考虑弯扭贡献效应的三维时效破裂模型构建方法技术领域
本发明涉及工程岩体三维细观时效破裂分析技术领域,具体涉及一种考虑弯扭贡
献效应的三维时效破裂模型构建方法。
背景技术
深部岩体工程开挖后的失稳与破坏往往不是在开挖后立刻发生的,一般都存在着
明显的变形破裂时效性和灾变(岩爆、大变形等)的滞后性,严重危害工程的施工安全与长
期运营。目前,在细观方面的时效力学研究成果相对较少。《深埋大理岩破裂扩展时间效应
的颗粒流模拟》一文对锦屏大理岩破裂的时间效应进行了试验和二维数值分析(岩石力学
与工程学报,2011,Vol.30No.10:1989-1996);《锦屏大理岩蠕变损伤演化细观力学特征的
数值模拟研究》一文应用二维蠕变细观力学模型对锦屏大理岩短期和长期强度特征进行了
数值研究(岩土力学,2013,Vol.34No.12:3601-3608)。这类模型是根据驱动应力和裂纹扩
展速度间的关系用来描述岩石细观层面上的二维时效破裂,适用于平面条件下应力和裂纹
扩展速度之间符合指数表达方式的这类岩体。这类模型尚存在如下不足之处:(1)这类模型
适用于平面应力或是平面应变问题,对于必须考虑三维应力条件下的深部岩体工程问题,
该类二维模型因不能描述三维应力对岩体时效变形破坏的影响而缺乏适应性;(2)平行粘
结断裂之后,颗粒之间只考虑一个方向的滑动摩擦力,没有考虑断裂颗粒间的法向接触的
受力方式,不符合三维空间问题时岩体破裂后的细观颗粒在外荷载下的运动方式以及相邻
颗粒摩擦力相互作用的方式;(3)颗粒间的剪切破裂准则是一条与平行粘结正应力平行的
水平直线,也即这种剪切破裂准则与平行粘结正应力状态无关,只要平行粘结剪切应力大
于或等于固定平行粘结剪切破裂强度,颗粒间即可发生剪切破裂,无法体现岩体中不同平
行粘结正应力具有不同平行粘结剪切破裂强度的客观事实;(4)对于岩体这种摩擦粘结性
材料,上述这类传统的平行粘结模型没有考虑粘结弯矩和粘结扭矩两者的贡献效应,也没
有考虑两者的差异作用对岩体张拉破坏和剪切破坏的影响。
发明内容
本发明的目的是针对上述技术问题,提供一种考虑弯扭贡献效应的三维时效破裂
模型构建方法,该方法适应于三维应力空间条件下应力和裂纹扩展速度之间的关系符合指
数型的这类岩体,能对这类深部岩体工程在三维应力条件下的围岩长期稳定性预测、评价
以及优化设计提供技术支持。
为实现此目的,本发明所设计的一种考虑弯扭贡献效应的三维时效破裂模型的构
建方法,其特征在于,它包括如下步骤:
步骤1:设定岩体细观颗粒三维平行粘结接触的几何参数量包括平行粘结面积、平
行粘结惯性矩和平行粘结极惯性矩,R(a),R(b)为三维平行粘结接触两端的颗粒半径,考虑粘
结单位厚度为1时的三维平行粘结的面积、粘结单位厚度为1时的三维平行粘结的惯性矩和
粘结单位厚度为1时的三维平行粘结的极惯性矩分别通过公式(2)、公式(3)、公式(4)来确
定:
![]()
![]()
![]()
![]()
其中:
为岩体细观颗粒三维平行粘结半径,
为岩体细观颗粒三维平行粘结直径
乘数,A为岩体细观颗粒三维平行粘结面积,I为岩体细观颗粒三维平行粘结惯性矩,J为细
观颗粒三维平行粘结极惯性矩;
步骤2:利用岩体细观颗粒三维平行粒粘结时效衰减劣化的初始时间步长增量Δ
t,通过三维指数型函数计算岩体细观颗粒平行粘结直径,公式(5)来确定;
![]()
其中:
为判断三维岩体细观颗粒开始时效劣化衰减时的应力阀值,
为三维岩
体细观颗粒平行粘结拉伸强度,
为考虑扭矩贡献因子的三维岩体细观颗粒平行粘结
应力比,
为岩体细观颗粒三维平行粘结应力,β1为控制指数整体变化的岩体内部细观颗粒
三维平行粘结时效劣化系数,β2为控制指数上标部分变化的岩体内部细观颗粒三维平行粘
结时效劣化系数,
为三维岩体细观颗粒三维平行粘结随时间劣化衰减的直径,
为三维
岩体细观颗粒三维平行粘结未衰减时的直径;
步骤3:根据步骤2中的公式(5),设定三维岩体细观颗粒平行粘结直径的指数型时
效衰减因子,见公式(6):
![]()
其中:β为岩体细观颗粒三维平行粘结直径的时效衰减因子,![]()
为三维平行粘结随时间劣化衰减的直径、半径和直径乘数(是指平行粘结直
径与粘结两端最小颗粒直径的比值),![]()
为三维平行粘结未衰减时的直径、半径、直
径乘数;
步骤4:根据步骤1中的公式(1)~公式(4)以及步骤3中的公式(6);
设定岩体细观颗粒三维平行粘结几何参数时效劣化衰减模式。在三维情况下,岩
体细观颗粒三维平行粘结直径随着时间增加而不断劣化衰减,三维平行粘结的面积、惯性
矩和极惯性矩也随着时间增加而不断劣化衰减,分别见公式(7)、公式(8)和公式(9)。
![]()
![]()
![]()
其中:A、I、J分别为岩体细观颗粒三维平行粘结未衰减时的面积、惯性矩、极惯性
矩,
A'、I'、J'分别表示为岩体细观颗粒三维平行粒粘结随时间劣化衰减的半径、面积、
惯性矩、极惯性矩;
步骤5:依次计算第j个至第k个的岩体细观颗粒包含时间效应的三维平行粘结法
向力矩(弯矩)增量和切向力矩(扭矩)增量,在三维情况下,由平行粘结两端颗粒的速度、角
速度和给定的循环计算步Δtc,通过以下公式(10)、公式(11)、公式(12)和公式(13),确定
平行粘结法向增量位移
平行粘结切向st方向的增量位移
平行粘结切向ss方
向的增量位移
确定平行粘结法向相对转角
平行粘结切向ss方向的相对转角
平行粘结切向st方向的相对转角
ss和st为同一平面上相互垂直的两个方向
的代号,再结合步骤4中的公式(8)和公式(9)以及步骤3中的公式(6),可确定平行粘结切向
st方向的扭矩增量、切向ss方向的扭矩增量以及平行粘结法向弯矩增量,见公式(14)、公式
(15)以及公式(16);
![]()
![]()
![]()
![]()
![]()
![]()
![]()
其中:ff、j、k是自然数,且2≤j≤ff≤k,j为每次循环计算中包含时间效应的岩体
细观颗粒平行粘结衰减后未破裂的初始标号值,ff为中间某一个标号值,k为每次循环计算
中包含时间效应的岩体细观颗粒平行粘结衰减后未破裂的最末标号值,
