信息记录介质和用于制造 该信息记录介质的方法 【技术领域】
本发明涉及一种制造信息记录介质的方法,特别涉及一种使用光盘的信息记录介质的制造方法。背景技术
通过激光照射的方法在薄膜(记录膜)上记录信息的原理是众所周知的,利用激光照射产生原子排列改变的技术也是公知的,如薄膜材料的相变或相位变换。由于上述相变所伴随的薄膜变形非常小,有利于将两张盘直接粘合在一起,从而形成具有双面盘结构的信息记录介质。
通常,这些信息记录介质包括在基底上的例如保护层、诸如GeSbTe之类的记录层、保护层和反射层。
然而,在可重写的相变光盘中,如DVD-RAM,由于保护层渗透进记录层,结晶作用差,不能实现最佳结晶率,或者,结晶过程发生太早,非晶状态转换不充分,从而使重写后反射率波动。由此,需要在保护层和记录膜之间设置具有良好热稳定性地中间层,以防止保护层向记录薄膜的渗透。例如,由氧化物或氮化物构成的中间层被设置为与记录膜相接触(Prevention of protectivelayer counter-diffusion between recording films In phase-change opticaldisks by oxide Interface layer;Yasushi Miyauchi,Motoyasu Terao,AkemiHirotsune,Makoto Miyamoto,Nobuhiro Tokuyado:Japan Society of Appliedphysics Lectures,Vol.3,p.29-ZK-12(Spring,1998),1127)。与双面(ZnS)80-(SiO2)20保护层的情况相比,结晶核生长速度和晶体生长速度很快,结晶过程迅速。此外,通过在中间层中采用氮化物,记录薄膜材料的扩散被抑制,从而使结晶率最优化。(Phase-change optical disks with nitrides on both sidesof the recording film,Mayumi Otoba,Noboru Yamada,Hiroyuki Ota,KatsumiKawahara,Japan Society of Applied physics Lectures,p.29-ZK-13(pring,1998),1128)和N.Yamada,M.Otoba,K.Kawagara,N.Miyagawa,H.Ota,N.Akahira和T.Matsunaga:Phase-change optical diskhaving a nitride Interface layer:Jpn.J.Appl.Phys.Part 1,37(1998)2104。为了实现多次重写,必须防止向记录薄膜的扩散,如Zn、S从上面和下面的ZnS-SiO2保护层到记录薄膜的扩散。为此,需要设置中间层。
在JP平5-144083中,设置在记录薄膜的上侧和下侧的中间层,使用了如TaO,CrO和MnO作为中间层。此外,在JP平6-124481、JP平10-21582和JP平8-287516中,TaO和其它化合物(如ZnS、TaS)被设置为与记录薄膜相接触的层。
例如,在JP平5-144083中,中间层的厚度是3nm、150nm,第一保护层的厚度是150nm,(中间层厚度)/(中间层厚度+第一保护层厚度)是3/(150+3)=0.02。
在本说明书中,术语“相变”不仅用于描述结晶状态和非晶状态之间的相位变化,还用于描述在如溶化(变为液相)和再结晶时的相位变化,和结晶状态间的相位变化。标记边缘记录是一种记录方法,其中,边缘的记录信号被设为“1”,标记和标记内部之间的部分被设为“0”。在下面的描述中,光盘表示一种通过光线照射而在其上记录信息的盘,和/或一种通过光线照射而重现其上的信息的盘。发明内容
然而,在具有良好热稳定性的中间层材料中,溅射率很低。这使得整个制造过程速度减慢。并且,使用具有良好热稳定性的中间层的信息记录介质的缺点还在于不适用于大批量生产。
因此,本发明的目的在于提供一种由于使用具有高溅射率的中间层而具有良好热稳定性的信息记录介质,该记录介质还具有良好的记录/重现特性,并适于大批量生产,本发明还提供了一种制造上述信息记录介质的方法。
为了解决上述问题,本发明提供了一种具有下述特性的信息记录介质。特别指出,可以使用具有良好热稳定生和高溅射率的TaO-O中间层。这样,有可能提供一种具有良好的记录/重现特性并适合大批量生产的信息记录介质。过去,用于制造中间层的材料不是溅射率低,就是热稳定性差,不能同时满足上述两个要求。本发明调和了这些方面。
中间层被设置在第一保护层和记录薄膜之间,其与记录层相接触。中间层的厚度是大于或等于第一保护层和中间层厚度之和的0.20而小于或等于第一保护层和中间层厚度之和的0.67,中间层的组成成分中含有钽(Ta)和氧(O)。
由此,可重写率提高,生产率由于中间层的溅射率提高而提高。其中,可重写率是通过对下述重写产生的记录波形的劣化程度的检测而决定的,更明确的说是通过结晶层的反射率(Ic)来确定的。
通过将中间层厚度设定为上述大于或等于第一保护层和中间层厚度之和的0.20而小于或等于第一保护层和中间层厚度之和的0.67,同现有技术相比,生产率提高了大约170%,这一提高很令人满意,但是如果将中间层的厚度设定在大于或等于第一保护层和中间层厚度之和的0.30而小于或等于第一保护层和中间层厚度之和的0.6,生产率将进一步提高,与现有技术相比将达到大约195%或更高,这是十分理想的。
