种不确定条件下具有鲁棒性的众包任务设计生成器。基于遗传算法的任务设计生成器生成的任务设计方案可以在各种不确定情况下达到。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 物理 > 计算;推算;计数


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1