分别为
第i个岩体细观颗粒接触的a端和b端的绝对运动速度,
分别为第i个岩体细观颗粒
接触的a端和b端的角速度,nn、nss、nst分别为细观颗粒接触面的法向单位向量、切向ss方向
的单位向量、切向st方向的单位向量,
分别为细观颗粒平行粘结法向
的位移增量、切向ss方向的位移增量、切向st方向的位移增量,I、J分别为岩体细观颗粒三
维平行粘结未衰减时惯性矩、极惯性矩,
为平行粘结法向刚度,
为平行粘结切向刚度,
分别为平行粘结切向ss方向的扭矩增量值、切向st方向的扭矩增量值,![]()
为平行粘结法向弯矩增量值,弯矩和扭矩按右手螺旋法则,确定其矢量方向,β为岩体细观
颗粒三维平行粘结直径的时效衰减因子,Δtc为平行粘结两端颗粒的循环计算步;
步骤6:根据步骤4中的公式(7)~公式(9)、步骤5中的公式(10)~公式(13)以及步
骤3中的公式(6),依次更新计算第j个至第k个岩体细观颗粒未破裂并包含时间效应的三维
平行粘结法向力、切向力、法向弯矩、切向扭矩,通过如下公式(17)、公式(20)、公式(23)、公
式(24)计算第i个岩体细观颗粒接触的平行粘结法向力、切向力、法向弯矩、切向扭矩;
第i个岩体细观颗粒接触的平行粘结法向力为:
![]()
第i个岩体细观颗粒接触的平行粘结切向ss方向力为:
![]()
第i个岩体细观颗粒接触的平行粘结切向st方向力为:
![]()
第i个岩体细观颗粒接触的平行粘结切向合力为:
![]()
第i个岩体细观颗粒接触的平行粘结切向ss方向扭矩为:
![]()
第i个岩体细观颗粒接触的平行粘结切向st方向扭矩为:
![]()
第i个岩体细观颗粒接触的平行粘结法向弯矩为:
![]()
第i个岩体细观颗粒接触的平行粘结切向合扭矩为:
![]()
其中:
分别为第i
个细观颗粒接触的三维平行粘结法向力、切向ss方向力、切向st方向力、三维平行粘结法向
弯矩和平行粘结切向ss方向扭矩、切向st方向扭矩、三维平行粘结法向位移增量、切向ss方
向位移增量、切向st方向位移增量,+=为加法自反运算符,-=为减法自反运算符,
为平
行粘结法向刚度,
为平行粘结切向刚度,β为岩体细观颗粒三维平行粘结直径的时效衰减
因子,A、I、J分别为岩体细观颗粒三维平行粘结未衰减时的面积、惯性矩、极惯性矩,
为
平行粘结法向相对转角、
为平行粘结切向ss方向的相对转角、
为平行粘结切向st
方向的相对转角,ff为每次循环计算中包含时间效应的岩体细观颗粒平行粘结衰减后未破
裂的标号;
步骤7:考虑扭矩对岩体细观颗粒三维平行粘结正应力的贡献程度,在三维平行粘
结正应力计算公式中设置扭矩贡献因子![]()
考虑弯矩对岩体细观颗粒三维平行
粘结剪应力的贡献程度,在三维平行粘结剪应力计算公式中,设置弯矩贡献因子![]()
根据三维平行粘结正应力公式
和三维平行粘结剪应力公式
同时将这两个公式中A、I、J以及
用A'、I'、J'及
替换,然后将步骤4
中的公式(7)~公式(9)以及步骤3中的公式(6)代入,可获得包含指数型时间效应且考虑弯
扭贡献效应的三维平行粘结法向正应力和三维平行粘结剪应力计算公式,分别见公式(25)
和公式(26);
![]()
![]()
步骤8:将步骤7中包含指数型时间效应且考虑弯扭贡献效应的
代入公
式(27),可确定包含指数型时间效应和弯扭贡献效应且带拉伸截止限的摩尔库伦平行粘结
时效破裂准则,用于判断岩体细观颗粒三维平行粘结是否破裂以及确定破裂模式(拉伸破
裂模式或剪切破裂模式),在该准则的岩体细观颗粒三维平行粘结应力中包含了指数型时
间效应和弯扭贡献效应;
![]()
其中:fs为摩尔-库伦细观颗粒三维粘结剪切时效破裂准则,fn为摩尔-库伦细观颗
粒三维粘结拉伸时效破裂准则,
为第i个接触的含指数型时间效应且考虑弯矩贡献因
子的三维平行粘结剪应力,
为第i个接触的含指数型时间效应且考虑扭矩贡献因子的
三维平行粘结正应力,fs表示岩体细观颗粒三维平行粘结剪切破裂准则,fs大于等于0表示
三维平行粘结剪切破裂,小于0表示三维平行粘结未发生剪切破裂;fn大于等于0表示三维
平行粘结拉伸破裂,小于0表示三维平行粘结未发生拉伸破裂;
步骤9:如果步骤8的公式(27)中的fs或fn大于等于0,表明三维粘结发生了破裂,此
后岩体细观颗粒的空间运动模式采用考虑阻尼效应的三维线性接触模型来表达;如果步骤
8的公式(27)中的fs和fn都小于0,表明三维粘结未破裂,继续循环步骤2至8,计算、更新、判
断岩体细观颗粒接触的三维粘结状态,直至岩体不产生新的三维粘结破裂或者三维粘结破
裂加速发展而形成宏观破坏(通过监测岩体宏观变形或应变,观测该值是否加速来判断),
循环终止。
本发明的其有益效果和优势主要体现在:
(1)本发明中的模型结构包括考虑弯扭贡献效应的细观颗粒三维平行粘结应力模
式、考虑弯扭耦合效应的细观颗粒三维平行粘结时效劣化衰减指数型模式、考虑弯扭耦合
效应且带拉伸截止限的摩尔-库伦细观颗粒平行粘结时效破裂准则、考虑阻尼效应的细观
颗粒三维线性接触模型等,这四部分构成了完整的模型结构系统,同时给出了该模型构建
方法及具体实施流程,便于在三维细观数值平台上进行数值实现。
(2)本发明所构建的模型中设置了考虑弯扭贡献效应的细观颗粒三维平行粘结应
力模式,不仅在岩体细观颗粒平行粘结法向应力三维计算公式中设置了弯矩贡献因子,而
且在平行粘结切向应力三维计算公式中设置了扭矩贡献因子。这种模型结构及构建方法,
不仅考虑了弯矩对细观颗粒平行粘结正应力的贡献程度,考虑了扭矩对平行粘结切向剪应
力的贡献程度,而且还考虑了弯矩和扭矩的贡献程度对岩体长期强度的影响,适合描述一
类岩体的细观力学破裂三维空间问题,同时减小细观颗粒平行粘结时效破裂过程中产生过
强的能量冲击波对邻近区域造成的二次损伤。
(3)本发明中构建了考虑弯扭耦合效应的细观颗粒三维平行粘结时效劣化衰减指
数型模式,包括在岩体细观颗粒平行粘结时效劣化衰减时,设置了指数型与考虑弯扭贡献
因子的平行粘结应力相关的细观颗粒三维平行粘结劣化衰减模式,设置了三维平行粘结直
径随时间逐步劣化衰减的与考虑弯扭贡献因子的平行粘结应力相关的指数型模式,设置了