考虑到重写带来的记录波形劣化,我们需要对结晶层的反射率(Ic)变化进行测量。
这里,将对反射率变化的测量方法作一描述。我们只是对组群(groups)的反射率变化的测定作一描述,而该方法也可以用于纹脊。
首先,将需要测定的盘放进检测器内旋转。然后,光头开始接近被测量的轨道。并在该位置自动聚焦,跟踪误差信号(差信号)被通过示波器监控。自动聚焦增益被控制使得在组群(groups)中的跟踪误差信号幅度最大(AF偏移控制)。接下来,在对组群(groups)跟踪时继续自动聚焦。然后,通过根据随机信号而改变激光功率来进行记录操作。出现在对应于3T(最短)标记和间隔的信号包络的中心线和对应于最长标记和间隔的信号包络的中心线之间的差(不对称)的记录功率是+5%,这被认为是最佳记录功率。然后,10次重写(最佳功率)后径向倾斜和抖动数值之间的关系被通过时间间隔分析器(TIA)测定出来,在最小抖动处的径向倾斜被计算出来。换句话说,随径向倾斜变化的抖动被测定出来,找出抖动最小处的径向倾斜,以其作为最佳径向倾斜。接下来,执行跟踪偏移控制。首先,在组群(groups)两侧的纹脊上以最佳功率执行10次重写。而后,组群(groups)中的纹脊的串扰被通过光谱分析仪所测量。跟踪增益被调整到使串扰最小。最好,重新找出最佳径向倾斜,重复跟踪偏移控制。最后,在AF偏移控制后,完成对于组群的跟踪偏移控制和径向倾斜控制,光线移动到轨道上,以测量反射率变化。ID部分(在凹坑中代表地址信息的部分)的重现信号(和信号)位于该轨道左右两侧各半条轨道远的地方,该重现信号被监控,在一条长标记被记录后,反射率,即结晶层(Ic)和非晶层(Ia)的电压被测定出来。此外,10到10000次重写后的反射率被测定出来。
同样,纹脊的反射率也可由此测定。这里,考虑到结晶层和反射率之间的关系,当Ic为85mV时,介质的反射率为15%,所以,Ic最好为85mV。如果介质的反射率低于15%,记录/重现信号的调制程度降低。AF或跟踪不稳定,记录或重现都不能被执行,由此,反射率最好为15%或更高。基于上述原因,甚至在DVD-RAM中,反射率被确定在15%或更高。
接下来,将描述本发明的另一方面。在本发明的其他方面,可以采用下述组成成分。特别指出,中间层被设置在第一保护层和记录薄膜之间,该中间层与记录薄膜相接触,中间层包括钽(Ta)、氧(O)和金属元素(M=Sb,Bi,Al,Ga,In,Si,Ge,Sn,Pb,Zn,Cu,Ag,Ni,Pd,Pt,Co,Rh,Ir,Fe,Ru,Os,Mn,Re,Cr,Mo,W,V,Nb,Ti,Zr,Hf,Sc,Y和La任意之一),Ta在中间层中的含量(原子数%)在3个原子%到28个原子%范围内。由于即使在10000次或更多次重写后反射率没有发生变化,介质对于多次重写是稳定的。
除了钽、氧和上述金属元素外,中间层还可以包含硫磺。换句话说,中间层包括钽(Ta)、氧(O),硫磺(S)和金属元素(M=Bi,Ga,In,Sn, Pb,Zn,Ag,Ni,Co,Fe,Mn,Mo,W,Nb,Zr和Hf任意之一),Ta在中间层中的含量(原子数%)在3个原子%到28个原子%范围内。因此,由于即使在多次重写后反射率也没有发生变化,从而可以完成高稳定性的多次重写。
下面将描述本发明的其它方面。在此方面,中间层设置在第一保护层和记录薄膜之间,中间层与记录薄膜相接触,中间层包括钽(Ta)和氧(O),中间层的消光系数k的绝对值为0.22或更低。这样,对于DVD-RAM来说,有可能满足15%或更高的反射率标准。
本发明特别适用于记录密度(道距、位距)高于4.7GB的DVD-RAM规格的情况。当光源的波长不接近660nm或准直透镜的数值孔径(NA)不是0.6时,本发明可以通过径向和圆周方向上的波长比或NA比将其记录密度进行转换。
本发明使用相变记录介质的记录装置(光盘驱动器)的基本技术如下所述。(1光束重写)
相变记录介质通常通过重写(通过重写没有先擦除的重写信息)来进行重写。其原理如图7所示。如果记录介质在高激光功率下熔化,该介质在照射后快速冷却,不管上一状态是结晶还是非晶,记录标记都将处于非晶状态。如果该介质在中等激光功率下被加热到具有高结晶速度并低于熔点的温度,先前为非晶状态的部分将变为晶体。原先为晶体的部分仍保持为晶体。在DVD-RAM中,经常记录活动图像,并希望在一场内记录长时间的信息。这样,如果先擦除原有数据再执行记录,需要两倍的长度和大容量的缓冲存储器。因此,执行重写是完全必要的。(标记边缘记录)
在DVD-RAM和DVD-RW中,使用允许高密度记录的标记边缘记录。在标记边缘记录中,形成在记录薄膜上的记录标记的两个边缘被制成对应于数字数据的1。因此,还可以通过将最短记录标记设定为不等于一个而等于两个或三个参考时钟而获得高记录密度,在DVD-RAM中,采用8-16调制,其中标记被做成对应于三个参考时钟的情况。由图8对照关系可以看出,与其中圆形记录标记的中心位置被设置为对应于数字数据1的标记位置记录相比,高密度记录可以不通过将记录标记做小而实现。然而,记录介质需要其记录标记的形变很小。(格式)
由图9中所示的每个扇区开始的标题区的位置可以看出,DVD-RAM通过将一个圆周划分为24扇区而被格式化,以完成随机存取记录。由此,如DVD摄影机和DVD录像机之类的广泛的装置都可以被用于个人电脑的内部存储装置。(脊槽记录)
在DVD-RAM中,串扰通过脊-槽记录被降低,在脊-槽记录中,同时执行在轨道纹槽和纹槽间的凸起上的记录。在脊-槽记录中,利用了当纹槽深度接近λ/6n(λ为激光波长,n是基底折射率)时相对于记录标记在对比度(明/暗)上产生的现象,即在纹脊和纹槽相邻的轨道的记录标记难于看见,因比,在4.7GB的DVD-RAM中,轨道节距狭窄到0.615μm。由于记录标记和其他部分之间的相位不同,即重现信号的相位组成不同,从而产生了串扰,因此需要设计以充分抑制串扰。重现信号的相位不同组成被作为相反相位添加到纹脊和纹槽的明/暗重现信号中,并引起纹脊和纹槽的重现信号水平不均衡。(ZCLV记录方法)
在相变记录介质中,如果记录波长不改变,有望在对应于可获得良好记录/重现特性的晶体生长速度的最佳线速度下进行记录。然而,当盘上不同半径的记录轨道之间的区域被访问时,需要花时间改变旋转速度,以获得相同的线速度。因此,在DVD-RAM中,如图11所示,采用ZCLV(分区定线速度)方法,其中盘的半径方向被划分为24区,以使存取速度不会降低。一个区域内的旋转速度保持恒定,旋转速度只在需要存取另一个区域时改变。在这种方法中,线速度在区域的最内侧轨道和最外侧轨道之间只有轻微的不同,因此,记录密度也轻微不同,但可以在整个盘的最高有效密度下执行记录。用于本发明的记录介质的技术如下所述。(吸收控制)
在高线速度(8.2m/s)介质,如4.7GB/面介质中,预擦除(在300℃到550℃的温度下,在记录薄膜的通过光点照射而熔化的区域之前的带形区域中,记录标记被首先擦除),该预擦除在低线速度记录介质,如2.6GB/面DVD-RAM(6m/s),不能充分作用。因此,记录标记的内部和外部的吸收率Ac/Aa必须保持在0.8或更高。通过采用吸收控制,标记边缘位置可以被精确记录。在吸收控制中,采用了这样一种方法,其中反射层被制成较薄,以使在具有低反射率的记录标记中,光线被传输,在记录薄膜中的光吸收不会过多(Noboru Yamada,Nobuo Akahira,Kenichi Nishiuchi,Keisho Furukawa:A high-speedoverwrite phase change optical disk,Japan Society of Electronic andInformation Engineers,Technial Research ReportMR92-71,CPM92-148(1992),37)。为了进行吸收率控制和保持高对比度,反射层采用了Cr或Al,或包含其中之一的合金。该层吸收光线,并传送适当程度的光线,因此,在低反射率的记录标记中穿过记录薄膜的光线被反射层反射,被记录层重新吸收。因此,温度不会上升太多,Ac/Aa被控制为1或更高。
在高密度相变光盘中,由于轨道节距狭窄,需要考虑交叉擦除现象,在该现象中,记录标记的已在相邻轨道上写入的部分被擦除。为了避免上述交叉擦除,热量的横向扩散很重要。一个原因是在横向扩散中热量不容易传输到相邻的轨道。还有,如果Ac/Aa大于1,相邻轨道的记录标记的温度上升很少,这同样可以起到避免交叉擦除的功效。
为了避免交叉擦除,防止再结晶也是很重要的。这是由于,如图12所示,在记录期间在记录薄膜的熔化后外围发生的再结晶中,保持非晶记录标记的部分变得更窄,因此,有必要熔化更宽的区域以形成预定尺寸的记录标记,相邻轨道的温度趋于升高。如果热量横向扩散,将可以避免再结晶。这是由于当记录标记形成时,中心部分的热量横向扩散,从而使围绕熔化区域的冷却被延迟,因而,避免了再结晶的趋势。(第一保护层)
第一保护层是设置在记录薄膜的光入射侧以保护记录薄膜的层状薄膜。考虑到折射率和薄膜厚度,为了保持高光对比度,在660nm重现波长附近,折射率最好为1.5到2.3,薄膜厚度最好为100到150nm。为了获得良好记录灵敏度,该层的热传导率最好至少约为比记录薄膜高一个数字位的数值。甚至在上述限制之外,本实施例的中间层的作用仍然被观察到。(记录波形)
下述关系存在于记录波形和记录标记形状之间。例如,在4.7GBDVD-RAM中,最短标记长度是0.42μm,线速度是8.2m/s。因此,形成一个记录标记的记录脉冲被分成多个脉冲。为了准确形成记录标记,比避免热量产生更重要的是准确加热,如图13所示,记录波形少有或没有较低擦除能量水平。并且,由于已经预先确定,就需要执行形成记录标记的第一脉冲和最后脉冲的宽度的适应性控制(适应性控制:根据间隔的长度和先前标记的长度对形成先前标记的最后脉冲结束的位置和形成下一个标记的第一脉冲开始的位置进行调整)。
高性能技术可概括如下:1、为窄轨道节距脊-槽记录、吸收控制作出贡献的技术2、为窄比特位节距标记边缘记录、ZCLV记录方法、吸收控制、中间层、适应性控制记录波形作出贡献的技术3、为高速1光束重写、记录薄膜组成、吸收控制、中间层作出贡献的技术4、为多次重写作出贡献的技术中间层
一层具有上述的多种作用,每层的功能都以一种复杂的方式相互关联。中间层为窄节距、高速并多次重写作出贡献。因此,层状薄膜的最佳组成和厚度的选择对获取高性能是非常重要的。附图说明
图1是本发明的信息记录介质的剖面示意图。
图2是本发明的信息记录介质和现有技术的信息记录介质的生产率比较。