三维平行粘结面积、惯性矩和极惯性矩等时效劣化衰减模式;按照这种三维指数型时效劣
化衰减模式估算岩体细观颗粒平行粘结破裂的初始时间步长。这种三维指数型构建模式适
合描述空间状态下一类深部岩体的三维细观力学时效破裂机制和响应规律。
(4)本发明中在所构建的三维细观时效破裂模型中,嵌入考虑弯扭耦合效应且带
拉伸截止限的摩尔-库伦细观颗粒平行粘结时效破裂准则。在岩体细观颗粒平行粘结时效
破裂时,采用所嵌入的考虑弯扭耦合效应且带拉伸截止限的摩尔-库伦细观颗粒平行粘结
时效破裂准则来判断;在该准则的平行粘结应力中包含了指数型时间效应,并在平行粘结
正应力中设置了弯矩贡献因子,在平行粘结剪应力中设置了扭矩贡献因子。这种模型结构
中细观颗粒平行粘结时效破裂准则的构建方法,不仅可以描述与平行粘结正应力相关时效
剪切破裂强度的差异,还可以对细观时效拉伸破裂进行合理的表达,且考虑了弯矩和扭矩
贡献程度对平行粘结时效破裂的影响,符合空间状态下一类岩体三维细观时效破裂模式。
(5)本发明在所构建的三维细观时效破裂模型中,嵌入考虑阻尼效应的细观颗粒
三维线性接触模型结构,在岩体时效破裂后,通过三维接触参考距离设定了细观颗粒三维
空间接触距离,设置了考虑细观颗粒空间三向变形的三维接触模式,在颗粒之间设置了考
虑三向滑动摩擦面力的三维空间耦合作用模式,同时设置四种接触的三维空间阻尼模式,
可合理描述三维应力状态下一类深部工程岩体在时效破裂后的颗粒空间运动和受力特征。
附图说明
图1为本发明模型中细观颗粒与颗粒接触示意图。
图2为本发明模型中细观颗粒与刚性墙接触示意图。
图3为本发明模型中细观颗粒空间重叠状态示意图。
图4为本发明模型中细观颗粒刚度计算三维示意图。
图5为本发明模型中细观颗粒粘结线性切向力和切向位移示意图
图6为本发明模型中细观颗粒粘接触本构物理模型示意图。
图7为发明模型中细观颗粒线性平行粘结三维结构示意图。
图8为本发明模型中考虑弯扭贡献效应且带拉伸截止限的摩尔库伦细观颗粒粘结
时效破裂准则示意图。
图9位本发明模型中细观颗粒粘结直径(或半径)时效劣化衰减示意图。
图10为本发明模型三维平行粘结直径(或半径)对数更新率与应力曲线示意图。
图11为本发明模型中细观颗粒三维接触面的力和力矩分布量示意图。
图12为本发明模型中细观颗粒三维接触面的法向和切向向量示意图。
图13为本发明模型构建流程示意图。
图14为本发明模型试样图。
图15为本发明模型蠕变位移与时间关系曲线图。
其中:1—两颗粒的中心距离d,2—岩体细观颗粒间的半接触距离,3—岩体细观颗
粒间的半参考距离gr,4—岩体细观颗粒a的坐标,5—岩体细观颗粒b的坐标,6—岩体细观
颗粒表面接触距离的中心坐标,7—岩体细观颗粒表面接触距离gs,8—岩体细观颗粒间的
单位接触法向量,9—岩体细观颗粒a的半径Ra,10—岩体细观颗粒b的半径Rb,11—岩体细观
颗粒接触点的接触重叠量U,12—代表b(岩体细观颗粒或是边界墙体)的刚度(法向、切向刚
度统称)kb,13—代表a(岩体细观颗粒或是边界墙体)的刚度(法向、切向刚度统称)ka,14-代
表接触点的等效刚度,15-代表总位移增量ΔUi,16-代表初始法向力
增量值,17-代表
初始接触力矢量和,18-代表初始切向力
增量值,19-代表所构建的三维细观时效破裂
模型法向位移增量Δδn,20-代表所构建的三维细观时效破裂模型切向位移增量Δδs,21-代
表细观颗粒平行粘结拉伸强度值
22-代表细观颗粒平行粘结法向刚度
23-代表细
观颗粒接触点的法向刚度Kn,24-代表细观颗粒平行粘结切向刚度
25-代表细观颗粒平
行粘结剪切强度,25.1-代表
为细观颗粒平行粘结的粘聚力强度,25.2-代表细观颗粒平
行粘结的内摩擦角
26代表细观颗粒接触点的切向刚度Ks,27-代表岩体细观颗粒三维线
性接触滑动摩擦系数,28-代表为岩体细观颗粒三维线性接触法向阻尼系数βn,29-代表岩
体细观颗粒三维线性接触切向阻尼系数βs,30-代表为岩体细观颗粒平行粘结直径(或半
径)乘数
31-代表岩体细观颗粒平行粘结直径
32-代表考虑弯扭贡献效应且带拉伸
截止限的摩尔-库伦时效破裂准则,33—第i个接触的包含指数时间效应且考虑扭矩贡献因
子的岩体细观颗粒平行粘结剪应力
34—第i个接触的包含指数时间效应且考虑弯矩
贡献因子的岩体细观颗粒平行粘结正应力
35-代表岩体细观颗粒平行粘结时效衰减
的半径
36-代表岩体细观颗粒平行粘结时效衰减的直径
37-代表岩体细观颗粒平行
粘结未衰减时的直径
38-代表岩体细观颗粒平行粘结未衰减时的半径
39-代表为对
数更新率ln(γ),40-代表岩体细观颗粒平行粘结开始时效劣化衰减时的应力阀值
41-
代表细观颗粒平行粘结拉伸强度
42-代表考虑弯矩贡献因子的平行粘结应力比![]()
43-代表控制指数上标部分变化的岩体内部细观颗粒三维平行粘结时效劣化系数β2,44-代
表细观颗粒平行粘结弯矩方向矢量,45-代表细观颗粒平行粘结扭矩方向矢量,46-代表细
观颗粒平行粘结切向方向的力矢量,47-代表细观颗粒平行粘结法向方向的力矢量,48-代
表细观颗粒平行粘结直径,49-代表细观颗粒平行粘结单位厚度,一般取值为1,50-代表细
观颗粒平行粘结切向ss方向的分量,51-代表细观颗粒平行粘结切向st方向的分量,52-代
表细观颗粒接触面的法向向量nn,53-代表细观颗粒平行粘结接触面。
具体实施方式
以下结合附图和具体实施例对本发明作进一步的详细说明:
本发明所设计的一种考虑弯扭贡献效应的三维时效破裂模型的构建方法,它包括
如下步骤:
步骤1:设定岩体细观颗粒三维平行粘结接触的几何参数量包括平行粘结面积、平
行粘结惯性矩和平行粘结极惯性矩,R(a),R(b)为三维平行粘结接触两端的颗粒半径,考虑粘
结单位厚度为1时的三维平行粘结的面积、粘结单位厚度为1时的三维平行粘结的惯性矩和
粘结单位厚度为1时的三维平行粘结的极惯性矩分别通过公式(2)、公式(3)、公式(4)来确
定:
![]()
![]()
![]()
![]()
其中:
为岩体细观颗粒三维平行粘结半径,