图3示出了本发明的信息记录介质的中间层的消光系数k和反射率Rc之间的关系。
图4示出了对本发明的信息记录介质10000次重写之后在中间层Ta含量和结晶层反射率之间的关系。
图5示出了对本发明的信息记录介质10000次重写之后在中间层Ta含量和结晶层反射率之间的关系。
图6是用于制造本发明的信息记录介质的溅射装置的一个实施方式的示意图。
图7是用于制造本发明的信息记录介质的溅射装置的另一个实施方式的示意图。
图8是根据现有技术的信息记录介质的剖面示意图。
图9是说明重写原理的示意图。
图10是说明标记位置记录和标记边缘记录的示意图。
图11是说明基底格式的示意图。
图12是基底格式中标题区的局部示意图。
图13是在基底格式中区域排列示意图。
图14是记录薄膜再结晶区域的示意图。
图15是示出记录波形适应性控制和标记长度之间的关系的示意图。优选实施例的详细说明
这里,将详细描述本发明的具体实施方式。(实施例1)(本发明的信息记录介质的组成及其制造方法)
图1是本发明第一实施方式的盘信息记录介质的剖面结构图。该介质根据如下方法制造
首先,准备好聚碳酸酯基底1,该基底具有12cm的直径、0.6mm的厚度、用于以0.615微米轨道节距进行脊-槽记录的轨道纹槽。该基底还具有凹坑系列,该凹坑系列代表在轨道中心偏移的位置处的地址信息,即纹脊和纹槽之间的边界向外延伸的位置。该基底被传送到图6所示的溅射室1,形成厚度为104nm的具有(SiO2)20(ZnS)80的第一保护层2。接下来,它被传送到溅射室2,形成厚度为26nm的具有Ta2O5薄膜的中间层3。应当明确指出,如果第一保护层的厚度是d1,中间层的厚度是d2,那么,d2/(d1+d2)=26/(26+104)=0.20。然后,它被传送到溅射室3,形成厚度为9nm的具有Ge7Sb4Te13薄膜的记录薄膜4,并被传送到溅射室4,在这里形成厚度为40nm的具有(SnO2)80(ZnS)20的第二保护层,再被传送到溅射室5,在这里形成厚度为26nm的具有Cr90O10的吸收控制层,之后再被传送到溅射室6,在这里形成厚度45nm的具有Al99Ti1的反射层。这里,虽然Cr和O的比值略微不等于2∶3,Si和O的比值略微偏移了1∶2,但是这些组成成分被称为Cr2O3和SiO2。其中,略微不同指±20%,因此,组成成分不同于2∶3,其范围处于2∶2.4到2∶3.6。
因此,本发明的信息记录介质由多达6层薄膜组成,薄膜的形成由大规模生产装置完成,该装置具有6个室,用于溅射装置的溅射。
组成成分比值由原子数%或摩尔数%表示。薄膜由磁控溅射装置形成。第一盘部件由此构成。上述溅射装置的一个实施例如图6所示。这里有一个在薄膜形成后用于基底和介质的闸室。基底被传送到溅射室1,在完成第一保护层薄膜形成后,它被传送到溅射室2。接下来,在中间层薄膜形成后,它被传送到溅射室3。在记录薄膜形成后,它被传送到溅射室4,以形成第二保护层,再被传送到溅射室5,以形成吸收控制层,然后传送到溅射室6,以形成反射层。最后,它被从闸室移出。本发明即使在7个或更多的一系列的溅射室的情况下依然有效,溅射装置可以放置其中。
在本实施例中,虽然中间层、记录膜、第二保护层、吸收控制层和反射层是在基底上形成第一保护层之后以上述次序形成,但是它们还可以以不同次序形成。例如,如图7所示,如果反射层(溅射室6)、吸收控制层(溅射室5)、第二保护层(溅射室4)、记录薄膜(溅射室3)、中间层(溅射室2)和第一保护层(溅射室1)以上述顺序形成在一个支撑物上,本发明的效果相同。其他的记录/重现特性也一样。该支撑物可以与本实施例的基底相同,或采用粘合层或其它类似形式。另外,粘合层可以被用于第二盘。
具有与第一盘的组成成分相同的第二盘部件是通过同一方法得到的。然后,通过在第一盘部件和第二盘部件的薄膜表面提供紫外线照射固化树脂而形成保护涂层,紫外线照射固化树脂层通过粘合层8粘合起来,从而得到图1所示的信息记录介质。虽然这里描述了两层记录薄膜之一,但是还可以用保护基底替代第二盘部件,或生产出具有三层或更多层的记录薄膜的多层记录介质。(初始结晶方法)
初始结晶在如上述方法制造的盘的记录薄膜上进行,其过程如下所述。盘被旋转以使在记录轨道上的光点的线速度为6m/s,具有长轴位于介质的半径方向上的椭圆形光点的半导体激光器(波长大约为810nm)的激光功率被设定在600mW,记录薄膜4通过基底1被照射。光点每次在介质的半径方向上移动1/4光点长度。这样,完成初始结晶过程。(记录/擦除/重现)
信息通过用于上述记录介质的信息记录/重现测试装置被记录和重现出来。该信息记录/重现测试装置的操作过程如下所述。在执行记录/重现期间的电机控制通过ZCAV(分区定线速度)方法完成,其中,盘的旋转速度相对于记录/重现被执行的每个区域发生改变。盘线速度大约为8.2m/s。
当向盘上记录信息时,采用所谓的8-16记录方法进行记录,在该方法中,将8位信息转换为16位信息。由记录装置之外得到的信息被传送到8-16调制器,其将8位作为一个单元。在这种调制方法中,在被制成对应于8位信息的3T-14T记录标记长度上的信息被记录在介质上。这里,T是当信息被记录时的时钟周期,该时钟周期为17.1ns。通过8-16调制器进行转换的3T-14T数字信号被传输到记录波形产生电路。在记录波形产生电路中,3T-14T数字信号按时序构成交替对应于“0”和“1”的信号序列。对于“0”,采用中等激光功率照射,对于“1”,采用高功率脉冲或脉冲串进行照射。高功率脉冲宽度设定为大约3T/2-T/2。当4T或更高记录标记被形成时,用具有多个高功率脉冲的脉冲串形成多脉冲记录波形,并以脉冲之间的宽度约为T/2的低功率激光进行照射,在没有在上述的脉冲串之间形成记录标记的部分,用中等功率的激光进行照射。在这种情况下,形成记录标记的高功率被设定在10.5mW,用于擦除记录标记的中等功率被设定在5mW,其低于中等功率的低功率被设定在5mW。由此,低功率可以被设定为与中等功率相等,或被设定为其他水平。这样,中等功率激光光束照射在光盘上的区域结晶(间隔),盘上由高功率激光脉冲串照射的地方转变为非晶记录标记。此外,在上述记录波形产生电路中,当产生一系列高功率脉冲串以形成标记时,提供了对应于该方法(适应性记录波形控制)的多脉冲波形表,该方法对应于标记之前和之后的间隔的长度改变了多脉冲波形的头脉冲宽度和尾端脉冲宽度。这产生了一个多脉冲记录波形,该多脉冲记录波形能够在很大程度上消除标记之间标记内干扰的影响。该记录介质的反射率在晶体状态时很高,而处于非晶状态的记录区域的反射率很低。由记录波形产生电路产生的记录波形传输到激光驱动电路,激光驱动电路根据该波形改变在光头内的半导体激光器的输出功率。信息使用波长为660nm的激光光束作为信息记录能量射束并通过在该记录装置内的光头被记录下来。
当在上述条件下执行标记边缘记录时,作为最短标记的3T标记的标记长度约为0.42μm,作为最长标记的14T标记的标记长度约为1.96μm。在记录信号中,具有哑数据,该哑数据在信息信号的开始和结尾处具有重复的4T标记和4T间隔。在开始处还包括有VFO。
在这种记录方法中,如果新信息通过不擦除已被记录信息的部分而进行重写而被记录下来,旧信息被新信息重写。也就是说,有可能通过大约为圆形的单个光点进行重写。
此外,上述记录装置支持在纹脊(纹槽之间的区域)和纹槽上都记录信息的方法(所谓脊槽(L/G)记录方法)。在这种记录装置中,纹脊和纹槽的轨道可以通过L/G伺服电路随意选择。当然,该方法不仅适用于用纹脊纹槽记录的介质,还适用于用纹槽记录的介质。
记录信息的重现还是用上述光头实现的。1mW激光光束照射在记录轨道上,重现信号通过检测由标记和除了标记以外的部分反射的光线而得到。该重现信号的振幅通过前置放大电路增加,并且每个16位数据都通过一个8-16解调器被转变为8位信息。上述操作完成了记录信息的重现。
首先,将测试光盘放入测试器,并旋转。光头移动到接近记录/重现被测量的轨道。并在该位置自动聚焦,跟踪误差信号(差信号)被通过示波器监控。自动聚焦增益被调整到使纹槽中的跟踪误差信号幅度最大(AF偏移调整)。接下来,在对跟踪时继续自动聚焦。然后,通过根据随机信号而改变激光功率来进行记录操作,出现在对应于3T(最短)标记和间隔的信号包络的中心线和对应于最长标记和间隔的信号包络的中心线之间不同区域(不对称)的记录功率是+5%(在非晶水平侧的5%),这被认为是最佳记录功率。然后,10次重写(最佳功率)后径向倾斜(半径方向)和抖动数值之间的关系被通过时间间隔分析器(TIA)测定出来,在最小抖动处的径向倾斜被找出。换句话说,随径向倾斜变化的抖动被测定出来,计算抖动最小处的径向倾斜,以其作为最佳倾斜。接下来,执行跟踪偏移调整。首先,在组群(groups)两侧上以最佳功率执行10次重写。然后,纹槽中的纹脊的串扰被通过光谱分析仪进行测量。跟踪增益被调整到使串挠最小。最好,重新计算最佳倾斜,重复跟踪偏移控。
最后,在纹槽内的AF偏移调整后,同样在纹脊上进行跟踪偏移调整和径向倾斜调整。
当本发明的信息记录介质记录/重现被执行并且抖动和反射率水平的测量被完成时,可以在多次重写后获得良好的特性,即Ic=90mV。(大批量生产)
当每层的溅射时间被测定时,第一保护层是8.5秒,中间层是3.3秒,记录薄膜是0.3秒,第二保护层是3.4秒,吸收控制层是3.4秒和反射层是3.0秒。在大规模生产溅射装置在每个腔室中完成薄膜形成后,基底被传送到下面的腔室中。生产过程的速度由薄膜形成时间最长的那个腔室决定。
如实施例6所述,在现有技术(比较例子1)中,中间层的溅射率很低。它就是生产过程的速度决定步骤。然而,应当了解,由于本实施例的中间层具有高溅射率,生产过程可以被缩短,生产盘的数量与现有技术的产量(将对比例子1的生产盘的数量看作100%)相比可以提高到152%。因此,如果使用Ta-O中间层,将取得良好的重写特性,并且可以提高生产率。
另外,在Ta-O材料中,电阻低,一个优点是可能实现DC溅射。如果执行DC溅射,其溅射率将达到RF溅射率的1.2倍或更多,生产率将进一步被提高。(记录薄膜的组成和厚度)
除本发明的记录薄膜外,还可以采用GeTe和Sb2Te3的混合物,如Ge2Sb2Te5、Ge4Sb2Te7,Ge5Sb2Te8,具有接近上述混合物成分的记录薄膜,如Ge20Sb24Te56、添加有上述混合物成分的记录薄膜,如Ag2Ge21Sb21Te56、Sn1.3Ge2.7Sb2Te7和具有接近上述主成分为Ge-Sb-Te的成分的记录薄膜,能够取得相同的效果。
如果记录薄膜的厚度太薄,对比度将降低,如果太厚,再结晶区域将变得太大。由于10次重写抖动增加,最好将记录薄膜的厚度设定在7nm到13nm,但是即使这些限制都被超过,本实施例的中间层的效果仍然会取得。(吸收系数控制层的组成和厚度)