为岩体细观颗粒三维平行粘结直径
乘数,A为岩体细观颗粒三维平行粘结面积,I为岩体细观颗粒三维平行粘结惯性矩,J为细
观颗粒三维平行粘结极惯性矩;
步骤2:利用岩体细观颗粒三维平行粒粘结时效衰减劣化的初始时间步长增量Δ
t,通过三维指数型函数计算岩体细观颗粒平行粘结直径,公式(5)来确定;
![]()
其中:
为判断三维岩体细观颗粒开始时效劣化衰减时的应力阀值,
为三维岩
体细观颗粒平行粘结拉伸强度,
为考虑扭矩贡献因子的三维岩体细观颗粒平行粘结
应力比,
为岩体细观颗粒三维平行粘结应力,β1为控制指数整体变化的岩体内部细观颗
粒三维平行粘结时效劣化系数,β2为控制指数上标部分变化的岩体内部细观颗粒三维平行
粘结时效劣化系数,
为三维岩体细观颗粒三维平行粘结随时间劣化衰减的直径,
为三
维岩体细观颗粒三维平行粘结未衰减时的直径;
步骤3:根据步骤2中的公式(5),设定三维岩体细观颗粒平行粘结直径的指数型时
效衰减因子,见公式(6):
![]()
其中:β为岩体细观颗粒三维平行粘结直径的时效衰减因子,![]()
为三维平行粘结随时间劣化衰减的直径、半径和直径乘数(是指平行粘结直
径与粘结两端最小颗粒直径的比值),![]()
为三维平行粘结未衰减时的直径、半径、直
径乘数;
步骤4:根据步骤1中的公式(1)~公式(4)以及步骤3中的公式(6),
设定岩体细观颗粒三维平行粘结几何参数时效劣化衰减模式。在三维情况下,岩
体细观颗粒三维平行粘结直径随着时间增加而不断劣化衰减,三维平行粘结的面积、惯性
矩和极惯性矩也随着时间增加而不断劣化衰减,分别见公式(7)、公式(8)和公式(9)。
![]()
![]()
![]()
其中:A、I、J分别为岩体细观颗粒三维平行粘结未衰减时的面积、惯性矩、极惯性
矩,
A'、I'、J'分别表示为岩体细观颗粒三维平行粒粘结随时间劣化衰减的半径、面积、
惯性矩、极惯性矩;
步骤5:依次计算第j个至第k个的岩体细观颗粒包含时间效应的三维平行粘结法
向力矩(弯矩)增量和切向力矩(扭矩)增量,在三维情况下,由平行粘结两端颗粒的速度、角
速度和给定的循环计算步Δtc,通过以下公式(10)、公式(11)、公式(12)和公式(13),确定
平行粘结法向增量位移
平行粘结切向st方向的增量位移
平行粘结切向ss方
向的增量位移
确定平行粘结法向相对转角
平行粘结切向ss方向的相对转角
平行粘结切向st方向的相对转角
ss和st为同一平面上相互垂直的两个方向
的代号,再结合步骤4中的公式(8)和公式(9)以及步骤3中的公式(6),可确定平行粘结切向
st方向的扭矩增量、切向ss方向的扭矩增量以及平行粘结法向弯矩增量,见公式(14)、公式
(15)以及公式(16);
![]()
![]()
![]()
![]()
![]()
![]()
![]()
其中:ff、j、k是自然数,且2≤j≤ff≤k,j为每次循环计算中包含时间效应的岩体
细观颗粒平行粘结衰减后未破裂的初始标号值,ff为中间某一个标号值,k为每次循环计算
中包含时间效应的岩体细观颗粒平行粘结衰减后未破裂的最末标号值,
分别为
第i个岩体细观颗粒接触的a端和b端的绝对运动速度,
分别为第i个岩体细观颗粒
接触的a端和b端的角速度,nn、nss、nst分别为细观颗粒接触面的法向单位向量、切向ss方向
的单位向量、切向st方向的单位向量,
分别为细观颗粒平行粘结法向
的位移增量、切向ss方向的位移增量、切向st方向的位移增量,I、J分别为岩体细观颗粒三
维平行粘结未衰减时惯性矩、极惯性矩,
为平行粘结法向刚度,
为平行粘结切向刚度,
分别为平行粘结切向ss方向的扭矩增量值、切向st方向的扭矩增量值,![]()
为平行粘结法向弯矩增量值,弯矩和扭矩按右手螺旋法则,确定其矢量方向,β为岩体细观
颗粒三维平行粘结直径的时效衰减因子,Δtc为平行粘结两端颗粒的循环计算步;
步骤6:根据步骤4中的公式(7)~公式(9)、步骤5中的公式(10)~公式(13)以及步
骤3中的公式(6),依次更新计算第j个至第k个岩体细观颗粒未破裂并包含时间效应的三维
平行粘结法向力、切向力、法向弯矩、切向扭矩,通过如下公式(17)、公式(20)、公式(23)、公
式(24)计算第i个岩体细观颗粒接触的平行粘结法向力、切向力、法向弯矩、切向扭矩;
第i个岩体细观颗粒接触的平行粘结法向力为:
![]()
第i个岩体细观颗粒接触的平行粘结切向ss方向力为:
![]()
第i个岩体细观颗粒接触的平行粘结切向st方向力为:
![]()
第i个岩体细观颗粒接触的平行粘结切向合力为:
![]()
第i个岩体细观颗粒接触的平行粘结切向ss方向扭矩为:
![]()
第i个岩体细观颗粒接触的平行粘结切向st方向扭矩为:
![]()
第i个岩体细观颗粒接触的平行粘结法向弯矩为:
![]()
第i个岩体细观颗粒接触的平行粘结切向合扭矩为:
![]()
其中:
分别为第i
个细观颗粒接触的三维平行粘结法向力、切向ss方向力、切向st方向力、三维平行粘结法向
弯矩和平行粘结切向ss方向扭矩、切向st方向扭矩、三维平行粘结法向位移增量、切向ss方
向位移增量、切向st方向位移增量,+=为加法自反运算符,-=为减法自反运算符,
为平
行粘结法向刚度,
为平行粘结切向刚度,β为岩体细观颗粒三维平行粘结直径的时效衰减
因子,A、I、J分别为岩体细观颗粒三维平行粘结未衰减时的面积、惯性矩、极惯性矩,
为
平行粘结法向相对转角、
为平行粘结切向ss方向的相对转角、
为平行粘结切向
st方向的相对转角,ff为每次循环计算中包含时间效应的岩体细观颗粒平行粘结衰减后未
破裂的标号;
步骤7:考虑扭矩对岩体细观颗粒三维平行粘结正应力的贡献程度,在三维平行粘
结正应力计算公式中设置扭矩贡献因子![]()
考虑弯矩对岩体细观颗粒三维平行
粘结剪应力的贡献程度,在三维平行粘结剪应力计算公式中,设置弯矩贡献因子![]()
根据三维平行粘结正应力公式
和三维平行粘结剪应力公式
同时将这两个公式中A、I、J以及
用A'、I'、J'及
替换,然后将步骤4