吸收控制层采用Cr或Al、In、Ni、Mo、Pt、Pd、Ti、W、Ge、Sb和Bi、合金和包含这些其中之一的化合物或混合物,目的是保持吸收控制和高对比度。这些元素在合金或化合物之中的含量最好是50个原子%或更多。由于该层吸收光线,并将传输光线限制在一个合适的程度,穿过具有低反射率的记录标记中的记录薄膜的光线被反射层反射,并被记录薄膜再次吸收。因此,温度上升不会太高,Ac/Aa被控制为1或更高。
如果除Cr等之外的元素含量在0.5个原子%到20个原子%范围之内,多次重写特性和跟踪误差率将提高,如果含量在1个原子%到10个原子%之内,多次重写特性和跟踪误差率将进一步提高。如果添加到Cr中的氧(O)达到20个原子%,将不容易出现剥落。添加Ti可以取得相同的效果。
如果第二保护层包括的材料的n,k在2.0到5.0,k在-3.0到-5.5,并具有合适的厚度,将可以获得高对比度,在记录膜的结晶状态的吸收比Ac和在非晶状态的吸收比Aa的吸收比率Ac/Aa能够达到1或更高,这是十分理想的。然而,即使超过了上述限制,本实施例的中间层仍能取得相同的效果。
在高密度相变光盘中,轨道节距很窄,需要考虑交叉擦除现象,在该现象中,记录标记的已在相邻轨道上写入的部分被擦除。为了避免上述交叉擦除,获得热量的横向扩散很重要。一个原因是在横向扩散中热量不容易在轨道方向进行传输。如果Ac/Aa大于1,相邻轨道的记录标记部分的温度将上升很少,这同样可以起到避免交叉擦除的功效。
为了避免交叉擦除,防止再结晶也是很重要的。如图13所示,在记录期间在记录薄膜的熔化后从外围发生再结晶保持非晶记录标记的部分变得更窄时,有必要熔化更宽的区域以形成预定尺寸的记录标记,相邻轨道的温度易于升高。
如果热量横向扩散,将可以避免再结晶。这是由于当记录标记形成时,防止中心部分的热量横向扩散,从而使围绕熔化区域部分的冷却被延迟,因而,避免了易于再结晶的趋势。(反射层的组成和厚度)
为了热冷却和保持高对比度,反射层采用Al、Ag、Au、Cu和包含上述任何元素的合金或化合物。最好将上述元素在合金或化合物中的含量控制在低于80原子%。在该层中,最好具有高热传导率和高反射率。为了控制热扩散,采用包括至少Al、Ag、Au、Cu中的一种元素的合金,这被发现同样有益于提高重现信号质量。具有主要成分为Al合金的物质如Al-Ti、Al-Cr、Al-Ag,都很昂贵,但是比较理想。具有主要成分为Ag合金的物质如Ag-Pd、Ag-Cr、Al-Ti、Ag-Pt、Ag-Cu、Al-Pd-Cu,之后是有主要成分为Au合金的物质如Au-Cr、Au-Ti、Au-Ag、Au-Cu、Au-Nd和具有主要成分为Cu合金的物质,它们都很昂贵,但它们都具有高热传导率和在重写过程中的低位误差率。本实施例中的中间层采用其他的材料同样可以取得相同的效果。(第一保护层的组成和厚度)
在第一保护层中,除ZnS-SiO2外,可以采用ZnS、Sb2O3、Bi2O3、Al2O3、Ga2O3、In2O3、SiO2、GeO2、SnO2、PbO、ZnO、CuO、Ag2O、NiO、PdO、PtO2、CoO、Co2O3、Rh2O7、IrO2、Ir2O3、FeO、Fe2O3、RuO2、OsO4、MnO、MnO2、Mn2O3、Re2O7、Cr2O3、MoO2、MoO3、WO2、WO3、V2O5、Nb2O5、Ta2O5、TiO2、ZrO2、HfO2、Sc2O3、Y2O3、La2O3的氧化物、氮化物、碳化物、氟化物、碲化物和硼化物或Sb、Bi、Al、Ga、In、Si、Ge、Sn、Pd、Zn、Cu、Ag、Ni、Pd、Pt、Co、Rh、Ir、Fe、Ru、Os、Mn、Re、Cr、Mo、W、V、Nb、Ti、Zr、Hf、Sc、Y、La、硫磺和Bi、Ga、In、Sn、Pb、Zn、Ag、Ni、Co、Fe、Mn、Mo、W、Nb、Zr,Hf的硒化物和其他具有与这些材料类似成分的物质。其中,ZnS、Ta2O5、SnO2、In2O3、ZnO或具有与ZnS-SiO2相同溅射率的这些元素的混合物都有益于生产率的提高。如果ZnS、Ta2O5、SnO2、In2O3、ZnO或它们的化合物含量为5O摩尔%或更多,溅射率将达到ZnS-SiO2的溅射率的大约60%过更多,这是很理想的。
考虑到第一保护层的厚度d1和第二保护层的厚度d2,为了获得充分的对比度,在重现波长660nm的附近,两层的总厚度(d1+d2)在100nm到150nm范围内。然而,即使超出了上述限制,本实施例的中间层仍能取得相同的效果。(第二保护层的组成和厚度)
如前所述,用于第一保护层的相同的材料同样可以用于第二保护层。如果第二保护层的热传导率太高,记录期间的热横向扩散和交叉擦除将趋于发生,因此,将其中具有低热传导率的ZnS与Ta2O5、SnO2、Cr2O3混合的ZnS-SnO2、ZnS-Ta2O5、ZnS-Cr2O3是更优选的。
如果第二保护层的厚度太薄,由于交叉擦除引起的抖动将会增加,如果第二保护层的厚度太厚,对比度将会下降。因此。第二保护层的理想厚度是25nm到45nm,但是即使在超出上述限制的情况下,本实施例的中间层仍然可以取得相同的效果。(基底)
在本实施例中,使用在表面上直接具有跟踪凹槽的聚碳酸脂基底上。该具有跟踪凹槽的基底是当记录/重现波长为λ时基底表面全部或部分的具有深度为至少λ/10n’(n’是基底材料的折射率)的凹槽的基底。纹槽可以连续地围绕圆周形成,也可以被分成两半。已经发现,当纹槽深度约为λ/6n时,串扰很小,这是很理想的。纹槽宽度也可以根据位置的不同而不同。圆周内侧越窄,多次重写期间产生的问题越少。并且,基底具有使记录/重现在纹脊和纹槽上执行的格式,或使记录在纹脊和纹槽其中之一执行的格式。如果在粘合一起之前在第一和第二盘的反射层上涂覆大约10μm厚度的紫外线固化树脂,它们在硬化之后将会粘合,误差率将会降低。在本实施例中,制造出来两个盘,第一和第二盘的反射层面通过粘合层8粘合到一起。如果基底材料由聚碳酸酯改为以聚烯烃为主更成分的材料,基底表面的硬度将会增加,由热引起的基底形变将有望减少10个百分点。然而,材料成本将至少提高两倍。(实施例2)
信息记录介质以相同方法制造,除第一实施例中的信息记录介质的中间层的厚度(d2)和第一保护层的厚度(d1)发生改变之外。制造出来的介质的中间层的厚度(d2)和第一保护层的厚度(d1)如表1所示。
表1:生产数值差的对比 d1(nm) d2(nm) d2/(d1+d2 ) 本发明 现有技术 差 7 123 0.95 139% 19% 120% 22 108 0.83 139% 23% 116% 32 98 0.75 145% 23% 123% 43 87 0.67 171% 26% 145% 52 78 0.60 193% 30% 163% 55 75 0.58 201% 31% 170% 65 65 0.5 232% 35% 197% 72 58 0.45 248% 39% 209% 87 43 0.33 206% 17% 189% 91 39 0.30 196% 60% 136% 98 32 0.25 181% 74% 106% 104 26 0.20 171% 89% 82% 108 22 0.17 165% 106% 59% 117 13 0.10 155% 106% 49% 123 7 0.05 152% 100% 52%
由此可以看出,当与第一保护层和中间层的总厚度相关的中间层厚度的比值d2/(d1+d2)改变并且检查生产的盘的数量时,得到如表1和图2所示的结果。
因此,可以看出,由于本发明的介质使用了与现有技术的介质相比具有高溅射率的中间层,而在现有技术的介质生产中,中间层是生产过程的速度决定步骤,因而具有高薄膜厚度的层是生产过程的速度决定步骤。由于记录薄膜、第二保护层、吸收控制层和反射层薄于第一保护层,它们不是生产过程的速度决定点。因此,发明人发现,通过将作为生产过程的速度决定步骤的第一保护层设置得较薄,生产的盘的数量可以进一步增加。比较生产数值差,可以发现,当厚度比d2/(d1+d2)为0.20或更高时,生产率有望提高大约170%。此外,当厚度比d2/(d1+d2)为0.30或更高时,生产率有望提高到大约195%(与现有技术相比的差是136%)。对本实施例中未说明的第二保护层、吸收控制层和反射层的材料、厚度和估计方法与第一实施例中的相同。
其中,具有一层记录薄膜的一层记录介质已被描述,但对于具有两层记录薄膜的两层记录介质或具有三层或更多层的记录薄膜的记录介质也可获得相同增加的生产率。(实施例3)
一种相同的信息记录介质,该介质除了信息记录介质和中间层的消光系数k与实施例1中不同外,其余制造方法相同,中间层的消光系数k和反射率之间的关系被测定出来。其结果如表2和图3所示。
表2:中间层的消光系数k和反射率(Rc)之间的关系 K Rc(%) -0.30 14.7 -0.28 14.7 -0.26 14.8 -0.24 14.9 -0.22 15.0 -0.20 15.1 -0.18 15.2 -0.16 15.3 -0.14 15.4 -0.12 15.5 -0.10 15.6 -0.08 15.8 -0.06 15.9 -0.04 16.0 -0.02 16.2 0.00 16.4
考虑到中间层的性质,由于产生了当该层发生光吸收时反射率的损失增加之类的问题,希望消光系数很小。因此,为了根据规定满足反射率标准(结晶状态的反射率Rc为15%或更高),k的绝对值最好为0.22或更低。
对本实施例中未说明的例如第二保护层、吸收控制层和反射层的材料、厚度和估计方法与第一实施例1中的相同。(实施例4)
一种相同的信息记录介质,该介质除了将实施例1中的信息记录介质和中间层的Ta2O5改变为添加有Cr2O3的Ta2O5外,其余制造方法相同。当将Cr2O3添加到Ta2O5时,Ta含量如表3所示。由此可以看出,当10000次重写(OW)后的Ta含量和反射率之间的关系被测定出来时,其结果如表3和图4所示。
表3:多次重写(OW)后的Ta含量和反射率之间的关系 Ta含量(原子数%)10000次重写后的结晶水平,Ic(mV) 30 65 29 75 28 85 27 88 26 90 23 90 20 90 17 90 11 90 6 90 3 88 1 70
其中,图4的纵轴上的Ic与实施例1的描述相同,当Ic变高时,记录/重现特性良好。因此,中间层的Ta含量(原子数%)最好在3个原子%到28个原子%范围内。