中的公式(7)~公式(9)以及步骤3中的公式(6)代入,可获得包含指数型时间效应且考虑弯
扭贡献效应的三维平行粘结法向正应力和三维平行粘结剪应力计算公式,分别见公式(25)
和公式(26);
![]()
![]()
步骤8:将步骤7中包含指数型时间效应且考虑弯扭贡献效应的
代入公
式(27),可确定包含指数型时间效应和弯扭贡献效应且带拉伸截止限的摩尔库伦平行粘结
时效破裂准则,用于判断岩体细观颗粒三维平行粘结是否破裂以及确定破裂模式(拉伸破
裂模式或剪切破裂模式),在该准则的岩体细观颗粒三维平行粘结应力中包含了指数型时
间效应和弯扭贡献效应;
![]()
其中:fs为摩尔-库伦细观颗粒三维粘结剪切时效破裂准则,fn为摩尔-库伦细观颗
粒三维粘结拉伸时效破裂准则,
为第i个接触的含指数型时间效应且考虑弯矩贡献因
子的三维平行粘结剪应力,
为第i个接触的含指数型时间效应且考虑扭矩贡献因子的
三维平行粘结正应力,fs表示岩体细观颗粒三维平行粘结剪切破裂准则,fs大于等于0表示
三维平行粘结剪切破裂,小于0表示三维平行粘结未发生剪切破裂;fn大于等于0表示三维
平行粘结拉伸破裂,小于0表示三维平行粘结未发生拉伸破裂;
步骤9:如果步骤8的公式(27)中的fs或fn大于等于0,表明三维粘结发生了破裂,此
后岩体细观颗粒的空间运动模式采用考虑阻尼效应的三维线性接触模型来表达;如果步骤
8的公式(27)中的fs和fn都小于0,表明三维粘结未破裂,继续循环步骤2至8,计算、更新、判
断岩体细观颗粒接触的三维粘结状态,直至岩体不产生新的三维粘结破裂或者三维粘结破
裂加速发展而形成宏观破坏(通过监测岩体宏观变形或应变,观测该值是否加速来判断),
循环终止。
上述技术方案的步骤2中,所述岩体细观颗粒三维平行粒粘结时效衰减劣化的初
始时间步长增量Δt的确定,是采用考虑弯扭贡献效应的三维粘结时效劣化衰减的指数型
模式,由每个时间步内的三维粘结首次衰减破裂所损耗的时间来确定,也即通过第一个三
维粘结按指数型模式进行衰减破裂所历时的时间除以直至第一个三维粘结破裂所需要的
计算循环次数来估算初始时间步长,见公式
![]()
其中,nc为第一个三维粘结破裂所需的循环计算次数,![]()
为
第i个接触的三维粘结直径乘数,
为判断三维岩体细观颗粒开始时效劣化衰减时的应力
阀值,
为三维岩体细观颗粒平行粘结拉伸强度,
为考虑扭矩贡献因子的三维岩体细
观颗粒平行粘结应力比,
为岩体细观颗粒三维粘结应力,β1为控制指数整体变化的岩体内
部细观颗粒三维平行粘结时效劣化系数,β2为控制指数上标部分变化的岩体内部细观颗粒
三维平行粘结时效劣化系数,
为三维岩体细观颗粒三维平行粘结随时间劣化衰减的直
径,
为三维岩体细观颗粒三维平行粘结未衰减时的直径,βσ为对应拉伸强度状态下的三
维粘结时效劣化因子,βτ为对应剪切强度状态下的三维粘结时效劣化因子。
上述技术方案中,所述βσ为对应拉伸强度状态下的三维粘结时效劣化因子,βτ为对
应剪切强度状态下的三维粘结时效劣化因子的确定包括如下步骤,其中,这些步骤中包含
的公式下标1代表第一个按指数型模式进行时效衰减劣化的三维粘结破裂标号;
步骤1000:由岩体细观颗粒三维粘结两端颗粒的速度、角速度差和给定的循环计
算步Δtc,通过公式
确定三维粘结接触的法向相对转角
通过
公式
确定三维粘结切向ss方向的相对转角
通过公式
确定三维粘结切向st方向的相对转角
通过公式
确定三维粘结法向增量位移
通过公式![]()
确定三维粘结切向ss方向的增量位移
通过公式
确定三
维粘结切向st方向的增量位移
通过公式
确定三维粘结接触的
弯矩增量,通过公式
确定三维粘结切向st方向的扭矩增量,通过公式
确定三维粘结切向ss方向的扭矩增量。
步骤1001:根据步骤1000中的公式
通过公式
确定三维粘结法向力;根据步骤1000中的公式![]()
和公式
通过公式
和![]()
确定三维粘结切向st方向力、切向ss方向力,并通过
确定三维粘
结切向合力;根据步骤1000中的公式
和公式
通
过公式
确定三维粘结法向弯矩;根据步骤1000中的公式
和公式
以及
和公式
通过公式
和公式
确定三维粘结切向st方向扭矩、切向ss
方向扭矩,并通过
确定三维粘结切向合扭矩。式中,+=为加
法自反运算符,-=为减法自反运算符。
步骤1002:通过公式
确定三维粘结法向正应力,通过
公式
确定三维粘结剪应力,将这两个公式中A、I、J以及
用A'、
I'、J'及
替换,然后将步骤4中的公式(7)~公式(9)以及步骤3中的公式(6)代入,可获得
包含指数型时间效应和弯扭贡献效应的三维粘结法向正应力计算公式![]()
和三维粘结切向剪应力计算公式![]()
步骤1003:将
代入公式
并令β=βσ;
将
代入公式
并令β=βτ,据此,可分别由公式
![]()
根据牛顿迭代
法或斯蒂芬森加速迭代方法或二等法求解这两个方程,可分别得到对应拉伸强度状态下的
三维粘结时效劣化因子βσ,以及对应剪切强度状态下的三维粘结时效劣化因子βτ。
上述技术方案中,所述的岩体细观颗粒三维粘结发生破裂后,岩体细观颗粒的空
间运动模式采用考虑阻尼效应的三维线性接触模型来表达,用于描述岩体时效破裂后细观
颗粒的三维应力和三维变形及空间运动规律。考虑阻尼效应的三维线性接触模型的构建包
括如下步骤。
步骤2000:通过Monte Carlo搜索算法,遍历寻找岩体细观颗粒每个线性接触端a、
二维线性接触端b(颗粒与颗粒、颗粒与墙)的中心坐标,在三维情况下,通过公式(28)计算
两者中心距离:
![]()
其中:d为三维线性接触两端颗粒与颗粒或者颗粒与墙之间的中心距离,
为三维线性接触端a的坐标,
为三维线性接触端b的坐标;
步骤2001:在所构建的三维细观时效破裂模型中,岩体中颗粒间每个接触点的单
位向量通过公式(29)计算,如果是颗粒与颗粒之间的接触,则利用步骤2000中得到的三维
线性接触两端的中心点坐标(其中三维线性接触端a的坐标
三维线性接触端
b的坐标
)及中心距离d计算岩体中颗粒间每个接触点的单位向量;如果是颗粒
与墙接触,直接利用墙体的法向量等效替换来计算,确定每个接触点的单位向量:
![]()
其中:ni为三维线性接触的单位矢量,
为三维线性接触端b的方向向量,
为三
维线性接触端a的方向向量,nwall为约束墙的方向向量;
步骤2002:在所构建的三维细观时效破裂模型中,岩体破裂后,每一个接触点的接
触重叠量U,通过步骤2000计算的三维线性接触两端颗粒与颗粒或者颗粒与墙之间的中心
距离d,以及三维线性接触两端(a端、b端)的颗粒半径Ra、Rb,再利用公式(30)来确定;通过设
定颗粒三维线性接触参考距离gr,并结合公式(31),确定颗粒三维线性接触的距离gs:
![]()
gs=|U|-gr (31)
步骤2003:在所构建的三维细观时效破裂模型中,确定岩体中细观颗粒三维线性
接触点法向、切向等效刚度,可利用接触两端颗粒实体或是墙体的刚度ka,kb等效代替为接
触点的法向刚度和切向刚度,按公式(32)计算:
![]()
其中:Kn、Ks为等效的法向刚度和切向刚度,
为颗粒与颗粒或者颗粒与墙
的接触a端的法向刚度和切向刚度,
为颗粒与颗粒或者颗粒与墙的接触b端的法向
刚度和切向刚度;
步骤2004:在所构建的三维细观时效破裂模型中,确定岩体中接触两端颗粒间的
相对运动速度,可利用公式(33)、公式(34)来计算,其中epqz为Ricci指标置换符号,按照公
式(35)来计算:
![]()
![]()
![]()
其中:Vp与Vq等价,Vp与Vq为岩体中细观颗粒三维线性接触两端颗粒间的相对运动
速度,p、q为指标等价符号,p=1,q=1表示颗粒与颗粒接触,p=2,q=2时表示颗粒与墙接
触,
为颗粒与颗粒或是颗粒与墙的接触b端单元的速度,
为颗粒
与颗粒或是颗粒与墙的接触a端单元的速度,
为颗粒与颗粒或是颗粒与墙的接触
a端单元的角速度,
为颗粒与颗粒或是颗粒与墙的接触b端单元的角速度,
为
颗粒与颗粒或是颗粒与墙的接触a端的位移,
为颗粒与颗粒或是颗粒与墙的接触b端的
位移,
为位移指标变换的中间过渡符号,
表示指标符号为p时颗粒-颗粒或者颗粒-墙
的接触a端的速度,
表示指标符号为q时颗粒-颗粒或者颗粒-墙的接触a端的速度,
表
示指标符号为p时颗粒-颗粒或者颗粒-墙的接触b端的速度,
表示指标符号为q时颗粒-
颗粒或者颗粒-墙的接触b端的速度(只有a端和b端两个接触端);
步骤2005:在所构建的三维细观时效破裂模型中,对于时间步长Δt的取值,可以
通过公式(38)得到最小的时间步长Δt,确保所构建模型的计算时间步长小于该值,即可保
证系统积分计算趋于稳定,通过公式(39)、公式(40)、公式(42)、公式(43)确定每个线性接
触的总位移增量、法向位移增量和切向位移增量:
R=min(Ra,Rb) (36)
![]()
![]()
ΔUp1=Vp1Δt (39)
![]()
![]()
Δδss=Δδsnss (42)
Δδst=Δδsnst (43)
其中:m为岩体细观颗粒质量,J1为岩体细观颗粒的转动惯量;k平为岩体细观颗粒
系统平移刚度,k转为岩体细观颗粒系统旋转刚度;ΔUp1为岩体细观颗粒三维线性接触的总
位移增量,Δδn、
为岩体细观颗粒三维线性接触的法向位移增量,Δδs、
为岩体细
观颗粒三维线性接触的切向位移增量,Vp1与Vq1为岩体细观颗粒接触两端的相对运动速度,
n为单位法向量,Δδss、Δδst为切向位移Δδs在ss方向、st方向的分量,三者之间的关系为:
nss、nst为岩体细观颗粒三维线性接触面的切向ss方向、st
方向的单位向量,p1,q1为张量指标变换符号。
步骤2006:在所构建的三维细观时效破裂模型中,可由公式(31)判定岩体中颗粒
表面接触允许存在的最大距离,通过公式(44)计算法向和切向位移更新因子,另外,岩体细
观颗粒三维线性接触法向位移增量的更新是采用前一步的法向位移增量与更新因子α的乘
积获得,岩体细观颗粒三维线性接触切向位移增量ss方向分量的更新是采用前一步的切向
位移增量ss方向分量与更新因子α的乘积获得,岩体细观颗粒三维线性接触切向位移增量
st方向分量的更新是采用前一步的切向位移增量st方向分量与更新因子α的乘积获得:
![]()
其中:(gs)0为模型计算初始时刻的表面接触距离,gs为岩体细观颗粒接触的距离,
α为位移更新因子;
步骤2007:在所构建的三维细观时效破裂模型中,三维法向线性力的更新采取了
相对矢量累加(Ml=1)和绝对矢量累加(Ml=0)模式,通过公式(45)计算,而切向线性力的更
新采用了三维接触滑动来表示,通过公式(48)、公式(49)计算;
![]()
![]()
![]()
![]()
![]()
其中:kn、ks为三维线性接触法向线性刚度、切向线性刚度,gs为模型颗粒在一定荷
载下的表面接触距离,Δδn和Δδs分别为三维线性接触法向位移增量和切向位移增量,![]()
为三维线性接触的法向接触力,
为初始法向力增量值和切向力增量值,
为三
维线性接触的切向接触力,
为三维线性接触切向线性力在st方向、ss方向的分量,
三者之间的关系为:![]()
为岩体细观颗粒未滑动时的静摩擦力,
为颗粒滑动摩擦力,通过摩擦系数μ与
乘积得到,Δδst、Δδss分别为三维线性接触切
向增量Δδs在st方向位移增量和ss方向位移增量,Δδs、Δδst、Δδss三者之间的关系为:
![]()
步骤2008:在所构建的三维细观时效破裂模型中,法向阻尼力采用全法向模式Md
={0,2}和无拉伸模式Md={1,3}两种,通过公式(50)、公式(51)计算;切向阻尼力采用全剪
切模式Md={0,1}和滑剪模式Md={2,3},按照公式(52)、公式(53)来计算;
![]()
![]()
![]()
![]()
其中:
分别为三维线性接触的法向和切向阻尼力,βn为三维线性接触的
法向阻尼系数、βs为三维线性接触的切向阻尼系数,kn为三维线性接触的法向线性刚度、ks
为三维线性接触的切向线性刚度,
分别为三维线性接触的法向速率和三维线性接
触的切向速率,mc为等效颗粒质量,m(1)为颗粒与颗粒之间的第一接触端的颗粒质量,m(2)为
颗粒与颗粒之间的第二接触端的颗粒质量,Fd为三维线性接触的总阻尼力,
分别
为三维线性接触切向阻尼在ss方向、st方向的分量,三者之间的关系为:
![]()
为三维线性接触的法向接触力,![]()
表示
三维线性接触切向ss方向的速率,
表示三维线性接触切向st方向的速率,
三者之间的关系为:![]()
一种利用上述方法建立的考虑弯扭贡献效应的三维时效破裂模型,所述三维时效
破裂模型包括考虑弯扭贡献效应的岩体细观颗粒三维平行粘结应力模式、考虑弯扭耦合效
应的岩体细观颗粒三维平行粘结时效劣化衰减指数型模式、考虑弯扭耦合效应且带拉伸截
止限的摩尔库伦细观颗粒平行粘结时效破裂准则和考虑阻尼效应的细观颗粒三维线性接
触模型。
上述技术方案中,所述考虑弯扭贡献效应的三维时效破裂模型适用于三维颗粒离
散元分析方法、三维颗粒不连续变形分析方法和三维颗粒流形元分析方法。
上述技术方案中,考虑扭矩对岩体细观颗粒三维平行粘结正应力的贡献程度,所
述的考虑弯扭贡献效应的岩体细观颗粒三维平行粘结应力模式为岩体细观颗粒三维平行
粘结正应力计算公式
中设置了扭矩贡献因子![]()
考虑弯矩对岩体细观颗粒三维平行粘结剪应力的贡献程度,在考虑弯扭贡献效应
的岩体细观颗粒三维平行粘结应力模式中的岩体细观颗粒三维平行粘结剪应力计算公式
中设置了弯矩贡献因子![]()
在上述
和
的计算公式中,
为岩体细观颗粒三维平行粘结半径,
为用于确
定扭矩在应力中的贡献程度的扭矩贡献因子,![]()
为用于确定弯矩在应力中的贡
献程度的弯矩贡献因子,
I为岩体细观颗粒三维平行粘结的惯性矩,J为岩体细观
颗粒三维平行粘结的极惯性矩,A为岩体细观颗粒三维平行粘结面积;
为第i个岩体细观颗粒三维平行粘结的正应力,
为第i个岩体细观颗粒三维平
行粘结的剪应力,
分别为第i个接触的岩体细观颗粒三维平行粘结法
向力、切向合力、切向合扭矩和法向弯矩,其中,
+=符号为加法自反运算符,
其中,式中,
为岩体细观颗粒三维平行粘结法向的位移增量,
为岩体细观颗粒三维
平行粘结法向刚度,A为岩体细观颗粒三维平行粘结面积,
式中,
分别为岩体细观颗粒三维平行粘结切向ss方向力、切向st方向力,其中,ss和st
为同一平面上相互垂直的两个方向的代号;
式中,
分别
为岩体细观颗粒三维平行粘结切向ss方向扭矩、切向st方向扭矩;
-=符号
为减法自反运算符,式中,
为岩体细观颗粒三维平行粘结法向的相对转角增量,
为
岩体细观颗粒三维平行粘结切向刚度。
上述技术方案中,所述考虑弯扭耦合效应的岩体细观颗粒三维平行粘结时效劣化
衰减指数型模式,包括在岩体细观颗粒平行粘结时效劣化衰减时,设置了指数型与考虑弯
扭贡献因子的平行粘结应力相关的岩体细观颗粒三维平行粘结劣化衰减模式,见指数型更
新率
式中,
为判断岩体细观颗粒三维平行粘结
开始时效劣化衰减时的应力阀值,
为岩体细观颗粒三维平行粘结拉伸强度,
为考虑
弯扭贡献因子的三维平行粘结应力比,β1为控制指数整体变化的岩体内部细观颗粒三维平
行粘结时效劣化系数,β2为控制指数上标部分变化的岩体内部细观颗粒三维平行粘结时效
劣化系数,
为岩体细观颗粒三维平行粘结应力,e为自然对数的底数;
在考虑弯扭耦合效应的岩体细观颗粒三维平行粘结时效劣化衰减指数型模式中
设置了三维平行粘结直径随时间逐步劣化衰减并且与考虑弯扭贡献因子的平行粘结应力
相关的指数型模式,见三维平行粘结直径公式![]()
式中,
为岩体细观颗粒三维平行粘结随时间劣化衰减的直径,
为岩体细观颗粒三维平
行粘结未衰减时的直径,Δt为岩体细观颗粒三维平行粘结时效衰减劣化的时间增量;
考虑弯扭耦合效应的岩体细观颗粒三维平行粘结时效劣化衰减指数型模式中设
置了岩体细观颗粒三维平行粘结面积、惯性矩和极惯性矩的时效劣化衰减模式,分别见粘
结单位厚度为1时的三维平行粘结面积计算公式
粘结单位厚度为1时的三
维平行粘结惯性矩计算公式
粘结单位厚度为1时的三维平行粘结极惯性矩
计算公式
其中,β为岩体细观颗粒三维平行粘结直径的时效衰减因子,其
计算公式见
其中,
A'、I'、J、
分别表示为岩体细观颗粒三维平行粘结随时间劣化衰减的粘结直径、
粘结半径、粘结面积、粘结惯性矩、粘结极惯性矩和直径乘数,![]()
A、I、J、
为岩
体细观颗粒三维平行粘结未衰减时的粘结直径、粘结半径、粘结面积、粘结惯性矩、粘结极
惯性矩和粘结直径乘数,同时按照这种三维指数型时效劣化衰减模式得到岩体细观颗粒平
行粘结破裂的初始时间步长,见公式![]()
其中,![]()
为第i个接触的岩体细观颗粒三维平行粘结直径乘数,nc为第
一个岩体细观颗粒三维平行粘结破裂所需的循环计算的次数,βσ、βτ分别为岩体细观颗粒三
维平行粘结拉伸强度状态下的时效劣化因子和三维平行粘结剪切强度状态下的时效劣化
因子,e为自然对数的底数,∞为无穷大;岩体细观颗粒三维平行粘结拉伸强度状态下的时
效劣化因子βσ和岩体细观颗粒三维平行粘结剪切强度状态下的时效劣化因子βτ可分别由公
式:
和![]()
根据迭代法(牛顿迭代法或斯蒂芬森加速迭代方法)
或二等法求解这两个方程获得,其中,
为岩体细观颗粒三维平行粘结结拉伸强度,
为岩
体细观颗粒三维平行粘结的粘聚力,
为岩体细观颗粒三维平行粘结的内摩擦角,Fσ为βσ的
函数,Fτ为βτ的函数,π为圆周率。
上述技术方案中,所述的考虑弯扭耦合效应且带拉伸截止限的摩尔库伦细观颗粒
平行粘结时效破裂准则是指在判断岩体细观颗粒三维平行粘结时效破裂时,采用所嵌入的
考虑弯扭贡献效应且带拉伸截止限的摩尔库伦时效破裂准则来判断,见公式
![]()
其中,fs为摩尔-库伦细观颗粒三维粘结剪切时效破裂准则,fn为摩尔-库伦细观颗
粒三维粘结拉伸时效破裂准则,
分别为岩体细观颗粒三维平行粘结拉伸强度、抗
剪强度,
为第i个接触的含指数型时间效应且考虑弯矩贡献因子的岩体细观颗粒三维
平行粘结正应力,计算公式为![]()
为第i个接触的含指数
型时间效应且考虑扭矩贡献因子的岩体细观颗粒三维平行粘结剪应力,计算公式为
在该准则的三维平行粘结应力中包含了指数型时间效应,
见岩体细观颗粒三维平行粘结直径的时效衰减因子计算公式
fs大于等于0表示岩体细观颗粒三维