被添加的Cr2O3可以部分或全部的被Sb2O3、Bi2O3、Al2O3、Ga2O3、In2O3、SiO2、GeO2、SnO2、PbO、ZnO、CuO、Ag2O、NiO、PdO、PtO2、CoO、Co2O3、Rh2O7、IrO2、Ir2O3、FeO、Fe2O3、RuO2、OsO4、MnO、MnO2、Mn2O3、Re2O7、Cr2O3、MoO2、MoO3、WO2、WO3、V2O5、Nb2O5、Ta2O5、TiO2、ZrO2、HfO2、Sc2O3、Y2O3、La2O3的氧化物或其混合物所代替。Sb、Bi、Al、Ga、In、Si、Ge、Sn、Pb、Zn、Cu、Ag、Ni、Pd、Pt、Co、Rh、Ir、Fe、Ru、Os、Mn、Re、Cr、Mo、W、V、Nb、Ti、Zr、Hf、Sc、Y、La与氧的比值可以略微与上述组成比值不同,但是不希望包含在其中的氧处于自由状态,此外,最好在中间层材料中添加金属和/或半金属。
另外,接近上述材料的Sb、Bi、Al、Ga、In、Si、Ge、Sn、Pb、Zn、Cu、Ag、Ni、Pd、Pt、Co、Rh、Ir、Fe、Ru、Os、Mn、Re、Cr、Mo、W、V、Nb、Ti、Zr、Hf、Sc、Y、La的氮化物、碳化物、氟化物、碲化物、硼化物和它们的混合物和化合物可以被用于部分或全部的替换上述材料。
其中,Ta-O-Cr很耐热,可以进行多个重写。Ta-O-Mn仅次于Ta-O-Cr,也可以允许多次重写。Ta-O-Sn具有较高溅射率,在制造过程中,它可以缩短转变时间,但是重写次数降低10到20%。Ta-O-Bi具有次高于Ta-O-Sn的高溅射率。Ta-O-Ge、Ta-O-Mo具有高粘合力,可以克服由于外部冲击而造成的信息记录介质的微小劣化。Ta-O-Zr、Ta-O-Ti在初始结晶过程中具有均匀的晶体粒径,并在初始重写期间抖动几乎不会增加。
将Sb、Bi、Al、Ga、In、Si、Ge、Sn、Pb、Zn、Cu、Ag、Ni、Pd、Pt、Co、Rh、Ir、Fe、Ru、Os、Mn、Re、Cr、Mo、W、V、Nb、Ti、Zr、Hf、Sc、Y、La作为一组的原因是它们与具有高熔点的Cr2O3一样,可以形成稳定的化合物,并具有作为中间层的良好特性。
当在1nm或更厚的厚度上进行多次重写时,中间层起到避免保护层材料扩散到记录薄膜上的作用,并增加粘合生。为了获得满意的晶体生长速度,最好采用3nm或更厚的厚度。(实施例5)
一种相同的信息记录介质,该介质除了将实施例1中的信息记录介质和中间层的Ta2O5替换为添加有ZnS的Ta2O5外,其余制造方法相同。
当将ZnS添加到Ta2O5时的Ta的含量如表4所示。
表4:多次重写(OW)后的Ta含量和反射率之间的关系 Ta含量(原子数%) 10000次重写后结晶水平,Ic(mV) 30 63 29 74 28 84 27 88 26 90 23 90 20 91 17 91 11 90 6 89 3 87 0 69
当10000次重写(OW)后的Ta含量和反射率之间的关系被测定时,得到如表4和图5所示的结果。在图5纵轴上的Ic与实施例4中的相同。当添加了如ZnS之类的硫化物,与添加如Cr2O3之类的氧化物情况不同,如果添加含量太高,Zn或S将扩散到记录薄膜,多次重写如10000次重写后的反射率水平将会急剧降低。如果添加含量太低。反射率将由于中间层的吸收而降低。因此,中间层的Ta含量(原子%)最好在3个原子%到28个原子%范围内。(中间层的组成和厚度)
Bi、Ga、In、Sn、Pb、Zn、Ag、Ni、Co、Fe、Mn、Mo、W、Nb、Zr、Hf的硫化物及与上述材料组成类似的混合物可以全部或部分的替换ZnS。其中,最好选用GaS、Ga2S3、PbS、ZnS、CoS、FeS、MnS、MoS2、WS2、ZrS2,因为其特性稳定。
接下来,Bi、Ga、In、Sn、Pb、Zn、Ag、Ni、Co、Fe、Mn、Mo、W、Nb、Zr、Hf的硒化物及与上述材料组成类似的混合物可以全部或部分的替换ZnS。硒化物中,最好选用GaSe、Ga2Se3、PbSe、ZnSe、CoSe、FeSe、MnSe、MoSe2、WSe2,因为其特性稳定。
将Bi、Ga、In、Sn、Pb、Zn、Ag、Ni、Co、Fe、Mn、Mo、W、Nb、Zr、Hf视为一组的原因是,不同于实施例中的氧化物,硫化物或硒化物与ZnS一样具有高熔点,是稳定的化合物,对中间层来说具有良好的特性。
对本实施例中未说明的第二保护层、吸收控制层和的反射层的材料和厚度范围与第一实施例1中的相同。(实施例6)(对比例子1)
一种信息记录介质,具有与现有技术(对比例子1)相同的中间层和第一保护层,该介质被制造出来,被生产的盘的数目相似(图6)。在该盘中,只有第一保护层和中间层的厚度和中间层的材料与第一实施例中的盘不同。包括有C2rO3的中间层具有7nm的厚度,第一保护层的厚度通过中间层的厚度减到123nm而变得更厚。这在光学上是相同的,以使对比度恒定。(大批量生产)
每层的溅射时间被发现是:第一保护层10.7秒,中间层3.2秒,记录薄膜0.3秒,第二保护层3.4秒,吸收控制层3.4秒,反射层3.0秒。在大批量生产溅射装置中,当每个腔室薄膜形成完成时,基底被传送到下一个腔室。具有最长薄膜形成时间的腔室是生产过程的速度决定步骤。在现有技术的介质中,第一保护层是速度决定步骤,生产该介质的盘的数量被看作100%。
对本实施例中未说明的第二保护层、吸收控制层和反射层的材料、厚度和估计方法与第一实施例中的相同。
如上所述,根据本发明,可以得到适合于大批量生产和相对于高密度记录/重现具有良好记录/重现特性的介质。