平行粘结剪切破裂,fs小于0表示岩体细观颗粒三维平行粘结未发生剪切破裂;fn大于等于0
表示岩体细观颗粒三维平行粘结拉伸破裂,fn小于0表示岩体细观颗粒三维平行粘结未发
生拉伸破裂。
上述技术方案中,所述考虑阻尼效应的岩体细观颗粒三维线性接触模型是指岩体
在时效破裂后,通过三维接触参考距离gr设定了岩体内部细观颗粒空间接触距离,考虑阻
尼效应的岩体细观颗粒三维线性接触模型为岩体内部细观颗粒空间接触距计算公式
其中,
为接触端a
的坐标,
为接触端b的坐标,Ra、Rb分别为岩体内部细观接触端a的颗粒半径和
接触端b的颗粒半径;
考虑阻尼效应的细观颗粒三维线性接触模型中设置了考虑岩体内部细观颗粒空
间变形的三维线性接触模式,在岩体内部细观颗粒之间设置了考虑三向滑动摩擦面力的耦
合作用模式,岩体内部细观颗粒空间变形的线性三维接触法向线性力计算公式为
取Ml=1为相对矢量累加模式,取Ml=0为绝对矢量累
加模式,岩体内部细观颗粒空间变形的三维线性接触切向线性力计算公式为
和
其中,![]()
kn、ks为岩体内部细观颗粒空间变形的三维线性接触法向、切向线性刚度,
Δδn为岩体内部颗粒三维线性接触的法向位移增量,
为岩体内部颗粒三维线性
接触的初始法向力增量值和切向力增量值,
为切向线性力在岩体内部细观颗粒三
维线性接触切向ss方向和岩体内部细观颗粒三维线性接触切向st方向的分量,ss和st为同
一平面上相互垂直的两个方向的代号,
为颗粒滑动摩擦力,通过摩擦系数μ与
乘积得
到,
为颗粒未滑动时的静摩擦力,Δδst、Δδss分别为岩体内部细观颗粒三维线性接触切
向ss方向的位移增量和岩体内部细观颗粒三维线性接触切向st方向的位移增量;
考虑阻尼效应的细观颗粒三维线性接触模型中同时设置三维接触的空间阻尼模
式,其中法向阻尼采用全法向模式Md={0,2}和无拉伸模式Md={1,3}两种,通过公式
计算,其中,F*为岩体内部颗粒三维线性接触的
全法向阻尼力,表达式为![]()
为岩体内部细观颗粒空间变形的三维线性
接触法向线性力,mc为等效颗粒质量,按公式
计算;
切向阻尼采用全剪切模式Md={0,1}以及滑动和剪切模式Md={2,3},根据
公式![]()
公式![]()
进行计算,其中,
为三维线性接触切向ss方向的速率,ss为三维线性接触局部坐
标系中的ss方向,
为三维线性接触切向st方向的速率,st为三维线性接触局部坐标系中
的st方向,st方向与ss方向相互垂直,
为岩体内部颗粒三维线性接触的法向阻尼力,βn为
岩体内部颗粒三维线性接触的法向阻尼系数、βs为岩体内部颗粒三维线性接触的切向阻尼
系数,kn为岩体内部颗粒三维线性接触的法向线性刚度、ks为岩体内部颗粒三维线性接触的
切向线性刚度,
为岩体内部颗粒三维线性接触的法向速率,
为
与
的合速率,
称为三维线性接触的切向速率,三者之间的关系为:
mc为等效颗粒质
量,m(1)为岩体内部颗粒与颗粒接触的第一接触端的颗粒质量,m(2)为岩体内部颗粒与颗粒
接触的第二接触端的颗粒质量,Fd为总阻尼力,
为三维线性接触的法向阻尼力,
为三
维线性接触的切向阻尼力,Fd为
的合力,称为三维线性接触总阻尼力,三者关系
为:
),
为切向阻尼在岩体内部细观颗粒三维线性接触切向ss
方向和岩体内部细观颗粒三维线性接触切向st方向的分量。
下面以深部岩体为实例,结合附图详述本发明模型的数值实现的具体过程,请参
阅实例附图说明中的附图,来理解本发明模型的数值实现步骤及效果:
步骤1、采用C++编程语言,并结合fish语言,根据本发明的模型结构构建流程图
(图13),在数值平台上实现了岩体三维细观时效破裂模型;
步骤2、初步确定岩体时效破裂模型的细观参数
粒径比Rratio、线性接触法向刚度kn(图6)、线性接触切向刚度ks(图6)、颗粒密度
ba_rho、颗粒接触模量b_Ec、平行粘结法向刚度pb_kn(图6)、平行粘结切向刚度pb_ks(图
6)、平行粘结模型pb_Ec、颗粒的摩擦系数ba_fric、粘结拉伸强度的平均值pb_sn_mean、粘
结拉伸强度的标准差pb_sn_sdev、粘聚力平均值pb_coh_mean、粘聚力标准差pb_coh_sdev、
平行粘结半径乘数gamma(图7)、平行粘结弯矩贡献因子beta_sigma、平行粘结扭矩贡献因
子beta_shear、法向阻尼系数Apfan(图6)、切向阻尼系数Apfas(图6)以及内摩擦角pb_phi
(图8)等19个参数,参数具体值见表一;
步骤3、生成岩体模型
根据高斯分布或weibull分布确定模型的法向粘结强度和切向粘聚力分布,通过
均匀随机函数分布法确定颗粒的粒径分布;通过各向同性应力调整法及自适应动态膨胀
法,调整颗粒的位置,减少颗粒重叠量;通过悬浮颗粒删除法,删除孤立颗粒,提高模型样本
的整体性,减少缺陷模型的生成。最后赋予模型材料粘结强度参数,生成具有真实岩体结构
的岩体结构图模型。岩体模型的直径为50mm、高度为100mm(图14);
步骤4、精确标定本发明中模型的细观物理力学参数
通过室内单轴和三轴压缩试验得到的应力-应变曲线,确定岩石的宏观弹性模量
峰值强度σp,以及泊松比
通过优化方法,使岩体单、三轴压缩模型的应力-
应变曲线与室内试验的应力-应变以及宏观变形参数和强度参数吻合,获得本发明所构建
模型的细观物理力学参数;
步骤5、岩体时效力学参数标定
岩体时效力学参数标定对岩体进行一系列不同应力强度比条件下的时效力学试
验,得到不同应力强度比条件下岩体变形随时间演化的曲线。通过参数拟合法,匹配实际岩
体的时效变形过程,确定控制指数整体变化的岩体内部细观颗粒三维平行粘结时效劣化系
数β1,以及控制指数上标部分变化的岩体内部细观颗粒三维平行粘结时效劣化系数β2;
步骤6、岩体时效力学数值试验
在荷载一定的条件下,分别设定不同的弯矩贡献因子和扭矩贡献因子,进行岩体
三维细观时效力学数值模拟试验,获得了岩体时效变形和破坏的影响规律(图15)。
表一:本发明模型的参数名称及值
![]()
![]()
本说明书未作详细描述的内容属于本领域专业技术人员公知的现有技术。